GPUs
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A bit of history

® Originally designed to render graphics for
gaming

® First GPGPU applications were developed
via Shader techniques

® CUDA / OpenCL became the first set of

languages written specifically compute
purposes
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Memory Space

® Separate Memory Space:
® on board “host” memory (DDR3, etc.)
® on GPU “device” memory
® Global memory (Slowest)
® | |I,L2 Cache (Fast)
® Registers (Super-Fast)

® Memory Management is critical!
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Programming Paradigm

® Host code (CPU) launches GPU threads to
execute GPU code

® A single line is code executed by N threads

® if() statements create divergence
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Pitfalls

Trying to syncthreads() in a divergent block
of code

Race conditions
Hiding latency

Pre-mature optimization
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Algorithms

® VWhat does it mean to parallelize an
algorithm?

® |deal: do same amount of total work as
serial counter part

® | ess ldeal: do a bit of extra work
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Example: Prefix Sum

® Problem:

® Given an array of N elements, find its
running sum, ex. Exclusive Prefix Sum:

® [ 2456 8 INPUT
e 01371218 OUTPUT
® Trivial for CPU, with total work O(N)
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Work Inefficient
Parallel Reduction

O(N log N)
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In reality

® |n reality, we often end up with:

® Work inefficient algorithms that adapt
well to memory (naive prefix sum)

® Work efficient algorithms that don't
adapt well to memory (eg. neighbourlists)

® Really lucky if we can find something
works well in both cases
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Upper Bound: Amdahl’s Law

® P - fraction of program parallelizable
® Maximum Speedup Attainable:
o S(N) = I/((1-P)+P/N)

® Very unlikely for a large program to be
100% parallelizable
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Algorithms that can be
effectively parallelized

® Reduction, Prefix Sums

® Radix-based sorting

® Breadth First Search

® Matrix multiplication, Linear Algebra

® FFTs

® Simple Dynamic Programming




Algorithms with no
good parallel solution




Algorithms with no
good parallel solution

® Many graph search algorithms




Algorithms with no
good parallel solution

® Many graph search algorithms

® Quick Sort




Algorithms with no
good parallel solution

® Many graph search algorithms
® Quick Sort

® Binary Search
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Asymmetric Algorithms

® Compression algorithms (eg. given a
Huffman code, encoding is parallelizable,
decoding not easily parallelizable.)

® Converting the representation of a large
molecule into internal coordinates
(bijection from RA3N into Phi/Psi space)
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Language Differences

® CUDA is a language: supports only NVIDIA
cards, lots of good documentation

® OpenCL is a standard: supports NVIDIA,
ATl and Intel CPUs and Xeon Phi’s




