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 21 

Abstract 22 

  23 

Hepatic cytochrome P450 levels are down-regulated during inflammatory disease states, which can cause 24 

changes in downstream drug metabolism and hepatotoxicity. Long-term, we seek sufficient new insight 25 

into P450-regulating mechanisms to correctly anticipate how an individual’s P450 expressions will 26 

respond when health and/or therapeutic interventions change. To date, improving explanatory mechanistic 27 

insight relies on knowledge gleaned from in vitro, in vivo, and clinical experiments augmented by case 28 

reports. We are working to improve that reality by developing means to undertake scientifically useful 29 

virtual experiments. So doing requires translating an accepted theory of immune system influence on 30 

P450 regulation into a computational model, and then challenging the model via in silico experiments. 31 

We build upon two existing agent-based models—an in silico hepatocyte culture and an in silico liver—32 

capable of exploring and challenging concrete mechanistic hypotheses. We instantiate an in silico version 33 

of this hypothesis: in response to lipopolysaccharide, Kupffer cells down-regulate hepatic P450 levels via 34 

inflammatory cytokines, thus leading to a reduction in metabolic capacity. We achieve multiple in vitro 35 

and in vivo validation targets gathered from five wet-lab experiments, including a lipopolysaccharide-36 

cytokine dose-response curve, time-course P450 down-regulation, and changes in several different 37 

measures of drug clearance spanning three drugs: acetaminophen, antipyrine, and chlorzoxazone. Along 38 

the way to achieving validation targets, various aspects of each model are falsified and subsequently 39 

refined. This iterative process of falsification-refinement-validation leads to biomimetic yet parsimonious 40 

mechanisms, which can provide explanatory insight into how, where, and when various features are 41 

generated. We argue that as models such as these are incrementally improved through multiple rounds of 42 

mechanistic falsification and validation, we will generate virtual systems that embody deeper credible, 43 

actionable, explanatory insight into immune system-drug metabolism interactions within individuals.44 
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 45 

Introduction 46 

  47 

Hepatic cytochrome P450 (P450) is the major family of drug-metabolizing enzymes in the liver. 48 

Changes in P450 levels are common among many disease states, giving rise to the concern that a patient 49 

may experience an imbalance in drug exposure when the disease alters P450 levels and downstream drug 50 

metabolism. Though a small subset of P450s are induced by inflammation, most inflammatory states 51 

down-regulate hepatic P450, reducing drug clearance and elevating plasma drug levels, thus increasing 52 

the risk of adverse effects—especially for low therapeutic index drugs [1,2]. P450 down-regulation can 53 

also protect against toxicity caused by reactive metabolites [2,3]. For example, pretreatment with an 54 

inflammatory stimulus protects against acetaminophen-induced hepatotoxicity [4]. 55 

Inflammatory-induced P450 down-regulation is mediated by proinflammatory cytokines, 56 

including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), that specifically regulate 57 

different yet overlapping subsets of P450s in both humans and rats [5,6]. Many of these cytokines are 58 

derived from Kupffer cells. While some cytokines down-regulate P450 in primary hepatocytes cultures, 59 

others are dependent upon the presence of Kupffer cells [7]. Kupffer cells can be activated by bacterial 60 

endotoxin (lipopolysachharide, LPS). An LPS stimulus causes Kupffer cells to release proinflammatory 61 

cytokines, triggering P450 down-regulation. For more information, we refer the reader to four reviews on 62 

immune-mediated P450 down-regulation [1-3,8]. 63 

Long-term, we seek sufficient new insight into P450-regulating mechanisms to correctly 64 

anticipate how an individual’s P450 expressions will respond when health and/or therapeutic 65 

interventions change. To date, improving explanatory mechanistic insight relies on knowledge gleaned 66 

from in vitro, in vivo, and clinical experiments augmented by case reports. We are working to improve 67 

that reality by developing means to undertake scientifically useful virtual experiments [9,10]. To be 68 

scientifically useful, the computational models employed must demonstrate credibility, in part by meeting 69 
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demanding representational requirements. For example, not only must the simulated phenomena be 70 

quantitatively similar to available wet-lab data, but the software mechanisms—the actual events occurring 71 

during execution—should also be demonstrably biomimetic. Making key aspects of both model and 72 

experiment increasingly analogous to past or future real-world counterparts further enhances credibility. 73 

Advances in agent-based modeling and simulation (M&S) methods have now made it feasible to begin 74 

achieving such requirements [11]. We report further progress. 75 

A prerequisite for achieving our objective is to translate a currently accepted theory of immune 76 

system influence on P450 regulation (such as that cited above) into a computational model, and then 77 

challenge the model via in silico experiments to generate phenomena that are measurably similar to 78 

preselected data reported in the literature. An agent-based model’s mechanisms will be a concretized 79 

hypothesis: these components interacting in these spaces, following these rules, under these constraints 80 

will, upon execution, produce material system changes, which when measured will be within (for 81 

example) ± 10% of the corresponding wet-lab values. When the initial hypothesis fails—and it almost 82 

always does—we posit explanations, revise both hypothesis and model, and repeat the challenge. In this 83 

report, we begin with two existing agent-based models—an in silico hepatocyte culture (ISHC) [12] and 84 

an in silico liver (ISL) [13,14]—that have already achieved many validation targets related to drug 85 

metabolism and hepatotoxicity. We then repurpose both models to support the additional use case of 86 

exploring mechanisms related to immune system involvement in the liver. Specifically, we instantiate and 87 

