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Why Use the API? 

• Application Developers 
– This is how you use OpenMM within your 

programs 
 

• Chemists/Biologists 
– It’s available to your control scripts... if you 

want it 
– There’s a lot you can do with it! 
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Goals of the API 
• Simple 

– Easy to learn 
– Easy to use 

• Extensible 
– Add new force fields, integration methods, etc. 
– Support new hardware platforms 

• Can be implemented efficiently on a variety 
of hardware platforms 

• Easy to incorporate into existing codebases 
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Choice of Language 

• The OpenMM API is written in C++ 
• API wrappers are provided for Python, C, 

and Fortran 
– Provide access to most features 
– Plugins can only be written in C++ 
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Public API Classes (1 of 3) 
• System 

– A collection of interacting particles 
– Defines the mass of each particle 
– Specifies distance constraints 
– Contains a list of Force objects that define the 

interactions 
• Context 

– Contains all state information 
• Positions, velocities, other parameters 
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Public API Classes (2 of 3) 

• Force 
– Anything which affects the system’s behavior 
– Forces, thermostats, barostats, etc. 
– A Force may: 

• Apply forces to particles 
• Contribute to the potential energy 
• Define adjustable parameters 
• Modify positions, velocities, and parameters at the 

start of each time step 
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Public API Classes (3 of 3) 
• Integrator 

– Advances the system through time 
– Both fixed and variable step size integrators are 

supported 

• State 
– A snapshot of the state of the system 
– Immutable (used only for reporting) 
– Creating a State is the only way to access positions 

and velocities 
– Can optionally include forces and energies 
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Example 

• Create a System 
system�= System() 
for particle in particles: 
    system.addParticle(particle.mass[i]) 
for constraint in constraints: 
    system.addConstraint(constraint.atom1, constraint.atom2, 
                         constraint.distance) 

 
• Add Forces to it 
bondForce = HarmonicBondForce() 
for bond in bonds: 
    bondForce.addBond(bond.atom1, bond.atom2, bond.length, bond.k) 
system.addForce(bondForce) 
# ... add Forces for other force field terms. 
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Example (continued) 

• Simulate it 
integrator = LangevinIntegrator(297.0, 1.0, 0.002) # Temperature, friction, 
                                                   # step size 
context = Context(system, integrator) 
context.setPositions(positions) 
context.setVelocities(velocities) 
integrator.step(500) # Take 500 steps 
 
 

• Retrieve state information 
state = context.getState(getPositions=True, getVelocities=True) 
for position in state.getPositions(): 
    print position 
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Platforms 

• The API defines the interface 
• A Platform provides the implementation 
• Available Platforms: 

– Reference 
– OpenCL 
– CUDA 
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The Platform API 

• Select a Platform to use 
 platform = Platform.getPlatformByName("OpenCL") 
 context = Context(system, integrator, platform) 

 

• Check what Platform is being used 
 print context.getPlatform().getName() 

 

• List available Platforms 
 for i in range(Platform.getNumPlatforms()): 

   print Platform.getPlatform(i).getName() 
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Documentation 

See .../openmm/docs/C++ API Reference.html and .../openmm/docs/Python API Reference.html 

Also online (see OpenMM download page) 
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Python Help 

• Can use help() to get docs for a class, 
function, object, etc. 

 help(Context) 

 help(Context.getState) 

 help(simulation.context) 

 

• Use dir() to list every field and method of an 
object 

 dir(simulation) 
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C++/Python Differences 

• Context.getState() uses boolean arguments 
instead of flags 
C++: 
context.getState(State::Positions | State::Velocities); 

Python: 
context.getState(getPositions=True, getVelocities=True) 
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C++/Python Differences, cont. 

• Multiple return values are returned directly, 
not as arguments 
C++: 
int particle1, particle2; 

double length, k; 

f.getBondParameters(i, particle1, particle2, length, k); 

  Python: 
(particle1, particle2, length, k) = f.getBondParameters(i) 

 
• Quantities have explicit units 
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Why Units? 

• Many different units are common in MD 
– Time in ps or fs? 
– Distance in nm or Angstroms? 
– Energy in kcal/mol or kJ/mol? 

• You will make mistakes! 
• This will produce bugs! 
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...and you’re not alone! 

• Mars Climate Orbiter 
– Crashed into Mars in 1999 
– Cost $125 million 

 
• Air Canada Flight 143 

– Ran out of fuel in midair in 1983 
 

Both caused by errors in unit conversions 
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Units in OpenMM 

• Just multiply each value by its units 
>>> size = 5*nanometers 
>>> print size 
5 nm 
>>> accel = 9.8*meters/second**2 
>>> print accel 
9.8 m/(s**2) 
 

• Can convert to any compatible unit 
>>> print size.in_units_of(angstroms) 
50.0 A 
>>> print size.value_in_unit(angstroms) 
50.0 
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Units in OpenMM, continued 
• Conversions happen automatically when 

doing math 
>>> print 5*nanometers+25*angstroms 
7.5 nm 
>>> print 5*nanometers+25*picoseconds 
Traceback (most recent call last): 
... 
TypeError: Cannot add two quantities with incompatible units 

"nanometer" and "picosecond". 

 
• Can apply units to lists, tuples, and arrays 

>>> x = (1.0, 1.5, 0.0)*nanometers 
>>> positions = state.getPositions().in_units_of(angstrom) 
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Units in OpenMM, continued 

• Units are optional (but recommended!) on 
input values 

• Output values always have units 
• Default OpenMM units: 

– nm, ps, K, amu (g/mole), kJ/mole, e 
– These form a consistent unit system! 
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Which Language to Use? 

• Python 
– Faster development 
– Interactive mode for experimenting 
– Explicit units 

• C++ 
– Faster execution 
– Easier to call from other languages 
– Can write plugins 
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