
PCA vs. Varimax rotation 
The goal of the rotation/transformation in PCA is to maximize the variance of the ‘new’ 
SNP (eigenSNP), while minimizing the variance around the eigenSNP. Therefore the 
difference between the variances captured in each eigenSNP is maximized.  The 
constraint, ‘ is diagonal’, on the coefficients of original SNPs and eigenSNPs is a 
mathematical convenience to make the coefficients unique; however, it can complicate 
the problem of interpretation.  (See the scatter plot (figure 1) of the coefficients (table 2) 
from the dataset (table 1) where each SNP is represented as a point in the first 2 
dimensions of the eigenspace.) 
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The interpretation of the coefficients is the most straightforward if each SNP is correlated 
highly on at most one eigenSNP, and if all the coefficient are either large or near zero, 
with few intermediate values.  The SNPs are then split into disjoint sets, each of which is 
associated with one eigenSNP, perhaps some SNPs are left over. 
 
To achieve this clear pattern of coefficients, we could rotate the axes defined by PCA in 
any direction without changing the relative locations of the points to each other in every 
two dimensions; but the actual coordinates of the points would change.  The rotated 
solutions spam in the same geometric space as the original solutions and explain the same 
amount of variance in the data as the original solution, however the difference of the 
variances captured in the rotated axes is no longer maximized.   
 
There are several analytical choices of rotation that have been proposed in the past.  One 
of them is the varimax method of orthogonal rotation.  The varimax rotation criterion 
maximizes the sum of the variances of the squared coefficients within each eigenvector, 
and the rotated axes remain orthogonal. 
 
Figure 2 demonstrates the rotated solution (table 3) after a varimax rotation.  After the 
coordinate axes are rotated clockwise by an angle about 45 degrees, we obtain a clear 
pattern of SNPs corresponding to rotated eigenSNPs. 
 
In this simple example the overall interpretation is the same whether we rotate the axes or 
no, but in more complicated situations we could benefit more. 
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Tables: 
 
 snp1 snp2 snp3 snp4 
chr1 1 1 0 1
chr2 1 0 1 1
chr3 0 0 0 0
chr4 0 1 0 1
chr5 1 0 0 0

Table 1. a small dataset of 4 SNPs from 5 chromosomes 
 
Variables E1 E2 
Snp1 0.0978322 0.5690011 
Snp2 0.647965 -0.40432 
Snp3 0.1198195 0.6968811 
Snp4 0.745972 0.164681 

 Table 2. partial PCA results (unrotated) 
 
Variables E1 E2 
Snp1 0.00012428 0.5773503
Snp2 0.70744623 -0.288827 
Snp3 0.00015222 0.7071068
Snp4 0.70716891 0.2885229

Table 3. rotated solution 
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Figures: 
 

 
Figure 1. scatter plot of SNPs in the orthogonal space (unrotated) 
 

 
Figure 2. scatter plot of SNPs in the rotated orthogonal space 
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R source code: 
data <- c(1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,1,1,0,1,0) 
dim(data) <- c(5,4) 
snploadings <- loadings(princomp(data, cor=T)) 
plot(snploadings[,1:2]) 
rotated <- varimax(snploadings[,1:2])$loadings 
plot(rotated) 
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An example of finding htSNPs from a small SNP dataset using the varimax 

rotation method. 
 
We start with a SNP dataset: 

 SNP1 SNP2 SNP3 SNP4 SNP5
Chromosome1 1 1 1 0 1
Chromosome2 1 1 0 0 0
Chromosome3 0 0 0 0 1
Chromosome4 0 0 1 1 0

 
PCA results, unrotated, are: 

 e1 e2 e3 e4 e5

SNP1 -0.5532 -0.3854 0 -0.7385 0
SNP2 -0.5532 -0.3854 0 0.6155 0.4082
SNP3 0.2025 -0.5265 -0.7071 0.1231 -0.4082
SNP4 0.5532 -0.3854 0 -0.2132 0.7071
SNP5 -0.2025 0.5265 -0.7071 -0.1231 0.4082

 
PCA results upon varimax roation (Mardia et al. 1979; Dunteman 1989) are: 

 re1  
re2

re3
re4

re5

SNP1 0 0 0 -1 0
SNP2 -1 0 0 0 0
SNP3 0 -0.7071 -0.7071 0 0
SNP4 0 0 0 0 1
SNP5 0 0.7071 -0.7071 0 0

 
We compare the average coefficient for all k eigenSNPs ( iΓ ) to the one for the rest of (p-
k) eigenSNPs ( iγ ) for each SNP; and select the SNP if ii γ>Γ , which indicates that this 
SNP contributes mostly to the k eigenSNP (Meng et al. 2003).  Suppose k = 2, htSNP 
selections are: 

 Γ  γ htSNP
SNP1 0 0.5 N
SNP2 0.5 0 Y
SNP3 0.3536 0.2357 Y
SNP4 0 0.3333 N
SNP5 0.3536 0.2357 Y
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