
Let’s ease into using OpenMM for MD simulations 
The task: Simulate an alanine dipeptide in water 

Exercise 1:  



from simtk.openmm.app import * 
from simtk.openmm import * 
from simtk.unit import * 
from sys import stdout 
 
# Reading structure and force field files 
pdb = PDBFile('input_exercise1.pdb') 
forcefield = ForceField('amber99sb.xml', 'tip3p.xml') 
 
# Creating System 
system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME, 

nonbondedCutoff=1.0*nanometer, constraints=HBonds) 
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds) 
 
# Creating simulation context 
simulation = Simulation(pdb.topology, system, integrator) 
simulation.context.setPositions(pdb.positions) 
 
# Minimizing System 
simulation.minimizeEnergy(maxIterations=25) 
 
# Adding Reporters 
simulation.reporters.append(PDBReporter('output_exercise1.pdb', 5)) 
simulation.reporters.append(StateDataReporter(stdout, 100, step=True, 
potentialEnergy=True, temperature=True)) 
 
# Running simulation 
simulation.step(1000) 

Remember: We can interface with OpenMM through python scripts 



If you get “Import error” or “Library not found”, try this: 
 

Mac OS X:  
export DYLD_LIBRARY_PATH=/usr/local/openmm/lib:/usr/local/cuda/lib 
Linux: 
export LD_LIBRARY_PATH=/usr/local/openmm/lib:/usr/local/cuda/lib  
Windows:  
Refer to page 16 of the OpenMM Application Guide. 

1. In your terminal window, go to the exercise directory. 
2. Try running the exercise by typing: python exercise1.py 

Your output will look something like this: 
 

Creating System 
Using Platform: OpenCL 
Minimizing Energy 
Adding Reporters to report Potential Energy and Temperature every 100 steps 
Running Simulation for 1000 steps 
Running step: 0 
#"Step","Potential Energy (kJ/mole)","Temperature (K)" 
100,-26643.6088239,175.727733927 
Running step: 100 
200,-26218.1442337,194.691558193 
. 
. 
1000,-24957.7316677,283.859340959 
Finished Simulation. 

Let’s give it a go … 



1. If your simulation ran on the Amazon cloud, download the output 
 (psftp on Win, scp on Mac/Linux) 

2. Open VMD 

2. In ‘VMD Main’: Select File and New Molecule... 

3. The ‘Molecule File Browser’ appears. 

4. Click ‘Browse’ and select output_exercise1.pdb. 

5. Click ‘Load’. 

Let’s now look at the simulation output 



(AMOEBA includes its own water model) 

New/currently unavailable and custom force fields can be added. 
Check out talk by Lee-Ping tomorrow, March 27, 9:30 am! 

forcefield = ForceField('amber99sb.xml', ‘tip3p.xml’) Set with: 

Force fields available in OpenMM 



forcefield = ForceField('amber99sb.xml', ‘tip3p.xml’) 

Implicit water model 
 
-Fast (fewer atoms to track and 
less friction) 
-Gets bulk properties ‘right’ 

Set with: 

Explicit water model 
 
-Slower (solvent atoms make up 
most of the system) 
-Gets atomistic properties ‘right’ 

Solvent models 



… parameterized to compensate for their simplified description of reality. 

Most models have incomplete physics: 
• Fixed point charges (no electronic polarization) 
• Classical mechanics (no isotope effects) 
• Fixed bond topology (no chemistry) 
 

However, much can be recovered through parameterization: 
• Increase the partial charges, tune vdW parameters, etc. 
• In many cases, force fields exceed the accuracy of quantum 
methods! 

TIP3P TIP4P EW TIP5P 

Adapted from Lee-Ping Wang 

Explicit solvent models … 



Water dynamics is typically much faster than that of protein conformational 
diffusion. Thus, water can be described as a continuum medium.  
 

The electrostatic component is commonly computed using the 
generalized Born (GB) approximation: 

This is then often augmented with a hydrophobic solvent accessible 
surface area (SA) term, giving the GBSA model. 

Implicit solvent models 



Solvent models available in OpenMM 



integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds) 

Simulation Temperature Friction coefficient Timestep 

Other Integrators: 
 
Constant energy simulations: VerletIntegrator(0.002*picoseconds)  
 
Brownian Dynamics: BrownianIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)  
 
Variable time step:  VariableLangevinIntegrator(300*kelvin, 1/picosecond, 0.001)  
   VariableVerletIntegrator(0.001) 
 
Temperature coupling:  system.addForce(AndersenThermostat(300*kelvin, 1/picosecond))  
 
Pressure Coupling: system.addForce(MonteCarloBarostat(1*bar, 300*kelvin))  
 
 
But why don’t we find out for ourselves? 

Integrators in OpenMM 



Learning about the Integrator Class from OpenMM 
Documentation page: https://simtk.org/api_docs/openmm/api5_0/python 



Reading values from an Integrator Object 



system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=HBonds) 

Setting non-bonded interactions in OpenMM 



system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=HBonds) 

Constraints?   =>   Larger integration time steps   =>   Greater speedup. 
  (Note: Be aware of the added level of approximation and apply constraints with care.) 
 

Hint: It’s good practice to choose ‘None’ while heating a system. Once equilibrated, 
one can safely choose ‘Hbonds’ for production runs. 
 

