GPUs

Friday, March 22, 13

A bit of history

A bit of history

® Originally designed to render graphics for
gaming

A bit of history

® Originally designed to render graphics for
gaming

® First GPGPU applications were developed
via Shader techniques

A bit of history

® Originally designed to render graphics for
gaming

® First GPGPU applications were developed
via Shader techniques

® CUDA / OpenCL became the first set of

languages written specifically compute
purposes

Performance over the years

Theoretical
GFLOP/s
3250

3000
NVIDIA GPU Single Preasion

2750 g NVIDIA GPU Double Predision
2500 =g |ntel CPU Single Preasion
Intel CPU Double Predsion

2250
2000
1750
1500
1250
1000

750

Tesla C2050 Sandy Bridge

500

Tesla C1060
250 Woodcrest
0 = C N West
. estmere
Sep-d’?nt'um4 Jun-04 Mar_oflarpertown Dec-09 Aug-12

Friday, March 22, 13

Performance over the years

Theoretical GB/s
200

180 =
-g=CPU
GPU

160

140

120

100

80

60 Sandy Bridge

, Westmere

40 Bloomfield

Woodcrest
20 Prescott

Harpertown

1

0 ﬁorthww 1 I 1 I 1 I 1 I
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Friday, March 22, 13

CPU Architecture

~ Shared L3 Cache: @ |

Friday, March 22, 13

rchitecture

N T S I *&-‘t—x”mmr"

Memory Interface #0

G Sorpau) Aowayy

Memoty. Interface n‘

Memory Interface #2 Memory Interface #3

i SoRpNU| Asowayy

Friday, March 22, 13

!

Any Guesses

-t

E.,

Al

e Sooadh
| T

T

Friday, March 22, 13

Allocation of Transistors

LN NN

CPU GPU

Memory Space

Memory Space

® Separate Memory Space:

Memory Space

® Separate Memory Space:

® on board “host” memory (DDR3, etc.)

Memory Space

® Separate Memory Space:
® on board “host” memory (DDR3, etc.)

® on GPU “device” memory

Memory Space

® Separate Memory Space:
® on board “host” memory (DDR3, etc.)
® on GPU “device” memory

® Global memory (Slowest)

Memory Space

® Separate Memory Space:
® on board “host” memory (DDR3, etc.)
® on GPU “device” memory

® Global memory (Slowest)

® | I,L2 Cache (Fast)

Memory Space

® Separate Memory Space:
® on board “host” memory (DDR3, etc.)
® on GPU “device” memory
® Global memory (Slowest)

® | I,L2 Cache (Fast)

® Registers (Super-Fast)

Memory Space

® Separate Memory Space:
® on board “host” memory (DDR3, etc.)
® on GPU “device” memory
® Global memory (Slowest)
® | |I,L2 Cache (Fast)
® Registers (Super-Fast)

® Memory Management is critical!

Programming Paradigm

Programming Paradigm

® Host code (CPU) launches GPU threads to
execute GPU code

Programming Paradigm

® Host code (CPU) launches GPU threads to
execute GPU code

® A single line is code executed by N threads

Programming Paradigm

® Host code (CPU) launches GPU threads to
execute GPU code

® A single line is code executed by N threads

® if() statements create divergence

Pitfalls

Friday, March 22, 13

Pitfalls

® Trying to syncthreads() in a divergent block
of code

Pitfalls

® Trying to syncthreads() in a divergent block
of code

® Race conditions

Pitfalls

® Trying to syncthreads() in a divergent block
of code

® Race conditions

® Hiding latency

Pitfalls

Trying to syncthreads() in a divergent block
of code

Race conditions
Hiding latency

Pre-mature optimization

Algorithms

Algorithms

® VWhat does it mean to parallelize an
algorithm?

Friday, March 22, 13

Algorithms

® VWhat does it mean to parallelize an
algorithm?

® |deal: do same amount of total work as
serial counter part

Friday, March 22, 13

Algorithms

® VWhat does it mean to parallelize an
algorithm?

® |deal: do same amount of total work as
serial counter part

® | ess ldeal: do a bit of extra work

Friday, March 22, 13

Example: Prefix Sum

Example: Prefix Sum

® Problem:

Example: Prefix Sum

® Problem:

® Given an array of N elements, find its
running sum, ex. Exclusive Prefix Sum:

Example: Prefix Sum

® Problem:

® Given an array of N elements, find its
running sum, ex. Exclusive Prefix Sum:

e | 2456 8 INPUT

Example: Prefix Sum

® Problem:

® Given an array of N elements, find its
running sum, ex. Exclusive Prefix Sum:

e | 2456 8 INPUT
e 01371218 OUTPUT

Example: Prefix Sum

® Problem:

® Given an array of N elements, find its
running sum, ex. Exclusive Prefix Sum:

® [2456 8 INPUT
e 01371218 OUTPUT
® Trivial for CPU, with total work O(N)

Work Inefficient
Parallel Reduction

Friday, March 22, 13

Work Inefficient
Parallel Reduction

O(N log N)

Friday, March 22, 13

Work Efficient
Parallel Reduction

X, Z(x,..x,) X, Z(x,..x,) X, Z(x,..x.) X, Z(X,..X,)

X, Z(x,..x,) X, Z(X,ex,) X, Z(x,..x,) X, Z(x,..x.)

