OpenMM workshop

Welcome and Introductions

Vijay Pande
OpenMM Workshop

pIOS

Introductions

e Stanford/Simbios team development
e Peter Eastman (OpenMM API, GPU code)
e Yutong Zhou (GPU code, Folding@home)
e Lee-Ping Wang, Diwakar Shukla, Gert Kiss (Simbios Distinguished
Fellows)
e Vijay Pande (co-PI, protein folding DBP lead PI)

e Collaborators
e Kyle Beauchamp (PyMD)
e John Chodera (Yank, PyOpenMM, tests)
e Erik Lindahl (Stockholm)

e Simbios
e Joy Ku (Director of Dissemination)
e Russ Altman & Scott Delp (Simbios co-PlI’s)

“—q{'-z =

Introduction of OpenMM

Vijay Pande
OpenMM Workshop

pIOS

rapid development +
rapid execution

OpenMM is an app, API, and library for rapid
molecular dynamics.
Easy to modify and incorporate into any code.

http://wiki.simtk.org/openmm/RoadmapTimeline
http://wiki.simtk.org/openmm/RoadmapTimeline

Two competing programming challenges

e Rapid execution, but slow development
e traditional model
e Examples: C, FORTRAN, Assembly

¢ Rapid development, but slow execution
* new languages often used by scientists
e Examples: Python, Perl

e We can have it both ways: Domain specific languages (DSLs)
e New paradigm: specific language for application area
e Examples: OpenGL, SQL, Matlab

e A DSL approach for molecular mechanics?

e OpenMM hopes to provide both rapid execution and rapid
development

e A complete library for molecular mechanics
e complete = what would need to do to do the most common
calculations
e complete != does everything conceivable

e Fast and general
¢ “rapid development and rapid execution”
e Don’t exposure hardware specifics
e but optimize for speed underneath
e broad support for GPUs, multicore, etc

e Two level API
e OpenMM for high level: intended for application developers
e Low level API: for developers (mainly in-house & accelerator devs)
e OpenMM can be a nexus for application and low level programmers
to meet

GPUs: very useful for rapid execution

e Graphics Processing Units (GPUs) are very powerful
* Folding@home calculation circa 2003 = 10,000 PC's 4 _
@ 1 GFLOP/PC = 10,000 GFLOPS \g
e Fast GPU today = 1,000 GFLOP \
e Fast GPU cluster today = ~50,000 GFLOPS

e GPU’s are getting faster, faster than CPU’s ”‘\
e Moore’s law is dead for tradlu(?nal CPU’s . ATI X1900XT (500 GFlops
* we now see more cores per chip, but each core isn’t peak, ~$100 + of a cost
any faster computer)

e GPU’s figured out this trick a long time ago
e typical GPU’s now have 100’s of cores
e GPU’s use their cores more efficiently

e BUT, GPU’s are horrible to program
e can’tjust recompile
e must rethink algorithms
e must understand the nature of the hardware

e work closely with vendors (we collaborate closely Sony PS3 (Cell processor: 220
with AMD/ATI, NVIDIA, and Intel) GFlops peak, ~$400 total)

Unique aspects of comp biology on GPUs

e Design algorithms that are GPU friendly
e FLOPS are free, memory is expensive
e |ow lying fruit: algorithms which map well to GPUs

e Code everything on the GPU
e If the original bottleneck is 90% of the calc, that’s still only a 10x speed up at
best
e to get 100x to 1000x, one needs to have the whole calculation on the GPU
(in our experience)

e Centralized libraries, open source (eg OpenMM)
e avoid reinventing the wheel

e build on others’ work w

e Next steps
e not just speeding existing algorithms, but new methods
e code methods which we wouldn’t even dare to try now

The opportunity for a common library

¢ The molecular mechanics community has
become fragmented
e tens of different MD codes
e hardware acceleration (via multi-core,
SSE, MPI, GPU’s, and math coprocessors)
is a critical element
e much like the graphics community in the ATI X1900XT (500 GFlops

1980’s peak, ~$100 + of a cost
computer)

e Hardware acceleration is a great unifying
factor
e unifying APl the way OpenGL unified
graphics
e incorporates hardware acceleration in its
base design
e this APl would be used as the backend to

existing codes, allowing for all to benefit Sony PS3 (Cell processor: 220
from hardware acceleration GFlops peak, ~$400 total)

Connections to OpenMM

existing codes

eg AMBER, CHARMM,
GROMACS, NAMD

—

theoretical chemists

eg new solvation
models, sampling

high level API

low level API

openMM ﬁ ,

(
S
(

%

A

(L

Hardware vendors

eg AMD/ATI, Intel,
NVIDIA

GPU programmers

eg Simbios, collaborators,
computer scientists

History of OpenMM

Buck, Vishal | §
2005 (Hanrahan, Darve, Pande)
Elsen, Houston, Vishal ¢
2006 (Hanrahan, Darve, Pande)""‘é’" CUDA (Buck
* NVIDlA) Ilfll)l\
FAH/ATI: Houston,... Brook code 2007
2007/8 Friedrichs §
(Pande, Simbios, ATI) £ »
FAH/NVIDIA: LeGrand, (4)
Friedrichs, Eastman (Pandeg

Simbios, NVIDIA) AVIDIA.