By default, bonds and angles of water molecules are constrained (accessible through 
rigidWater parameter): 
 

system = prmtop.createSystem(nonbondedMethod=NoCutoff, 
constraints=None, rigidWater=False)  

Constraining certain bonds and angles in OpenMM 



Reporters for printing values of State parameters during simulation: 

 
 
simulation.reporters.append(StateDataReporter('data.txt', 1000, time=True, 
temperature=True, kineticEnergy=True, potentialEnergy=True, totalEnergy=True, 
volume=True, density=True, separator=' ')) 

Check out talk by Lee-Ping tomorrow, March 27, 2:15 pm! 

Reporters in OpenMM 



Copy exercise1.py to exercise2.py 
Use input_exercise2.pdb as the starting structure. 

Task: Set up the protein in the provided .pdb file and perform an implicit water MD. 

Exercise 2: Simulating the villin headpiece in implicit solvent 



 
 ValueError: No template found for residue 1 (LEU) 
 
This message implies that there are missing atoms in the residues  
of this Protein. We need to use modeller class to build missing atoms. 

Exercise 2: Simulating the villin headpiece in implicit solvent 



Crystal structure Ready for MD 

(refer OpenMM Application Guide section 5)  

OpenMM modeller class can fix these issues. 
pdb = PDBFile('input.pdb') 
modeller = Modeller(pdb.topology, pdb.positions) 
# ... Call some modelling functions here ... 
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME)  

Available modeller functions:  
Adding Hydrogen: modeller.addHydrogens(forcefield, pH=5.0)  
 
Adding Solvent: modeller.addSolvent(forcefield, padding=1.0*nanometers, model='tip5p’) 
 modeller.addSolvent(forcefield, boxSize=Vec3(5.0, 3.5, 3.5)*nanometers)  
 
Adding Ions: modeller.addSolvent(forcefield, ionicStrength=0.1*molar, positiveIon='K+')  

Add hydrogen 
atoms Add water box 

Model Building and Editing with OpenMM 



pdb = PDBFile('input_exercise2.pdb') 
forcefield = ForceField('amber99sb.xml', 'tip3p.xml') 
print "Building Model.." 
modeller = Modeller(pdb.topology, pdb.positions) 
print('Adding hydrogens...') 
modeller.addHydrogens(forcefield) 
print "Creating System" 
system = forcefield.createSystem(modeller.topology, constraints=HBonds) 
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds) 
simulation = Simulation(modeller.topology, system, integrator) 
print "Using Platform:", simulation.context.getPlatform().getName() 
simulation.context.setPositions(modeller.positions)   

Instruction: Add modeller and replace the previous pdb.topology 
and pdb.positions with modeller.topology and modeller.positions. 

Task: Set up the protein in the provided .pdb file and perform an implicit water MD. 

Exercise 2: Simulating the villin headpiece in implicit solvent 



Task: Set up the protein in the provided .pdb file and perform an implicit water MD. 

Now that we fixed the error: 
 

- Use amber99_obc as the implicit solvent model. 
- Change friction parameter to 91/ps for the implicit solvent model. 
- Remove nonbonded parameters (method and cutoff) from the 

System object, which are necessary only for explicit solvent 
simulations. 

Exercise 2: Simulating the villin headpiece in implicit solvent 



pdb = PDBFile('input_exercise2.pdb') 
forcefield = ForceField('amber99sb.xml', 'amber99_obc.xml') 
print "Building Model.." 
modeller = Modeller(pdb.topology, pdb.positions) 
print('Adding hydrogens...') 
modeller.addHydrogens(forcefield) 
print "Creating System" 
system = forcefield.createSystem(modeller.topology, constraints=HBonds) 
integrator = LangevinIntegrator(300*kelvin, 91/picosecond, 0.002*picoseconds) 
simulation = Simulation(modeller.topology, system, integrator) 
print "Using Platform:", simulation.context.getPlatform().getName() 
simulation.context.setPositions(modeller.positions)   

Your input file should now look like this: 

Task: Set up the protein in the provided .pdb file and perform an implicit water MD. 

Exercise 2: Simulating the villin headpiece in implicit solvent 



Instructions: 
- Copy exercise1.py to exercise3.py 
- Use input_exercise2.pdb as the starting structure. 
- Continue using amber99sb and tip3p as the explicit solvent 

model. 
- Add a box of explicit water molecules using the modeller class 

with a 1nm padding. 

Task: Build a water box with the modeller class and perform an explicit water MD. 

Exercise 3: Simulating the villin headpiece in explicit solvent 



pdb = PDBFile('input_exercise2.pdb') 
forcefield = ForceField('amber99sb.xml', 'tip3p.xml') 
print "Building Model..." 
modeller = Modeller(pdb.topology, pdb.positions) 
print('Adding hydrogens...') 
modeller.addHydrogens(forcefield) 
print "Adding Water.." 
modeller.addSolvent(forcefield, model='tip3p', padding=1.0*nanometers) 
print "Creating System..." 
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME, 
nonbondedCutoff=1.0*nanometer, constraints=HBonds) 
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds) 

So, … 
… we copied exercise1.py to exercise3.py, 
… used input_exercise2.pdb as the starting structure, 
… used amber99sb and tip3p as the explicit solvent model, 
… and added explicit water molecules using the modeller class. 

Task: Build a water box with the modeller class and perform an explicit water MD. 

Exercise 3: Simulating the villin headpiece in explicit solvent 
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