
Let’s ease into using OpenMM for MD simulations
The task: Simulate an alanine dipeptide in water

Exercise 1:

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
from sys import stdout

Reading structure and force field files
pdb = PDBFile('input_exercise1.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')

Creating System
system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME,

nonbondedCutoff=1.0*nanometer, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)

Creating simulation context
simulation = Simulation(pdb.topology, system, integrator)
simulation.context.setPositions(pdb.positions)

Minimizing System
simulation.minimizeEnergy(maxIterations=25)

Adding Reporters
simulation.reporters.append(PDBReporter('output_exercise1.pdb', 5))
simulation.reporters.append(StateDataReporter(stdout, 100, step=True,
potentialEnergy=True, temperature=True))

Running simulation
simulation.step(1000)

Remember: We can interface with OpenMM through python scripts

If you get “Import error” or “Library not found”, try this:

Mac OS X:
export DYLD_LIBRARY_PATH=/usr/local/openmm/lib:/usr/local/cuda/lib
Linux:
export LD_LIBRARY_PATH=/usr/local/openmm/lib:/usr/local/cuda/lib
Windows:
Refer to page 16 of the OpenMM Application Guide.

1. In your terminal window, go to the exercise directory.
2. Try running the exercise by typing: python exercise1.py

Your output will look something like this:

Creating System
Using Platform: OpenCL
Minimizing Energy
Adding Reporters to report Potential Energy and Temperature every 100 steps
Running Simulation for 1000 steps
Running step: 0
#"Step","Potential Energy (kJ/mole)","Temperature (K)"
100,-26643.6088239,175.727733927
Running step: 100
200,-26218.1442337,194.691558193
.
.
1000,-24957.7316677,283.859340959
Finished Simulation.

Let’s give it a go …

1. If your simulation ran on the Amazon cloud, download the output
 (psftp on Win, scp on Mac/Linux)

2. Open VMD

2. In ‘VMD Main’: Select File and New Molecule...

3. The ‘Molecule File Browser’ appears.

4. Click ‘Browse’ and select output_exercise1.pdb.

5. Click ‘Load’.

Let’s now look at the simulation output

(AMOEBA includes its own water model)

New/currently unavailable and custom force fields can be added.
Check out talk by Lee-Ping tomorrow, March 27, 9:30 am!

forcefield = ForceField('amber99sb.xml', ‘tip3p.xml’) Set with:

Force fields available in OpenMM

forcefield = ForceField('amber99sb.xml', ‘tip3p.xml’)

Implicit water model

-Fast (fewer atoms to track and
less friction)
-Gets bulk properties ‘right’

Set with:

Explicit water model

-Slower (solvent atoms make up
most of the system)
-Gets atomistic properties ‘right’

Solvent models

… parameterized to compensate for their simplified description of reality.

Most models have incomplete physics:
• Fixed point charges (no electronic polarization)
• Classical mechanics (no isotope effects)
• Fixed bond topology (no chemistry)

However, much can be recovered through parameterization:
• Increase the partial charges, tune vdW parameters, etc.
• In many cases, force fields exceed the accuracy of quantum
methods!

TIP3P TIP4P EW TIP5P

Adapted from Lee-Ping Wang

Explicit solvent models …

Water dynamics is typically much faster than that of protein conformational
diffusion. Thus, water can be described as a continuum medium.

The electrostatic component is commonly computed using the
generalized Born (GB) approximation:

This is then often augmented with a hydrophobic solvent accessible
surface area (SA) term, giving the GBSA model.

Implicit solvent models

Solvent models available in OpenMM

integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)

Simulation Temperature Friction coefficient Timestep

Other Integrators:

Constant energy simulations: VerletIntegrator(0.002*picoseconds)

Brownian Dynamics: BrownianIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)

Variable time step: VariableLangevinIntegrator(300*kelvin, 1/picosecond, 0.001)
 VariableVerletIntegrator(0.001)

Temperature coupling: system.addForce(AndersenThermostat(300*kelvin, 1/picosecond))

Pressure Coupling: system.addForce(MonteCarloBarostat(1*bar, 300*kelvin))

But why don’t we find out for ourselves?

Integrators in OpenMM

Learning about the Integrator Class from OpenMM
Documentation page: https://simtk.org/api_docs/openmm/api5_0/python

Reading values from an Integrator Object

system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=HBonds)

Setting non-bonded interactions in OpenMM

system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=HBonds)

Constraints? => Larger integration time steps => Greater speedup.
 (Note: Be aware of the added level of approximation and apply constraints with care.)

Hint: It’s good practice to choose ‘None’ while heating a system. Once equilibrated,
one can safely choose ‘Hbonds’ for production runs.