2009 Open MM: Friedrichs, et aI 2008
(Pande, Simbios, ATI) | _’

2012 OpenMM 4.0: Eastman, Friedrichs et al (Simbios, Pande) i

OpenMM 5.1 speed improvements: JAC benchmark

CUDA OpenCL OpenCL

(GTX 680) (GTX 680) (HD 7970)
Implicit hbonds 148 134 120
Implicit hangles 240 209 104
RF hbonds 90.3 78.1 83.5
RF hangles 1411 113.0 90.2
PME hbonds 61.0 41.5 49.3
PME hangles 99.9 66.9 63.0

Joint AMBER-CHARMM DHFR Benchmark in ns/day

OpenMM is under active development

e 4.1 (~April 2012): Modeling tools, bugfixes

e 4.0 (January 2012): Python based app, multi-GPU support, Ring Polymer MD (RPMD)

e 3.1.1(Aug. 11, 2011): bug fixes

e 3.1(Aug.1,2011): performance improvements, especially to the AMOEBA plugin; support for
parallelizing computations across multiple GPUs; support of direct polarization model by AMOEBA
plugin; GB/VI force fully supported

e 3.0 (Mar. 30, 2011): supports AMOEBA force field; provides an energy minimizer; CMAP torsions;
improved performance, especially for running on CPUs; Python APl wrappers

e 2.0 (June 24, 2010): supports pressure coupling; provides custom Hbond forces; major performance
improvements; works on ATI GPUs

e 1.1.1(Mar. 4, 2010): bug fixes

e 1.1(Feb. 12, 2010): provides custom torsion forces; bug fixes and other improvements

e 1.0 (Jan. 20, 2010): provides new custom forces, including bonds, angles, external, and GB; improved
OpenCL support

e 1.0 Beta (Oct. 30, 2009): supports Particle Mesh Ewald (PME); custom nonbonded interactions,
including algebraic and tabulated forces; preliminary OpenCL support

e Preview Release 4 (Aug. 20, 2009): supports Ewald summation; GPU accelerated energy calculations;
C and Fortran APl wrappers; a faster constraint algorithm; and many minor enhancements

e Preview Release 3 (May 19, 2009): provides support for explicit solvent on NVIDIA GPUs; includes
periodic boundary conditions, cutoffs on non-bonded interactions, and new constraint algorithms.

e Preview Release 2 (Jan. 26, 2009): provides support for accelerating molecular modeling simulations
on ATl and NVIDIA graphics processor units (GPUs)

OpenMM roadmap: 2013

e OpenMM 5.1 e Longer term
e Big speed increases over 5.0 e CUDA JIT (when CUDA
(2x faster) supports it)
e Integration with CHARMM e More optimizations
e Accelerated MD e Custom compound bonded
force
e OpenMM 5.2 e Finalize Rosetta force field
e ABSINTH implicit solvent Triclinic boxes
e AMOEBA OpenCL e A more accurate SASA
implementation calculation for use with GB
e Colored noise integrator models
e LTMD e QM/MM

e CHARMM* force fields

http://wiki.simtk.org/openmm/Roadmap Timeline

http://wiki.simtk.org/openmm/RoadmapTimeline
http://wiki.simtk.org/openmm/RoadmapTimeline

Looking further to the future: FAQ

e Scheme to manage API for years to come
e design decisions were made to address trade-off between generality/
performance: goals are performance and simplicity, features come 2nd
e speed/simplicity/elegance were the motivations for these decisions

e How will the API be updated in the future?

e As OpenMM has progressed, we have brought in other key developers to advise
us, including Erik Lindahl (Gromacs), Jesus Izaguirre (Protomol), & Ross Walker
(AMBER) as well as the Simbios SAB to advise us for useful directions for the API

e We plan to formalize this to have an advisory board for OpenMM specifically

e How difficult is it for hardware vendors to produce mature and performant
OpenMM “drivers”?
e Strong success working with NVIDIA, ATI, and Sony and are making connections/
collaborations with other key players (OpenCL, Larrabee)
e Due to its design and the existence of key OpenMM apps (eg Folding@home,
Gromacs), OpenMM will be able to stay current

Examples of current OpenMM enabled applications

CHARMM
Folding@home Gromacs CHARMM
http://folding.stanford.edu http://www.gromacs.org http://www.charmm.org

Protomol

http://simtk.org/home/nast hitp://protomol.sourceforge.net http://simtk.org/home/yank

http://folding.stanford.edu
http://folding.stanford.edu
http://www.gromacs.org
http://www.gromacs.org
http://www.gromacs.org
http://www.gromacs.org
http://folding.stanford.edu
http://folding.stanford.edu
http://folding.stanford.edu
http://folding.stanford.edu
http://www.gromacs.org
http://www.gromacs.org

Licensing and distribution

e API & reference BSD license, GPU kernels are LGPL
e free & open
e we want LGPL to have a community owned set of GPU kernels
e we’'re looking for collaborations for new features

e But, please cite us

e Any work that uses OpenMM should cite the following paper:
M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S.
LeGrand, A. L. Beberg, D. L. Ensign, C. M. Bruns, V. S. Pande.
“Accelerating Molecular Dynamic Simulation on Graphics
Processing Units.” J. Comp. Chem., (2009)

e http://www3.interscience.wiley.com/journal/121677402/
abstract

http://www3.interscience.wiley.com/journal/121677402/abstract
http://www3.interscience.wiley.com/journal/121677402/abstract
http://www3.interscience.wiley.com/journal/121677402/abstract
http://www3.interscience.wiley.com/journal/121677402/abstract

Summary

e What s it

e API, library, and application for core molecular dynamics /
molecular mechanics applications

e emphasis on rapid development and rapid execution speed
(eg hardware acceleration)

e dual APIs (one for applications and one for low level
hardware)

e open source (LGPL) software

e What is it not

e a general solution for all possible molecular mechanics tasks
e a compiler which can turn a generic MD code into
accelerated code