challenge the following mechanistic hypothesis in the ISHC and ISL: in response to LPS, Kupffer cells 88 

down-regulate hepatic P450 levels via inflammatory cytokines, thus leading to a reduction in metabolic 89 

capacity. 90 

Knowledge about interactions among hepatic P450-regulating mechanisms and immune system 91 

components comes from both in vitro and in vivo experiments. An essential, demanding requirement 92 

herein is thus that the same mechanism components must be utilized in models simulating in vitro and in 93 

vivo environments. We report quantitative validation evidence supporting an in vitro (ISHC) and in vivo 94 

model (ISL). By employing modularization and integration techniques [12], we enable reuse of 95 
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components and mechanisms between ISHC and ISL. We conceptually deconstruct the above hypothesis 96 

into three “stages” and achieve degrees of validation for each stage: 1) Kupffer cells produce cytokines 97 

upon LPS stimulus, 2) cytokines down-regulate hepatic P450 levels, and 3) P450 down-regulation 98 

reduces drug clearance. We achieve multiple in vitro and in vivo validation targets gathered from five 99 

wet-lab experiments, including a LPS-cytokine dose-response curve, time-course P450 down-regulation, 100 

and changes in several different measures of drug clearance spanning three drugs: acetaminophen 101 

(APAP), antipyrine (ANT), and chlorzoxazone (CZN). During the validation process, we falsify several 102 

mechanistic details and other ISHC and ISL components, to which we respond by iteratively refining 103 

model aspects until validation targets are achieved. This iterative process of falsification-refinement-104 

validation ensures that model components are increasingly biomimetic yet parsimonious. Such models are 105 

perpetual works in progress. We argue that as these models are incrementally improved through multiple 106 

future rounds of mechanistic challenge and validation against an expanding set of measured attributes, we 107 

will generate virtual systems that embody deeper credible, actionable, explanatory insight into immune 108 

system-drug metabolism interactions within individuals.109 
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Methods 110 

  111 

To avoid ambiguity between in silico components and their referent biological counterpart, we 112 

use small caps when referring to the former, e.g. HEPATOCYTE. Parameter names are italicized. Analogs 113 

were written in Java, utilizing the MASON multi-agent simulation toolkit [15]. In silico experiments were 114 

run using 2 or 16 node virtual machines on Google Compute Engine, running 64-bit Debian 7. For longer 115 

simulations, Monte Carlo trials were run in parallel. 116 

Synthetic and agent-based modeling 117 

Exploring the causal mechanisms underlying P450 down-regulation can be facilitated using 118 

synthetic M&S methods. Synthetic M&S is a developing method that fundamentally differs from 119 

conventional equation-based models (i.e. physiologically based pharmacokinetic/pharmacodynamic 120 

models) in several ways. In synthetic M&S, autonomous software objects representing components such 121 

as drugs, enzymes, cells, and tissues are plugged together to form a coherent whole. The resulting multi-122 

scale model is called a biomimetic analog. Analog components have several mechanisms—composed of 123 

rules, equations, and/or other operating principles—that specify how to interact with other components. 124 

At the software level, analog components are dynamic data structures, containing state information that 125 

changes as the simulation evolves; analog mechanisms are sets of governing logic that manipulate 126 

component state information. 127 

An analog is an experimental apparatus that can be used to challenge mechanistic hypotheses 128 

about referent phenomena. When an analog is executed, its components and mechanisms are 129 

instantiated—represented by a concrete instance—in silico [16]. The analog produces phenomena, some 130 

of which are intended to mimic those of its referent system. If analog phenomena are acceptably similar to 131 

wet-lab and/or clinical validation data, we support the following hypothesis: events that transpired in 132 

silico may have biological counterparts. Thus, a validated analog stands as a challengeable theory about 133 

mechanistic events that may have occurred in the referent system. Alternative analog mechanisms can be 134 
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tested in parallel. As we continue to refine and expand surviving analog components and mechanisms to 135 

mimic an ever-increasing set of validation data, we grow increasingly confident that the analog behaves 136 

analogously to the referent under specified conditions. 137 

 The main objective for synthetic M&S is to build better working hypotheses about the 138 

mechanisms of interest. Thus, an important requirement is that analogs are suitable for virtual 139 

experimentation and, therefore, hypothesis testing. An experiment on an analog is an in silico experiment, 140 

precisely analogous to a wet-lab or clinical experiment. As such, analogs include components and 141 

mechanisms that map to concrete, relevant aspects of a wet-lab or clinical experiment, including 142 

biological components (e.g. hepatocytes), wet-lab and/or clinical environments (e.g. in vitro, in vivo), 143 

experimental procedures (e.g. intravenous drug injection), and measurements (e.g. plasma concentration 144 

profile). Thus, a virtual experiment using an analog such as the ISL is not simply a model of (say) “drug 145 

metabolism” or some other particular biological process. Rather, an instantiated ISL is a concrete 146 

software analog of (say) a whole rat intravenously injected with 20 mg/kg acetaminophen and measured 147 

at 15 min intervals via external jugular cannulation. An advantage of such virtual experimentation is that 148 

variations of a single analog can be used to mimic a wide range of experimental protocols, treatments, 149 

disease states, and measurements [10]. When new use cases require including new aspects of the referent 150 

experiment (e.g. an alternative hypothesized mechanism, a new in silico measurement, a different 151 

experimental protocol, or an altered disease state), it is straightforward to add that level of detail. 152 

