
The OpenMM API

Peter Eastman
OpenMM Workshop, March 26, 2013

2

The OpenMM Architecture

OpenMM Public API

Implementation Layer

OpenMM Low Level API

CUDA/OpenCL/MPI/etc.

Public Interface

Platform Independent Code

Platform Abstraction Layer

Computational Kernels

Application Layer High Level Python Code

3

Why Use the API?

• Application Developers
– This is how you use OpenMM within your

programs

• Chemists/Biologists
– It’s available to your control scripts... if you

want it
– There’s a lot you can do with it!

4

Goals of the API
• Simple

– Easy to learn
– Easy to use

• Extensible
– Add new force fields, integration methods, etc.
– Support new hardware platforms

• Can be implemented efficiently on a variety
of hardware platforms

• Easy to incorporate into existing codebases

5

Choice of Language

• The OpenMM API is written in C++
• API wrappers are provided for Python, C,

and Fortran
– Provide access to most features
– Plugins can only be written in C++

6

Public API Classes (1 of 3)
• System

– A collection of interacting particles
– Defines the mass of each particle
– Specifies distance constraints
– Contains a list of Force objects that define the

interactions
• Context

– Contains all state information
• Positions, velocities, other parameters

7

Public API Classes (2 of 3)

• Force
– Anything which affects the system’s behavior
– Forces, thermostats, barostats, etc.
– A Force may:

• Apply forces to particles
• Contribute to the potential energy
• Define adjustable parameters
• Modify positions, velocities, and parameters at the

start of each time step

8

Public API Classes (3 of 3)
• Integrator

– Advances the system through time
– Both fixed and variable step size integrators are

supported

• State
– A snapshot of the state of the system
– Immutable (used only for reporting)
– Creating a State is the only way to access positions

and velocities
– Can optionally include forces and energies

9

Example

• Create a System
system�= System()
for particle in particles:
 system.addParticle(particle.mass[i])
for constraint in constraints:
 system.addConstraint(constraint.atom1, constraint.atom2,
 constraint.distance)

• Add Forces to it
bondForce = HarmonicBondForce()
for bond in bonds:
 bondForce.addBond(bond.atom1, bond.atom2, bond.length, bond.k)
system.addForce(bondForce)
... add Forces for other force field terms.

10

Example (continued)

• Simulate it
integrator = LangevinIntegrator(297.0, 1.0, 0.002) # Temperature, friction,
 # step size
context = Context(system, integrator)
context.setPositions(positions)
context.setVelocities(velocities)
integrator.step(500) # Take 500 steps

• Retrieve state information
state = context.getState(getPositions=True, getVelocities=True)
for position in state.getPositions():
 print position

11

Platforms

• The API defines the interface
• A Platform provides the implementation
• Available Platforms:

– Reference
– OpenCL
– CUDA

12

The Platform API

• Select a Platform to use
 platform = Platform.getPlatformByName("OpenCL")
 context = Context(system, integrator, platform)

• Check what Platform is being used
 print context.getPlatform().getName()

• List available Platforms
 for i in range(Platform.getNumPlatforms()):

 print Platform.getPlatform(i).getName()

13

Documentation

See .../openmm/docs/C++ API Reference.html and .../openmm/docs/Python API Reference.html

Also online (see OpenMM download page)

14

Python Help

• Can use help() to get docs for a class,
function, object, etc.

 help(Context)

 help(Context.getState)

 help(simulation.context)

• Use dir() to list every field and method of an
object

 dir(simulation)

15

C++/Python Differences

• Context.getState() uses boolean arguments
instead of flags
C++:
context.getState(State::Positions | State::Velocities);

Python:
context.getState(getPositions=True, getVelocities=True)

16

C++/Python Differences, cont.

• Multiple return values are returned directly,
not as arguments
C++:
int particle1, particle2;

double length, k;

f.getBondParameters(i, particle1, particle2, length, k);

 Python:
(particle1, particle2, length, k) = f.getBondParameters(i)

• Quantities have explicit units

17

Why Units?

• Many different units are common in MD
– Time in ps or fs?
– Distance in nm or Angstroms?
– Energy in kcal/mol or kJ/mol?

• You will make mistakes!
• This will produce bugs!

18

...and you’re not alone!

• Mars Climate Orbiter
– Crashed into Mars in 1999
– Cost $125 million

• Air Canada Flight 143

– Ran out of fuel in midair in 1983

Both caused by errors in unit conversions

19

Units in OpenMM

• Just multiply each value by its units
>>> size = 5*nanometers
>>> print size
5 nm
>>> accel = 9.8*meters/second**2
>>> print accel
9.8 m/(s**2)

• Can convert to any compatible unit
>>> print size.in_units_of(angstroms)
50.0 A
>>> print size.value_in_unit(angstroms)
50.0

20

Units in OpenMM, continued
• Conversions happen automatically when

doing math
>>> print 5*nanometers+25*angstroms
7.5 nm
>>> print 5*nanometers+25*picoseconds
Traceback (most recent call last):
...
TypeError: Cannot add two quantities with incompatible units

"nanometer" and "picosecond".

• Can apply units to lists, tuples, and arrays

>>> x = (1.0, 1.5, 0.0)*nanometers
>>> positions = state.getPositions().in_units_of(angstrom)

21

Units in OpenMM, continued

• Units are optional (but recommended!) on
input values

• Output values always have units
• Default OpenMM units:

– nm, ps, K, amu (g/mole), kJ/mole, e
– These form a consistent unit system!

22

Which Language to Use?

• Python
– Faster development
– Interactive mode for experimenting
– Explicit units

• C++
– Faster execution
– Easier to call from other languages
– Can write plugins

23

Reporters Reporters

Forces

Diagram of classes in OpenMM 5.0

creates w/ Topology Context System
State

Platform
(e.g. Cuda,

OpenCL)

PDBFile
AmberInpcrdFile AmberPrmtopFile

ForceField

Simulation

Topology

required for

re
qu

ire
d

fo
r

cr
ea

te
s

creates

se
ts

 p
os

iti
on

s

API Layer
Class

App Layer
Class from

File

App Layer
Class

Positions

Energy

Forces

Velocities

Box Vectors

contains
Reporters
(e.g. DCD,
State Data)

XmlSerializer

Forces Forces

co
nt

ai
ns

Time step

Minimize energy

Method

Data

Integrator
(e.g. Verlet,

Langevin)

co
nt

ai
ns

	Slide Number 1
	The OpenMM Architecture
	Why Use the API?
	Goals of the API
	Choice of Language
	Public API Classes (1 of 3)
	Public API Classes (2 of 3)
	Public API Classes (3 of 3)
	Example
	Example (continued)
	Platforms
	The Platform API
	Documentation
	Python Help
	C++/Python Differences
	C++/Python Differences, cont.
	Why Units?
	...and you’re not alone!
	Units in OpenMM
	Units in OpenMM, continued
	Units in OpenMM, continued
	Which Language to Use?
	Slide Number 23

