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A bit of history

• Originally designed to render graphics for 
gaming

• First GPGPU applications were developed 
via Shader techniques

• CUDA / OpenCL became the first set of 
languages written specifically compute 
purposes
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Memory Space
• Separate Memory Space:

• on board “host” memory (DDR3, etc.)

• on GPU “device” memory

• Global memory (Slowest)

• L1, L2 Cache (Fast)

• Registers (Super-Fast)

• Memory Management is critical!
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Programming Paradigm

• Host code (CPU) launches GPU threads to 
execute GPU code

• A single line is code executed by N threads

• if() statements create divergence
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Pitfalls

• Trying to syncthreads() in a divergent block 
of code

• Race conditions

• Hiding latency

• Pre-mature optimization
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Algorithms

• What does it mean to parallelize an 
algorithm?

• Ideal: do same amount of total work as 
serial counter part

• Less Ideal: do a bit of extra work
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Example: Prefix Sum

• Problem:

• Given an array of N elements, find its 
running sum, ex. Exclusive Prefix Sum:

• 1 2 4 5 6   8    INPUT

• 0 1 3 7 12 18  OUTPUT

• Trivial for CPU, with total work O(N)
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Work Inefficient 
Parallel Reduction

O(N log N)
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Work Efficient
Parallel Reduction

O(N)
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In reality

• In reality, we often end up with:

• Work inefficient algorithms that adapt 
well to memory (naive prefix sum)

• Work efficient algorithms that don’t 
adapt well to memory (eg. neighbourlists)

• Really lucky if we can find something 
works well in both cases
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• P - fraction of program parallelizable

• Maximum Speedup Attainable:

• S(N) = 1/((1-P)+P/N)
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Upper Bound: Amdahl’s Law

• P - fraction of program parallelizable

• Maximum Speedup Attainable:

• S(N) = 1/((1-P)+P/N)

• Very unlikely for a large program to be 
100% parallelizable
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Algorithms that can be 
effectively parallelized
• Reduction, Prefix Sums

• Radix-based sorting

• Breadth First Search

• Matrix multiplication, Linear Algebra

• FFTs

• Simple Dynamic Programming
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Algorithms with no 
good parallel solution

• Many graph search algorithms

• Quick Sort

• Binary Search
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Asymmetric Algorithms

• Compression algorithms (eg. given a 
Huffman code, encoding is parallelizable, 
decoding not easily parallelizable.)
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Asymmetric Algorithms

• Compression algorithms (eg. given a 
Huffman code, encoding is parallelizable, 
decoding not easily parallelizable.)

• Converting the representation of a large 
molecule into internal coordinates 
(bijection from R^3N into Phi/Psi space)
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Language Differences

• CUDA is a language: supports only NVIDIA 
cards, lots of good documentation

• OpenCL is a standard: supports NVIDIA,  
ATI, and Intel CPUs and Xeon Phi’s
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