 There are several differences between synthetic M&S and traditional inductive methods, which 153 

arise largely from differences in model use case and goals. Whereas synthetic M&S focus on challenging 154 

concrete mechanisms, inductive approaches (e.g. equation-based, continuous mathematics models) 155 

typically employ equations that describe patterns in data and are used to make precise predictions about 156 

future patterns in data. For these uses, conventional methods are unsurpassed. Conventional models can 157 

also be used to challenge mechanistic hypotheses (for example, by changing parameters that map to 158 

different routes of administration); however, it is more difficult to challenge a series of alternative 159 

mechanisms, possibly at different levels of granularity. While it is straightforward for synthetic analogs to 160 



 8 

change mechanistic detail or challenge multiple mechanisms in parallel, conventional equation-based 161 

models often require significant model re-engineering—or a completely new model—when adding new 162 

variables, changing granularity, or switching use cases. Validation targets herein span multiple wet-lab 163 

platforms (in vitro and in vivo) and measurements types (e.g. three different measures of drug clearance); 164 

thus, synthetic approaches are more appropriate for purposes herein. Other key features of the similarities 165 

and differences between synthetic M&S and conventional inductive models have been detailed elsewhere 166 

[11,16,17]. 167 

 Note that it would be straightforward to employ traditional modeling approaches (e.g. 168 

pharmacokinetic/pharmacodynamic modeling) to describe the biological processes involved in the 169 

immune-mediated P450 down-regulation pathway. Given sufficient P450 isozyme-specific validation 170 

data, such models may be useful, for example, in precisely predicting levels of P450 down-regulation 171 

following inflammatory stimulus. However, the ability to explore, challenge, and refine mechanistic 172 

hypotheses related to P450 down-regulation is better suited for synthetic analogs. Further, other 173 

pharmacologically relevant phenomena are difficult or problematic to describe using traditional multi-174 

compartment models—e.g. liver zonation (i.e. lobule location-dependent effects) or leukocyte recruitment 175 

and localization—but are straightforward to reproduce using spatially explicit synthetic analogs. Since 176 

long-term objectives include exploring mechanisms of such attributes, synthetic analogs are the more 177 

appropriate choice. 178 

Agent-based modeling is one model type that can be used to achieve the above synthetic M&S 179 

goals. An agent-based model contains agents, which are software objects capable of scheduling their own 180 

events [11]. Each agent senses, interacts with, and is a part of a virtual environment. They each follow a 181 

set of governing rules or operating principles, the logic of which is specified by the modeler. In biological 182 

M&S, agents typically map to (represent) biological components (e.g. cells), and their operating 183 

principles map to cellular interactions and processes. We refer the reader to [11] for an in-depth review of 184 

the role of synthetic M&S utilizing agent-based modeling in pharmaceutical research. 185 
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Iterative refinement protocol 186 

A core principle of biomimetic M&S is to develop software models that provide increasingly 187 

credible mechanistic explanations of their referent complex biological processes. Such increases require 188 

the strategic use of parsimony. Abstract models will be falsified when challenged against specific 189 

validation data. When a model fails, the appropriate response is to refine it: either by increasing 190 

complexity (e.g. by adding parameters or switching to finer-grained components) or testing alternative 191 

mechanisms and/or structures before repeating the challenge. In support of this core principle, our model 192 

development process is governed by an iterative refinement protocol (IRP), a scientific method for 193 

falsifying, refining, and validating multi-scale biomimetic analogs. Described in Fig 1A, the IRP focuses 194 

on model falsification and subsequent refinement, following a strict parsimony guideline. The goal of 195 

stepping through an IRP cycle is to formulate a mechanistic hypothesis by meeting a set of validation 196 

targets. When prespecified similarity criteria are attained for a targeted attribute, we have achieved a 197 

validation target. Similarity criteria can range from qualitative (e.g. event X occurs before event Y) to 198 

quantitative (e.g. in silico points fall within ± 1 standard deviation of the corresponding wet-lab value). 199 

An analog mechanism is falsified when it cannot achieve a given validation target, either because the 200 

target phenomenon cannot be generated or we fail to find parameter set values that satisfy all similarity 201 

criteria. 202 

 203 

Fig 1. Analog methods and structure. A. An iterative protocol for refining biomimetic analogs. B. Key 204 

features of ISHC structure. The ISHC contains two grids: CELL SPACE and MEDIA SPACE (only portions of 205 

each grid are shown). SOLUTES can move laterally within a grid, or between CELL SPACE and MEDIA 206 

SPACE, subject to the parameters pExitMedia and pExitCell. Select HEPATOCYTE and KUPFFER CELL 207 

components are shown. C. Key features of ISL structure. There are two major components: BODY and 208 

LOBULE. SOLUTES are injected into BODY, where they distribute to the PORTAL VEIN (PV) of the LOBULE. 209 

SOLUTES percolate through a network of SINUSOID SEGMENTS (SS) toward the CENTRAL VEIN (CV), from 210 
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which they return to BODY. SOLUTES can also move radially within a SINUSOID SEGMENT through various 211 

SPACES. Select HEPATOCYTE and KUPFFER CELL components are shown. 212 

 213 

When a mechanism is falsified, we specify a revision—a new hypothesis—which usually 214 

involves adding and/or revising analog components and/or mechanisms, perhaps at a finer level of 215 

granularity. To be scientifically meaningful, refinements should be parsimonious: we seek the simplest 216 

analog that still (“just barely”) achieves validation targets. If an analog mechanism is too simple for a 217 

given set of validation targets, it will be falsified, and iterative refinement will lead to a new mechanism. 218 