By default, bonds and angles of water molecules are constrained (accessible through
rigidWater parameter):

system = prmtop.createSystem(nonbondedMethod=NoCutoff,
constraints=None, rigidWater=False)

Constraining certain bonds and angles in OpenMM

Reporters for printing values of State parameters during simulation:

simulation.reporters.append(StateDataReporter('data.txt', 1000, time=True,
temperature=True, kineticEnergy=True, potentialEnergy=True, totalEnergy=True,
volume=True, density=True, separator=' '))

Check out talk by Lee-Ping tomorrow, March 27, 2:15 pm!

Reporters in OpenMM

Copy exercise1.py to exercise2.py
Use input_exercise2.pdb as the starting structure.

Task: Set up the protein in the provided .pdb file and perform an implicit water MD.

Exercise 2: Simulating the villin headpiece in implicit solvent

 ValueError: No template found for residue 1 (LEU)

This message implies that there are missing atoms in the residues
of this Protein. We need to use modeller class to build missing atoms.

Exercise 2: Simulating the villin headpiece in implicit solvent

Crystal structure Ready for MD

(refer OpenMM Application Guide section 5)

OpenMM modeller class can fix these issues.
pdb = PDBFile('input.pdb')
modeller = Modeller(pdb.topology, pdb.positions)
... Call some modelling functions here ...
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME)

Available modeller functions:
Adding Hydrogen: modeller.addHydrogens(forcefield, pH=5.0)

Adding Solvent: modeller.addSolvent(forcefield, padding=1.0*nanometers, model='tip5p’)
 modeller.addSolvent(forcefield, boxSize=Vec3(5.0, 3.5, 3.5)*nanometers)

Adding Ions: modeller.addSolvent(forcefield, ionicStrength=0.1*molar, positiveIon='K+')

Add hydrogen
atoms Add water box

Model Building and Editing with OpenMM

pdb = PDBFile('input_exercise2.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
print "Building Model.."
modeller = Modeller(pdb.topology, pdb.positions)
print('Adding hydrogens...')
modeller.addHydrogens(forcefield)
print "Creating System"
system = forcefield.createSystem(modeller.topology, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)
simulation = Simulation(modeller.topology, system, integrator)
print "Using Platform:", simulation.context.getPlatform().getName()
simulation.context.setPositions(modeller.positions)

Instruction: Add modeller and replace the previous pdb.topology
and pdb.positions with modeller.topology and modeller.positions.

Task: Set up the protein in the provided .pdb file and perform an implicit water MD.

Exercise 2: Simulating the villin headpiece in implicit solvent

Task: Set up the protein in the provided .pdb file and perform an implicit water MD.

Now that we fixed the error:

- Use amber99_obc as the implicit solvent model.
- Change friction parameter to 91/ps for the implicit solvent model.
- Remove nonbonded parameters (method and cutoff) from the

System object, which are necessary only for explicit solvent
simulations.

Exercise 2: Simulating the villin headpiece in implicit solvent

pdb = PDBFile('input_exercise2.pdb')
forcefield = ForceField('amber99sb.xml', 'amber99_obc.xml')
print "Building Model.."
modeller = Modeller(pdb.topology, pdb.positions)
print('Adding hydrogens...')
modeller.addHydrogens(forcefield)
print "Creating System"
system = forcefield.createSystem(modeller.topology, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 91/picosecond, 0.002*picoseconds)
simulation = Simulation(modeller.topology, system, integrator)
print "Using Platform:", simulation.context.getPlatform().getName()
simulation.context.setPositions(modeller.positions)

Your input file should now look like this:

Task: Set up the protein in the provided .pdb file and perform an implicit water MD.

Exercise 2: Simulating the villin headpiece in implicit solvent

Instructions:
- Copy exercise1.py to exercise3.py
- Use input_exercise2.pdb as the starting structure.
- Continue using amber99sb and tip3p as the explicit solvent

model.
- Add a box of explicit water molecules using the modeller class

with a 1nm padding.

Task: Build a water box with the modeller class and perform an explicit water MD.

Exercise 3: Simulating the villin headpiece in explicit solvent

pdb = PDBFile('input_exercise2.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
print "Building Model..."
modeller = Modeller(pdb.topology, pdb.positions)
print('Adding hydrogens...')
modeller.addHydrogens(forcefield)
print "Adding Water.."
modeller.addSolvent(forcefield, model='tip3p', padding=1.0*nanometers)
print "Creating System..."
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME,
nonbondedCutoff=1.0*nanometer, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)

So, …
… we copied exercise1.py to exercise3.py,
… used input_exercise2.pdb as the starting structure,
… used amber99sb and tip3p as the explicit solvent model,
… and added explicit water molecules using the modeller class.

Task: Build a water box with the modeller class and perform an explicit water MD.

Exercise 3: Simulating the villin headpiece in explicit solvent

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

