
GPUs

Friday, March 22, 13

A bit of history

Friday, March 22, 13

A bit of history

• Originally designed to render graphics for
gaming

Friday, March 22, 13

A bit of history

• Originally designed to render graphics for
gaming

• First GPGPU applications were developed
via Shader techniques

Friday, March 22, 13

A bit of history

• Originally designed to render graphics for
gaming

• First GPGPU applications were developed
via Shader techniques

• CUDA / OpenCL became the first set of
languages written specifically compute
purposes

Friday, March 22, 13

Performance over the years

Friday, March 22, 13

Performance over the years

Friday, March 22, 13

CPU Architecture

Friday, March 22, 13

GPU Architecture

Friday, March 22, 13

Any Guesses?

Friday, March 22, 13

Allocation of Transistors

Friday, March 22, 13

Memory Space

Friday, March 22, 13

Memory Space
• Separate Memory Space:

Friday, March 22, 13

Memory Space
• Separate Memory Space:

• on board “host” memory (DDR3, etc.)

Friday, March 22, 13

Memory Space
• Separate Memory Space:

• on board “host” memory (DDR3, etc.)

• on GPU “device” memory

Friday, March 22, 13

Memory Space
• Separate Memory Space:

• on board “host” memory (DDR3, etc.)

• on GPU “device” memory

• Global memory (Slowest)

Friday, March 22, 13

Memory Space
• Separate Memory Space:

• on board “host” memory (DDR3, etc.)

• on GPU “device” memory

• Global memory (Slowest)

• L1, L2 Cache (Fast)

Friday, March 22, 13

Memory Space
• Separate Memory Space:

• on board “host” memory (DDR3, etc.)

• on GPU “device” memory

• Global memory (Slowest)

• L1, L2 Cache (Fast)

• Registers (Super-Fast)

Friday, March 22, 13

Memory Space
• Separate Memory Space:

• on board “host” memory (DDR3, etc.)

• on GPU “device” memory

• Global memory (Slowest)

• L1, L2 Cache (Fast)

• Registers (Super-Fast)

• Memory Management is critical!

Friday, March 22, 13

Programming Paradigm

Friday, March 22, 13

Programming Paradigm

• Host code (CPU) launches GPU threads to
execute GPU code

Friday, March 22, 13

Programming Paradigm

• Host code (CPU) launches GPU threads to
execute GPU code

• A single line is code executed by N threads

Friday, March 22, 13

Programming Paradigm

• Host code (CPU) launches GPU threads to
execute GPU code

• A single line is code executed by N threads

• if() statements create divergence

Friday, March 22, 13

Pitfalls

Friday, March 22, 13

Pitfalls

• Trying to syncthreads() in a divergent block
of code

Friday, March 22, 13

Pitfalls

• Trying to syncthreads() in a divergent block
of code

• Race conditions

Friday, March 22, 13

Pitfalls

• Trying to syncthreads() in a divergent block
of code

• Race conditions

• Hiding latency

Friday, March 22, 13

Pitfalls

• Trying to syncthreads() in a divergent block
of code

• Race conditions

• Hiding latency

• Pre-mature optimization

Friday, March 22, 13

Algorithms

Friday, March 22, 13

Algorithms

• What does it mean to parallelize an
algorithm?

Friday, March 22, 13

Algorithms

• What does it mean to parallelize an
algorithm?

• Ideal: do same amount of total work as
serial counter part

Friday, March 22, 13

Algorithms

• What does it mean to parallelize an
algorithm?

• Ideal: do same amount of total work as
serial counter part

• Less Ideal: do a bit of extra work

Friday, March 22, 13

Example: Prefix Sum

Friday, March 22, 13

Example: Prefix Sum

• Problem:

Friday, March 22, 13

Example: Prefix Sum

• Problem:

• Given an array of N elements, find its
running sum, ex. Exclusive Prefix Sum:

Friday, March 22, 13

Example: Prefix Sum

• Problem:

• Given an array of N elements, find its
running sum, ex. Exclusive Prefix Sum:

• 1 2 4 5 6 8 INPUT

Friday, March 22, 13

Example: Prefix Sum

• Problem:

• Given an array of N elements, find its
running sum, ex. Exclusive Prefix Sum:

• 1 2 4 5 6 8 INPUT

• 0 1 3 7 12 18 OUTPUT

Friday, March 22, 13

Example: Prefix Sum

• Problem:

• Given an array of N elements, find its
running sum, ex. Exclusive Prefix Sum:

• 1 2 4 5 6 8 INPUT

• 0 1 3 7 12 18 OUTPUT

• Trivial for CPU, with total work O(N)

Friday, March 22, 13

Work Inefficient
Parallel Reduction

Friday, March 22, 13

Work Inefficient
Parallel Reduction

O(N log N)

Friday, March 22, 13

Work Efficient
Parallel Reduction

Friday, March 22, 13

Work Efficient
Parallel Reduction

Friday, March 22, 13

Work Efficient
Parallel Reduction

O(N)

Friday, March 22, 13

In reality

Friday, March 22, 13

In reality

• In reality, we often end up with:

Friday, March 22, 13

In reality

• In reality, we often end up with:

• Work inefficient algorithms that adapt
well to memory (naive prefix sum)

Friday, March 22, 13

In reality

• In reality, we often end up with:

• Work inefficient algorithms that adapt
well to memory (naive prefix sum)

• Work efficient algorithms that don’t
adapt well to memory (eg. neighbourlists)

Friday, March 22, 13

In reality

• In reality, we often end up with:

• Work inefficient algorithms that adapt
well to memory (naive prefix sum)

• Work efficient algorithms that don’t
adapt well to memory (eg. neighbourlists)

• Really lucky if we can find something
works well in both cases

Friday, March 22, 13

Upper Bound: Amdahl’s Law

Friday, March 22, 13

Upper Bound: Amdahl’s Law

• P - fraction of program parallelizable

Friday, March 22, 13

Upper Bound: Amdahl’s Law

• P - fraction of program parallelizable

• Maximum Speedup Attainable:

Friday, March 22, 13

Upper Bound: Amdahl’s Law

• P - fraction of program parallelizable

• Maximum Speedup Attainable:

• S(N) = 1/((1-P)+P/N)

Friday, March 22, 13

Upper Bound: Amdahl’s Law

• P - fraction of program parallelizable

• Maximum Speedup Attainable:

• S(N) = 1/((1-P)+P/N)

• Very unlikely for a large program to be
100% parallelizable

Friday, March 22, 13

Algorithms that can be
effectively parallelized

Friday, March 22, 13

Algorithms that can be
effectively parallelized
• Reduction, Prefix Sums

Friday, March 22, 13

Algorithms that can be
effectively parallelized
• Reduction, Prefix Sums

• Radix-based sorting

Friday, March 22, 13

Algorithms that can be
effectively parallelized
• Reduction, Prefix Sums

• Radix-based sorting

• Breadth First Search

Friday, March 22, 13

Algorithms that can be
effectively parallelized
• Reduction, Prefix Sums

• Radix-based sorting

• Breadth First Search

• Matrix multiplication, Linear Algebra

Friday, March 22, 13

Algorithms that can be
effectively parallelized
• Reduction, Prefix Sums

• Radix-based sorting

• Breadth First Search

• Matrix multiplication, Linear Algebra

• FFTs

Friday, March 22, 13

Algorithms that can be
effectively parallelized
• Reduction, Prefix Sums

• Radix-based sorting

• Breadth First Search

• Matrix multiplication, Linear Algebra

• FFTs

• Simple Dynamic Programming

Friday, March 22, 13

Algorithms with no
good parallel solution

Friday, March 22, 13

Algorithms with no
good parallel solution

• Many graph search algorithms

Friday, March 22, 13

Algorithms with no
good parallel solution

• Many graph search algorithms

• Quick Sort

Friday, March 22, 13

Algorithms with no
good parallel solution

• Many graph search algorithms

• Quick Sort

• Binary Search

Friday, March 22, 13

Asymmetric Algorithms

Friday, March 22, 13

Asymmetric Algorithms

• Compression algorithms (eg. given a
Huffman code, encoding is parallelizable,
decoding not easily parallelizable.)

Friday, March 22, 13

Asymmetric Algorithms

• Compression algorithms (eg. given a
Huffman code, encoding is parallelizable,
decoding not easily parallelizable.)

• Converting the representation of a large
molecule into internal coordinates
(bijection from R^3N into Phi/Psi space)

Friday, March 22, 13

Language Differences

Friday, March 22, 13

Language Differences

• CUDA is a language: supports only NVIDIA
cards, lots of good documentation

• OpenCL is a standard: supports NVIDIA,
ATI, and Intel CPUs and Xeon Phi’s

Friday, March 22, 13