However, for an analog that is too complex (over-mechanized, analogous to an equation-based model 219 

being overparameterized), we waste computational resources, and it becomes difficult to identify where 220 

and why a future mechanism is falsified, rendering reengineering problematic. 221 

ISL and ISHC use cases 222 

Both the ISL and ISHC are biomimetic analogs used to challenge mechanistic hypotheses related 223 

to drug metabolism and hepatotoxicity. As primarily exploratory devices, their focus shifts away from 224 

precise prediction of pharmacological values—for which traditional continuous mathematics and/or 225 

statistical methods are unsurpassed—and instead toward developing flexible methods to simulate 226 

mechanistic scenarios. It is easy to add mechanistic details that improve apparent realism of an ABM (e.g. 227 

[18]). However, to retain scientific usefulness, we strive to keep analog mechanisms parsimonious. 228 

The ISL simulates drug clearance and hepatotoxicity experiments in an in vivo setting. It is a 229 

highly flexible platform that can mimic many experimental use cases. One use case configuration maps to 230 

a portion of an in situ isolated, perfused rat liver, in which simulations mimic the multiple indicator 231 

dilution method to measure hepatic outflow profile [19]. This iteration of the ISL includes a whole-rat 232 

configuration that can simulate either oral or intravenous drug administration. Measurements on the ISL 233 

range from measures of metabolism (e.g. hepatic outflow profile, extraction ratio, and intrinsic clearance) 234 

to necrosis (e.g. the time and location of cell death events). The current use case expands the ISL to 235 
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include analogs of immune system components and mechanisms; experiments are conducted to test the 236 

entire P450 down-regulation pathway from LPS stimulus to decreased clearance. In particular, ISL 237 

simulations here mimic several wet-lab validation experiments in which rats are pretreated with LPS 238 

before administering drug (see Results for experiment details) [20-22]. Measurements include changes in 239 

drug clearance and P450 amounts. 240 

The ISHC simulates drug clearance and hepatotoxicity experiments in an in vitro setting. A 241 

simulation maps to a portion of a monolayer culture of isolated rat hepatocytes and/or Kupffer cells. 242 

While much simpler than the ISL, the ISHC is useful for mimicking small parts of the immune-mediated 243 

P450 down-regulation pathway. In particular, the current ISHC use cases mimic wet-lab experiments in 244 

which cultured hepatocytes produce cytokine in response to LPS [23] and cultured Kupffer cells down-245 

regulate P450 in response to cytokine (see Results for experiment details) [24]. Measurements include a 246 

LPS-cytokine dose-response curve and time-course enzyme levels. 247 

Selection of drugs and similarity criteria 248 

We selected validation data for three drugs (APAP, ANT, and CZN) having different 249 

physiochemical properties and spanning a ~4-fold range in half-life in rats. Additional drugs can be added 250 

to the validation dataset to further improve model confidence; we selected three to demonstrate P450 251 

down-regulation mechanisms. Indeed, earlier versions of the ISHC and ISL have been used for different 252 

use cases spanning additional drugs: see [12,25]. When introducing new analog drug objects into the 253 

simulation, we would first refer to literature reports of fraction metabolized. For the three chosen drugs, 254 

fraction metabolized in rats is nearly 100% [26-28]. We would next consider what fraction of metabolic 255 

clearance is due to P450 isoforms—where our attention is focused. For ANT and CZN, that is nearly 256 

100% [27,28]; it is only a minor pathway (though important to toxicity) for APAP, dominated by 257 

cytochromes P450 2E1 and 1A2 [26,29]. Given fraction metabolized via specific enzymes, we refine the 258 

ISL and ISHC to include enzyme- and cytokine-specific functions (see “Mechanism granularity and 259 

flexibility”). 260 
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The choice of similarity criteria is governed by model use case. For example, a model intended to 261 

be used for precise prediction requires more stringent similarity criteria than a model used to explore 262 

explanatory mechanisms. When possible, similarity criteria were chosen to reflect variability in wet-lab 263 

measurements. Thus, a good starting point for moderately stringent similarity criteria is that in silico 264 

values fall within ± 1 standard deviation of the corresponding wet-lab values. When standard deviation is 265 

not given or cannot be determined from the validation data, an alternative is to specify an arbitrary 266 

percentage range. In these cases, we stipulated a range of ± 25%, which we found to be reflective of most 267 

related, reported standard deviation values. As an exception, we chose a range of ± 10% for ANT half-life 268 

to better reflect the smaller standard deviations of half-lives measures for other drugs. For validation 269 

targets that include many values (e.g. time-course data), we stipulate that at least 50% of in silico values 270 

must fall within the prespecified range. So doing prevents present but statistically insignificant 271 

abnormalities in a plot’s microstructure from prohibiting model development in early stages of validation 272 

and reduces the risk of overfitting to one particular dataset. For an example of such irregularities in 273 

microstructure, validation data from [20] at 80 min shows a statistically insignificant nonlinear dip in the 274 

semi-logarithmic drug disappearance curve for APAP, which is not found in similar studies (e.g. [30,31]). 275 

ISL and ISHC components 276 

Upon execution, time advances through simulation cycles. Agents are scheduled to execute once 277 

each simulation cycle, with the exception of some events that are separately scheduled. Components 278 

common to both the ISL and ISHC include SOLUTES, ENZYMES, and CELLS. SOLUTES are mobile objects 279 

that map to a group of small molecules. They percolate through SPACES, influenced by various flow 280 

parameters (see Table 1). SOLUTES can have any number of properties that are specified offline as part of 281 

the parameter list (see Table 2). For example, only “bindable SOLUTES” (SOLUTES for which the Boolean 282 

parameter bindable is true) may bind to ENZYMES. Each SOLUTE is assigned a type that controls how 283 

other objects may interact with it. Herein, SOLUTE types include LPS, CYTOKINE, DRUG (APAP, ANT, or 284 

