Custom Forces in OpenMM

Peter Eastman
OpenMM Workshop, March 26, 2013

biof

Forces in OpenMM

e “Standard” forces cover the most widely
used force fields

— HarmonicBondForce, HarmonicAngleForce,
NonbondedForce, etc.

 But what if you need something that isn'’t
provided?

— Could write a plugin, but that’s hard and a lot
of work

Custom Forces

 Combine some of the flexibility of a
plugin with most of the simplicity of
standard forces

* You specify the energy function, it does
the rest

CustomNonbondedForce(""A*exp(-B*r)-C/r”6"")

Custom Forces Classes

e CustomBondForce
— Bonded force between two particles
— Energy is a function of the distance

o/.
 CustomAngleForce

— Bonded force between three particles .

— Energy is a function of the angle
 CustomTorsionForce

— Bonded force between four particles
— Energy is a function of the dihedral angle

Custom Forces Classes
(continued)

e CustomExternalForce
— Force applied to each particle independently
— Energy is a function of the particle position

-
e | a
w Y

e CustomNonbondedForce
— Nonbonded force between pairs of particles
— Energy is a function of the distance

Custom Forces Classes
(continued)

e CustomCompoundBondForce

— Bonded force between an arbitrary number of
particles

— Energy can depend on positions, distances, angles,

and dihedrals
W

Custom Forces Classes
(continued)

e CustomGBForce
— Supports various implicit solvent models

® O
O

e CustomHbondForce
— Supports various hydrogen bonding models

Example: Harmonic Restraints

e Restrain particular atoms from moving

E(X,y,z) =10 ((x - xo)2 +(y - y0)2 +(z- 20)2]

Create the force

force = CustomeExternalForce(*“10*((x-x0)"2+(y-y0)"2+(z-z0)"2)")
force.addPerParticleParameter("'x0")
force.addPerParticleParameter("'y0")
force.addPerParticleParameter(*'z0')

Bind particle 5 to the location (0, 1, -0.5) nm
force.addParticle(5, (0, 1, -0.5)*nanometers)

Lennard-Jones Combining
Rules

e Lennard-Jones potential represents Van
der Waals interactions

-7 (),

 The combining rule determines ¢ and ¢
from the particle parameters

e NonbondedForce uses Lorentz-Bertelot
combining rule

E=1/5&, 0:0.5(01+62)

Jorgensen Combining Rules

 Some force fields (e.g. OPLS) use Jorgensen
combining rules

& =1/EE, O =4/0,0,

force = CustomNonbondedForce(

“"4*eps*((s1g/r)M12-(sig/r)™6); eps=sqrt(epsl*eps?2);
sig=sqgrt(sigl*sig2)'")

force.addPerParticleParameter('eps'’)

force.addPerParticleParameter(''sig')
force.addParticle([0.1, 0.3])

Other Features

e Global parameters
— Have a single value for all bonds/particles
— Can change during a simulation

 Tabulated functions

— Use tabulated values to define a function,
then use it In expressions

— Only supported by
CustomNonbondedForce, CustomGBForce,
and CustomHbondForce

Performance of Custom Forces

 OpenCL and CUDA platforms generate a
new kernel at runtime to evaluate the
expression

— Little or no performance difference from
standard forces

Reference platform uses an interpreter to
evaluate expressions

— Much slower than standard forces

Example: A Spherical Potential

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *

pdb = PDBFile("waterSphere.pdb*®)

forcefield = ForceField("amber99sb._xml®, "tip3p.xml*")

system = forcefield.createSystem(pdb.topology,
nonbondedMethod=NoCutofT)

force = CustomExternalForce("10*max(0, r-1)"2; r=sqrt(xX*x+y*y+z*z)")

for 1 In range(system.getNumParticles()):

force.addParticle(i, Q)

system.addForce(force)

integrator = Langevinlntegrator(1000*kelvin, 1/picosecond,
0.002*picoseconds)

simulation = Simulation(pdb.topology, system, integrator)

simulation.context.setPositions(pdb.positions)

simulation.reporters.append(PDBReporter("output.pdb®, 100))

simulation.step(5000)

Example: A Spherical Potential

force = CustomExternalForce("10*max(0, r-1)"2; r=sqrt(xX*x+y*y+z*z)")
for 1 1n range(system.getNumParticles()):

force.addParticle(i,)
system.addForce(force)

Exercises

 Run the script and view the results In
VMD

* Increase the sphere radius to 2 nm.
What happens?

 Reduce the temperature to 300K. What
happens? Why?

Custom Integrators

* Define integration algorithm as an
arbitrary series of computations

e Supports many types of integrators
— Deterministic
— Stochastic
— Metropolized
— Generalized Langevin
— Multiple time step

Example: Velocity Verlet

integrator = Customlntegrator(0.001)
integrator.addComputePerDof("'v'", "'v+0.5*dt*f/m")
integrator.addComputePerDof(*'x", "'xX+dt*v")
integrator.addComputePerDof("'v'", "'v+0.5*dt*f/m")

e Customintegrator automatically
recalculates forces when necessary

e Supports arbitrary global and per-DOF
variables

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Custom Forces Classes
	Custom Forces Classes (continued)
	Custom Forces Classes (continued)
	Custom Forces Classes (continued)
	Example: Harmonic Restraints
	Lennard-Jones Combining Rules
	Jorgensen Combining Rules
	Other Features
	Performance of Custom Forces
	Example: A Spherical Potential
	Example: A Spherical Potential
	Exercises
	Custom Integrators
	Example: Velocity Verlet