X, Z(x,.-x) X, Z(x,..x,) X, Z(x,..x.) X, Z(x,..x.)

Friday, March 22, 13

Work Efficient
Parallel Reduction

Z(X,..X,) X, Z(X,..X,) X, Z(X,..xg) X, Z(X,..X,)
Zero

Y
Z(X,eX,) X, Z(X,eX,) X, Z(X, X)) X, 0
3 ‘ A\ 4

Z(x,..X,) X, 0 X, 2(x,..x.) X, Z(x,..X,)
¥ \ 4 ¥ \ 4

0 X2 Z(x,..x,) X, Z(x,..x,) X, Z(x,..X,)

X, Z(xgx,) | Z(xpex) | Z(xpex) | Zxgx,) | Z(x-x) | Z(x,.-x,)

Friday, March 22, 13

Work Efficient
Parallel Reduction

Z(X,..X,) X, Z(X,..X,) X, Z(X,..xg) X, Z(X,..X,)
Zero

Y
Z(X,eX,) X, Z(X,eX,) X, Z(X, X)) X, 0
2) A\ 4

Z(x,..X,) X, 0 X, 2(x,..x.) X, Z(x,..X,)
¥ \ 4 ¥ \ 4

0 X2 Z(x,..x,) X, Z(x,..x,) X, Z(x,..X,)
\d y\J ;—\J ¥ \4

X, Z(xgx,) | Z(xpex) | Z(xpex) | Zxgx,) | Z(x-x) | Z(x,.-x,)

Friday, March 22, 13

In reality

In reality

® |n reality, we often end up with:

In reality

® |n reality, we often end up with:

® Work inefficient algorithms that adapt
well to memory (naive prefix sum)

Friday, March 22, 13

In reality

® |n reality, we often end up with:

® Work inefficient algorithms that adapt
well to memory (naive prefix sum)

® Work efficient algorithms that don't
adapt well to memory (eg. neighbourlists)

In reality

® |n reality, we often end up with:

® Work inefficient algorithms that adapt
well to memory (naive prefix sum)

® Work efficient algorithms that don't
adapt well to memory (eg. neighbourlists)

® Really lucky if we can find something
works well in both cases

Upper Bound: Amdahl’s Law

Upper Bound: Amdahl’s Law

® P - fraction of program parallelizable

Upper Bound: Amdahl’s Law

® P - fraction of program parallelizable

® Maximum Speedup Attainable:

Upper Bound: Amdahl’s Law

® P - fraction of program parallelizable

® Maximum Speedup Attainable:

e S(N) = 1/((1-P)+P/N)

Upper Bound: Amdahl’s Law

® P - fraction of program parallelizable
® Maximum Speedup Attainable:
o S(N) = I/((1-P)+P/N)

® Very unlikely for a large program to be
100% parallelizable

Algorithms that can be
effectively parallelized

Algorithms that can be
effectively parallelized

® Reduction, Prefix Sums

Algorithms that can be
effectively parallelized

® Reduction, Prefix Sums

® Radix-based sorting

Algorithms that can be
effectively parallelized

® Reduction, Prefix Sums
® Radix-based sorting

® Breadth First Search

Algorithms that can be
effectively parallelized

® Reduction, Prefix Sums
® Radix-based sorting
® Breadth First Search

® Matrix multiplication, Linear Algebra

Algorithms that can be
effectively parallelized

® Reduction, Prefix Sums
® Radix-based sorting
® Breadth First Search

® Matrix multiplication, Linear Algebra

® FFTs

Algorithms that can be
effectively parallelized

® Reduction, Prefix Sums

® Radix-based sorting

® Breadth First Search

® Matrix multiplication, Linear Algebra

® FFTs

® Simple Dynamic Programming

Algorithms with no
good parallel solution

Algorithms with no
good parallel solution

® Many graph search algorithms

Algorithms with no
good parallel solution

® Many graph search algorithms

® Quick Sort

Algorithms with no
good parallel solution

® Many graph search algorithms
® Quick Sort

® Binary Search

Asymmetric Algorithms

Asymmetric Algorithms

® Compression algorithms (eg. given a
Huffman code, encoding is parallelizable,
decoding not easily parallelizable.)

Asymmetric Algorithms

® Compression algorithms (eg. given a
Huffman code, encoding is parallelizable,
decoding not easily parallelizable.)

® Converting the representation of a large
molecule into internal coordinates
(bijection from RA3N into Phi/Psi space)

Language Differences

Language Differences

® CUDA is a language: supports only NVIDIA
cards, lots of good documentation

® OpenCL is a standard: supports NVIDIA,
ATl and Intel CPUs and Xeon Phi’s