CZN), and METABOLITE (APAP-METABOLITE, ANT-METABOLITE, or CZN-METABOLITE); only the three 285 
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DRUG types are bindable. For current use cases, only a single CYTOKINE type was necessary; thus, 286 

CYTOKINE maps to the set of all cytokines that may cause hepatic P450 down-regulation. However, when 287 

required in future use cases, CYTOKINE may be replaced with objects that map to specific cytokines (e.g. 288 

INTERLEUKIN-1), each with unique parameter values. There are no restrictions on the type or amount of 289 

information that can be “attached” to each SOLUTE; additional properties are added based on use case and 290 

as additional validation targets are achieved.291 
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Table 1. ISL and ISHC parameters descriptions and values for validating experiments. 292 

Parameter	name	 Type/Range	 ISHC	value(s)	 ISL	value(s)	 Description	

Simulation	control	parameters	 	

cycleLimit	 positive	integer	 {2880;	1440}	 variable	 Number	of	simulation	cycles	after	which	simulation	stops.	

monteCarloTrials	 positive	integer	 16	 16	 Number	of	Monte	Carlo	trials	to	execute.	

Dosing	parameters	 	

doseTime	(SOLUTE	type)	 positive	integer	 {1	(LPS);	1	

(CYTOKINE)}	

{1	(DRUG);	1	(LPS),	

86401	(DRUG)}	

Simulation	cycle	at	which	to	administer	SOLUTE	dose.	Multiple	doses	

are	separated	by	commas.	

dosage	 positive	integer	 {variable;	2000}	 {62500;	125000}	 Number	of	SOLUTE	objects	to	administer	each	dose.	

BINDING	HANDLER	parameters	 	

pBind	 [0.0,	1.0]	 N/A	 0.25	 Base	probability	for	an	unbound	SOLUTE	to	bind	to	an	unbound	

ENZYME.	

bindCycles	 positive	integer	 N/A	 10	 Number	of	a	simulation	cycles	a	bound	SOLUTE	remains	bound	to	an	

ENZYME.	

bindExponent	 positive,	real	 N/A	 see	Table	3	 Exponent	that	controls	the	degree	to	which	increasing	the	number	

of	bound	ENZYMES	decreases	the	probability	of	a	binding	event.	

bindable	 Boolean	 see	Table	2	 see	Table	2	 If	TRUE,	this	SOLUTE	may	bind	to	an	ENZYME.	

acceptedSolutes	 list	 see	Table	3	 see	Table	3	 List	of	SOLUTE	types	that	can	bind	to	this	ENZYME.	

METABOLISM	HANDLER	parameters	 	

pMetabolize	 [0.0,	1.0]	 N/A	 see	Table	2	 Probability	that	a	bound	SOLUTE	is	metabolized	by	its	bound	ENZYME.	

metabolic	 Boolean	 see	Table	3	 see	Table	3	 If	TRUE,	this	ENZYME	may	metabolize	bound	SOLUTES.	
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metabolicProduct	 list	 see	Table	2	 see	Table	2	 List	of	METABOLITES	(if	any)	to	produce	upon	metabolism.	

INFLAMMATION	HANDLER	parameters	 	

inflammatoryThreshold	 non-negative	integer	 {1;	N/A}	 3	 Threshold	number	of	INFLAMMATORY	STIMULI	above	which	a	CYTOKINE	

may	be	produced.	

cytokineThreshold	 non-negative	integer	 {2;	N/A}	 2	 Threshold	number	of	CYTOKINES	above	which	no	more	CYTOKINES	may	

be	produced.	

cytokineExponent	 positive,	real	 {3.0;	N/A}	 3.0	 Exponent	that	controls	the	degree	to	which	increasing	INFLAMMATORY	

STIMULI	increases	pCytokine.	

inflammatory	 Boolean	 see	Table	2	 see	Table	2	 If	TRUE,	this	SOLUTE	may	cause	KUPFFER	CELLS	to	produce	CYTOKINES.	

DOWN-REGULATION	HANDLER	parameters	 	

pRemove	 [0.0,	1.0]	 {N/A;	0.05}	 see	Table	3	 Probability	that	a	CYTOKINE	removes	an	ENZYME.	

delay	 non-negative	integer	 {N/A;	30}	 600	 Number	of	simulation	cycles	to	delay	before	an	ENZYME	scheduled	for	

removal	is	actually	removed.	

pReplenish	 [0.0,	1.0]	 {N/A;	0.007}	 0.0001	 Probability	that	an	ENZYME	is	created	when	there	are	no	CYTOKINES,	the	

removal	queue	is	empty,	and	there	are	fewer	than	the	starting	

number	of	ENZYME.	

downRegulated	 Boolean	 see	Table	3	 see	Table	3	 If	TRUE,	this	ENZYME	may	be	down-regulated	by	CYTOKINES.	

DEGRADATION	HANDLER	parameters	 	

pDegrade	 [0.0,	1.0]	 see	Table	2	 see	Table	2	 Probability	that	an	unbound	SOLUTE	is	degraded.	

