
Gene-based	p-values:	
To	use	STAMS,	you	need	to	first	calculate	gene-based	p-values.	Plink	has	
options	for	gene-based	tests,	or	you	can	use	another	gene-based	test.	In	my	
work,	I	prefer	VEGAS	v1.0,	which	has	an	online	tool	
at	http://gump.qimr.edu.au/VEGAS/	or	can	be	downloaded	and	run	locally.	To	
use	VEGAS,	you	need	to	have	a	homogenous	population	with	a	good	reference	
in	HapMap.	
		
Dependencies:	
My	recommendation	is	to	download	igraph	0.7.1	from	this	website:	
https://cran.r-project.org/src/contrib/Archive/igraph/	
	
This	is	an	older	version	of	igraph.	It	works	very	well	with	STAMS	version	1.2,	
which	works	universally	on	all	cluster	set	ups.	
	
If	you	cannot	install	igraph	0.7.1	(or	earlier),	then	install	igraph	1.0,	and	use	the	
parallel	version	of	STAMS,	version	1.8.		There	were	HUGE	overhauls	in	the	data	
representation	and	UI	between	igraph	0.7.1	and	igraph	1.0,	so	don’t	try	
running	STAMS	1.8	with	the	old	igraph	or	STAMS	1.2	with	the	new	version.		For	
what	it's	worth,	I	use	the	0.7.1/STAMS_1.2	setup	as	my	"production	line."		The	
parallel	version	works	very	well	and	very	fast	on	small	test	cases,	but	takes	a	
little	more	finagling	to	get	the	cluster	setup	in	R,	and	hasn’t	been	tested	on	
large	edgesets.	
	
Working	Example:	
Next,	work	through	the	example	in	the	STAMS	documentation	interactively	so	
that	you	have	some	sense	of	the	workflow.	It	runs	in	a	few	minutes	on	a	
laptop.	(There’s	a	working	example	in	the	STAMS	1.8	help	file	too.)	
	
Open	R	and	type	these	things	at	the	prompt	(omit	the	">"):	
	
>install.packages("path/to/stams_1.2.tar.gz", type="source", 
repos=NULL) 
>library(STAMS) 
>?STAMS  



 

to	pull	up	the	help	file.	It	has	a	working	example	that	you	can	run:	
	
>data("mapped_data") 

	
at	the	prompt	to	load	the	example	data.	Then	just	follow	along	with	the	help	
file.	
	
Mapping	your	data	to	STRING:	
When	that	works,	it	is	time	to	map	your	data	to	STRING	ids.	There	is	a	function	
in	the	STRINGdb	package	for	R	that	will	help	with	this.	Here's	how	I	do	it,	
although	you	will	have	to	change	the	path	and	filenames:	
		
input_file=paste("/home/shillenm/wtccc_subgraph/pvalues_all_snps
_", disease, "_vegas.txt-genebased.out.txt", sep='') 
 
print(input_file) 
##   LOAD PVALUES 
string_db <- STRINGdb$new() 
gene_values=read.table(file=input_file, header=TRUE, sep=' ') 
# get rid of pvalue = 0 lines and replace with upper bound 
gene_values$Pvalue=pmax(gene_values$Pvalue, 1/gene_values$nSims) 
 
# remove pvalue = 1 
print("warning, removing genes with a pvalue = 1") 
print(length(which(gene_values$Pvalue ==1))) 
gene_values=gene_values[-which(gene_values$Pvalue == 1),] 
 
gene_mapped = string_db$map( gene_values, "Gene", 
removeUnmappedRows = TRUE ) 
# check mapping 
data3=string_db$add_proteins_description(gene_mapped) 
data4=data3[which(data3$Gene==toupper(data3$preferred_name)),] 
ensg_genes=data3[grep('ENSG',data3$preferred_name),] 
data4=rbind(data4,ensg_genes) 
data_mapped=data4[,-which(names(data4)=='annotation')] 
 
# TO SAVE THIS WORK SO THAT YOU CAN LOAD IT UP NEXT TIME 
save.image('your_mapped_data.Rdata') 
	



I've	found	that	the	mapping	function	is	not	perfect,	and	so	I	double	check	the	
mapping	by	making	sure	that	the	gene	name	is	the	same	as	the	preferred	
name.	Then	there's	a	whole	class	of	genes	that	have	ENSG	in	their	preferred	
name,	and	most	of	those	seem	to	map	correctly	out	of	the	box,	so	I	include	
those	too.		Some	of	the	genes	won't	map	to	STRING_ids,	and	that's	okay.	 
		
Once	you've	mapped	your	data,	use	the	same	workflow	as	the	example	code	in	
the	STAMS	helpfile.	It	will	take	4-5	days	to	run	a	full	experiment	with	STAMS	
1.2.	I	have	never	run	it	on	my	laptop—always	as	a	job	submitted	to	a	cluster.	
For	STAMS	1.2,	request	1	node	and	at	least	32	gigs	of	memory.		STAMS	1.8	will	
take	as	many	nodes	as	you	give	it,	but	you’ll	have	to	set	up	the	cluster	in	R	and	
pass	it	to	the	search	function.	If	using	the	SLURM	job	manager,	there’s	a	great	
RSLURM	package	that	makes	this	easy.	
	
I	recommend	saving	the	workspace	after	searching	for	lambda,	after	running	
the	stams_search,	and	after	completion.	
	
Use	the	chooseModule	function	to	identify	the	top	1%	of	modules,	and	then	
use	those	modules	as	candidate	modules	for	followup	study.	There	are	various	
visualization	functions	available	(see	the	helpfile)	to	look	at	the	resulting	
modules.	
	
	
 
	