CELL	parameters	 	

enzymesPerCellMin	 non-negative	integer	 4	 4	 The	minimum	number	of	ENZYME	of	each	type	to	create	in	each	CELL	at	
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the	start	of	the	simulation.	

enzymesPerCellMax	 non-negative	integer	 8	 8	 The	maximum	number	of	ENZYME	of	each	type	to	create	in	each	CELL	at	

the	start	of	the	simulation.	

ecDensity	 [0.0,	1.0]	 N/A	 0.66	 Probability	that	a	grid	point	in	ENDOTHELIAL	SPACE	contains	an	

ENDOTHELIAL	CELL.	

kcDensity	 [0.0,	1.0]	 {1.0;	0.0}	 0.33	 Probability	that	a	grid	point	in	CELL	SPACE	(ISHC)	or	ENDOTHELIAL	SPACE	

(ISL)	contains	a	Kupffer	Cell.	

hepDensity	 [0.0,	1.0]	 {0.0;	1.0}	 0.9	 Probability	that	a	grid	point	in	CELL	SPACE	(ISHC)	or	HEPATOCYTE	SPACE	

(ISL)	contains	a	HEPATOCYTE.	

expressingCellTypes	 list	 see	Table	3	 see	Table	3	 List	of	which	CELL	types	contain	this	ENZYME	type.	

SOLUTE	flow	parameters	 	

sampleRatio	 [0.0,	1.0]	 N/A	 0.00115	 Base	fraction	of	SOLUTES	in	BODY	that	are	transferred	to	PORTAL	VEIN	each	

simulation	cycle.	

sampleRatioFactor	 positive,	real	 N/A	 see	Table	2	 The	fraction	of	SOLUTES	in	BODY	that	are	transferred	to	PORTAL	VEIN	each	

simulation	cycle	is	multiplied	by	this	factor.	

Vd,change	 positive,	real	 N/A	 see	Table	2	 The	fraction	of	SOLUTES	in	BODY	that	are	transferred	to	PORTAL	VEIN	each	

simulation	cycle	is	reduced	by	this	factor	in	LPS	experiments.	Further,	

the	original	amount	of	administered	SOLUTES	in	reduced	by	this	factor	in	

LPS	experiments.	

forwardBias	 [0.0,1.0]	 N/A	 0.2	 Weight	given	to	forward	movement	of	a	SOLUTE	object,	modifying	the	

otherwise	"Brownian"	motion.	
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flowRate	 positive	integer	 N/A	 2	 Number	of	grid	points	SOLUTE	in	the	CORE	is	moved	forward	each	

simulation	cycle.	

lateralBias	 [0.0,	1.0]	 N/A	 0.6	 Weight	given	to	lateral	movement	of	a	SOLUTE	object,	modifying	the	

otherwise	"Brownian"	motion.	

pExitMedia	 [0.0,	1.0]	 see	Table	2	 N/A	 Probability	that	a	SOLUTE	can	move	from	MEDIA	SPACE	to	CELL	SPACE.	

pExitCell	 [0.0,	1.0]	 see	Table	2	 N/A	 Probability	that	a	SOLUTE	can	move	from	CELL	SPACE	to	MEDIA	SPACE.	

When ISHC parameter values differ between dose-response experiments (used to generate Fig 2A) and time-course experiments (used to generate 293 

Fig 2B), the different values are shown in brackets separated by semicolons: e.g. {dose-response value; time-course value}. Similarly, when ISL 294 

parameter values differ between control and LPS experiments, the different values are shown in brackets separated by semicolons: e.g. {control 295 

value; LPS value}. “N/A” values denote that the parameter is either not included in that simulation (e.g. an ISHC-specific parameter in an ISL 296 

simulation) or is not relevant in that simulation (e.g. METABOLISM HANDLER parameters in ISHC simulations without DRUG). If a value states “see 297 

Table 2,” that parameter differs based on SOLUTE type; see Table 2 for SOLUTE-specific values. Similarly, if a value states “see Table 3,” that 298 

parameter differs based on ENZYME type; see Table 3 for ENZYME-specific values. The ISL values for cycleLimit are variable: for control 299 

experiments, the values are 6000 (for APAP), 18000 (for ANT), and 7200 (for CZN); for LPS experiments, the values are 92400 (for APAP), 104400 300 

(for ANT), and 93600 (for CZN). The ISHC dose-response values for dosage are also variable: the dose-response curve was measured at 0, 70, 700, 301 

7000, and 700000 LPS objects.302 
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Table 2. SOLUTE-specific parameter values for validating experiments. 303 

SOLUTE	type	 bindable	 inflammatory	 pMetabolize	 metabolicProduct	 pDegrade	 sampleRatioFactor	 Vd,change	

ISL	simulations	

	 	 	 	 	 	 	APAP	 TRUE	 FALSE	 [0.35,	0.95]	 APAP-METABOLITE	 N/A	 1.0	 N/A	

ANT	 TRUE	 FALSE	 [0.35,	0.95]	 ANT-METABOLITE	 N/A	 0.26	 N/A	

CZN	 TRUE	 FALSE	 [0.35,	0.95]	 CZN-METABOLITE	 N/A	 0.52	 1.69	

LPS	 FALSE	 TRUE	 N/A	 N/A	 0.0005	 N/A	 N/A	

CYTOKINE	 FALSE	 FALSE	 N/A	 N/A	 0.002	 N/A	 N/A	

APAP-METABOLITE	 FALSE	 FALSE	 N/A	 N/A	 N/A	 N/A	 N/A	

ANT-METABOLITE	 FALSE	 FALSE	 N/A	 N/A	 N/A	 N/A	 N/A	

CZN-METABOLITE	 FALSE	 FALSE	 N/A	 N/A	 N/A	 N/A	 N/A	

SOLUTE	type	 bindable	 inflammatory	 pMetabolize	 metabolicProduct	 pDegrade	 pExitCell	 pExitMedia	

ISHC	simulations	

	 	 	 	 	 	 	LPS	 FALSE	 TRUE	 N/A	 N/A	 N/A	 1	 {0.5;	0.1}	

CYTOKINE	 FALSE	 FALSE	 N/A	 N/A	 {0.01;	0.002}	 {0.01;	0.2}	 0.02	

When ISHC parameter values differ between dose-response experiments (used to generate Fig 2A) and time-course experiments (used to generate 304 

Fig 2B), the different values are shown in brackets separated by semicolons: e.g. {dose-response value; time-course value}. “N/A” values denote 305 

that the parameter is not relevant in that simulation (e.g. METABOLISM HANDLER parameters in ISHC simulations without DRUG). Note ISL 306 

pMetabolize values are given as a range; CELLS nearest the PORTAL VEIN exhibit the minimum value, CELLS nearest the CENTRAL VEIN exhibit the 307 

maximum value, and the value is linearly interpolated for CELLS in between.308 
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ENZYMES are objects within CELLS that can bind and metabolize SOLUTES. Note an ENZYME is an 309 

object named for convenience. It does not represent actual metabolic enzymes. Rather, an ENZYME maps 310 

to a portion of material within a cell that can influence metabolism of the SOLUTE’S counterparts within a 311 

simulation cycle. So doing is a necessary consequence of adherence to our strong parsimony guideline, 312 

which includes using single object types as placeholders for what in the future may be a set of distinctly 313 

different objects. Like SOLUTES, ENZYMES have a number of properties, including ENZYME type. In the 314 

ISHC, there is a single type of ENZYME that interacts with all bindable SOLUTES. In this iteration of the 315 

ISL, there are four ENZYME types: APAP-ENZYME, ANT-ENZYME, CZN-ENZYME, and NONSPECIFIC. 316 

Different ENZYME types have type-specific properties, including a list of which SOLUTE types can bind to 317 

that ENZYME type (see Table 3). Different CELL types can also contain (“express”) different ENZYME types 318 

(expanded upon below). For simplicity, we specified ENZYME types according to the corresponding 319 

DRUG. For example, APAP-ENZYMES exclusively bind and metabolize APAP objects. NONSPECIFIC can 320 

bind all bindable SOLUTES, but cannot metabolize them. While finer-grain knowledge of which P450 321 

isoforms metabolize APAP, ANT, and CZN in both rats and humans is available [29,32-35], as implied 322 

above, parsimony dictates that we do not include that level of granularity until validation targets cannot 323 

be achieved without doing so. Similarly, [21] measured levels of CYP3A2 and CYP2C11 separately; 324 

however, relative changes after LPS pretreatment were extremely similar for both isozymes. Thus, 325 

including two distinct ENZYME types for ANT experiments was unnecessary.326 
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Table 3. ENZYME-specific parameter values for validating experiments. 327 

ENZYME	type	 expressingCellTypes	 acceptedSolutes	 metabolic	 downRegulated	 pRemove	 bindExponent	

APAP-ENZYME	 HEPATOCYTE	 APAP	 TRUE	 TRUE	 0.01	 1.0	

ANT-ENZYME	 HEPATOCYTE	 ANT	 TRUE	 TRUE	 0.025	 2.0	

CZN-ENZYME	 HEPATOCYTE	 CZN	 TRUE	 TRUE	 0.02	 1.5	

NONSPECIFIC	 KUPFFER	CELL,	ENDOTHELIAL	CELL	 APAP,	ANT,	CZN	 FALSE	 FALSE	 N/A	 1.0	

“N/A” values denote that the parameter is not relevant in that simulation (e.g. METABOLISM HANDLER parameters in CELLS without metabolizing 328 

ENZYMES).329 
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CELLS are agent objects that maintain state information and can contain ENZYMES and SOLUTES. 330 

The three CELL types used in simulations here are HEPATOCYTES, ENDOTHELIAL CELLS (ISL only), and 331 

KUPFFER CELLS. HEPATOCYTES contain enzymes. ENDOTHELIAL CELLS contain only NONSPECIFICS. 332 

KUPFFER CELLS do not contain ENZYMES. Each type of CELL contains various physiomimetic mechanism 333 

modules [10] that are executed once per simulation cycle in pseudo-random (simply random hereafter) 334 

order. When executed, mechanism modules act upon CELL contents (SOLUTES and ENZYMES) and other 335 

CELL state information (see “ISL and ISHC mechanisms” for details). 336 

ISL and ISHC structure 337 

Full details of ISL structure are provided elsewhere [13,14]. For this work, we plugged the cited 338 

LOBULE object into a simple BODY compartment (Fig 1C). Together, they map to a rat. BODY maps to 339 

plasma plus all other drug-accessible tissues; LOBULE maps to the rat liver. Injected SOLUTES (i.e. LPS 340 

and/or DRUG) are added to BODY during the simulation, and BODY transfers a fraction of its SOLUTES to 341 

the PORTAL VEIN of the LOBULE each simulation cycle. In silico measurements of SOLUTE are sampled 342 

from BODY. LOBULE is a directed graph—or sinusoid network—of interconnected nodes and edges. Each 343 

node is a SINUSOID SEGMENT, which maps to a portion of sinusoid. Edges map to direction of blood flow, 344 

from the portal vein to the central vein. Once transferred from BODY to PORTAL VEIN, SOLUTES percolate 345 

through SINUSOID SEGMENTS and the edges connecting them. Surviving SOLUTES reach CENTRAL VEIN 346 

and return to BODY. SINUSOID SEGMENTS contain an innermost CORE, an outermost BILE CANAL, and 347 

concentric, cylindrical SPACES. Cellular SPACES contain grid points that can contain at most one CELL. 348 

Acellular SPACES can only contain SOLUTES. Moving radially outward from CORE, SOLUTES may enter 349 

BLOOD-CELL INTERFACE (acellular), ENDOTHELIAL SPACE (contains ENDOTHELIAL CELLS and KUPFFER 350 

CELLS), SPACE OF DISSE (acellular), HEPATOCYTE SPACE (contains HEPATOCYTES), and BILE CANAL 351 

(acellular). 352 

ISHC structure is composed of two stacked, rectangular grids (Fig 1B), each mapping to different 353 

in vitro spaces [10]. CELL SPACE maps to the monolayer of cells; each grid point contains at most one 354 
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CELL (HEPATOCYTE or KUPFFER CELL). MEDIA SPACE maps to culture media. Both SPACES may contain 355 

SOLUTES, which can move between SPACES or laterally within a SPACE. To account for the much greater 356 

volume in culture media compared to the cell monolayer, between-grid movement is asymmetrical: a 357 

SOLUTE can only move “up” from CELL SPACE to MEDIA SPACE with probability pExitCell; a SOLUTE 358 

moving “down” uses the parameter pExitMedia, which is typically much smaller than pExitCell. Injected 359 

SOLUTES are randomly assigned to MEDIA SPACE and CELL SPACE grid points. SOLUTE measurements are 360 

sampled from the entire system. 361 

ISL and ISHC mechanisms 362 

Logic governing ISL and ISHC mechanism modules is outlined below, and flowcharts of 363 

mechanism logic are illustrated in S1 Fig. There are five mechanism modules used by CELLS in both the 364 

ISL and ISHC for current use cases. Mechanism names include the suffix HANDLER to emphasize the fact 365 

that they are modules that directly act upon model components and their state information. In fact, outside 366 

of the function of the mechanism modules, SOLUTES do nothing other than percolate through SPACES, and 367 

ENZYMES do nothing other than exist within CELLS. Each mechanism is probabilistic in nature. When an 368 

event occurs with probability p, a random draw from the standard uniform distribution, U[0,1), 369 

determines whether the event occurs. If the random draw is less than p, the event occurs. Event execution 370 

is handled using a scheduler that conducts the timing and ordering of events. 371 

BINDING HANDLER maps to both specific and nonspecific binding processes in the cell. This 372 

mechanism module is present in all HEPATOCYTES and ENDOTHELIAL CELLS. When the mechanism is 373 

executed, each unbound SOLUTE inside the CELL has a chance to bind to an unbound ENZYME. With 374 

probability pBind, a SOLUTE binds to an unbound ENZYME. While a SOLUTE is bound, it cannot leave that 375 

CELL, bind to another ENZYME, or be removed via degradation; however, it can be metabolized (see 376 

below). While an ENZYME is bound, it cannot be removed (e.g. via down-regulation) or bind another 377 

SOLUTE. Upon binding, the SOLUTE is scheduled to be released (unbound) from the ENZYME after 378 

bindCycles simulation cycles. 379 
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METABOLISM HANDLER maps to metabolism via P450 enzymes; it is unique to HEPATOCYTES. 380 

When executed, there is a chance for each bound SOLUTE to be metabolized with probability pMetabolize. 381 

When a SOLUTE is metabolized, two events occur. 1) The ENZYME that metabolized the SOLUTE is no 382 

longer bound and is thus free to bind and metabolize again. 2) The metabolized SOLUTE is removed from 383 

the system and replaced with its appropriate METABOLITE. The SOLUTE’S state information specifies 384 

which METABOLITE type is produced. If the SOLUTE specifies multiple METABOLITE types, one is 385 

randomly selected. If the SOLUTE does not specify a METABOLITE product, it is simply removed from the 386 

system and is not replaced. 387 

A different value of pMetabolize is specified for each SOLUTE type, allowing for different types 388 

of SOLUTES to be metabolized at different rates. In simulations here, a particular SOLUTE type has only 389 

one corresponding ENZYME type that can metabolize it. However, some use cases may require multiple 390 

ENZYME types that can metabolize a particular SOLUTE type. In such cases, a different value of 391 

pMetabolize can be specified for each pairwise combination of SOLUTE and ENZYME types. Thus, 392 

metabolism can be differentially controlled by individual SOLUTE and ENZYME types. 393 

INFLAMMATION HANDLER maps to cytokine production in response to an inflammatory stimulus 394 

like LPS; it is unique to KUPFFER CELLS. When executed, the mechanism has a chance to produce a 395 

CYTOKINE; if so, the CYTOKINE is added to the KUPFFER CELL. To determine whether to produce a 396 

CYTOKINE, it first counts how many INFLAMMATORY STIMULI are in the KUPFFER CELL. An 397 

INFLAMMATORY STIMULUS is any SOLUTE for which the Boolean property inflammatory is true. The only 398 

INFLAMMATORY STIMULUS is LPS. If the number of INFLAMMATORY STIMULI exceeds the value of the 399 

parameter inflammatoryThreshold, there is a chance to produce a CYTOKINE. With probability pCytokine, 400 

a CYTOKINE is produced. The value of pCytokine is variable, determined by several factors: 401 

𝑝𝐶𝑦𝑜𝑡𝑘𝑖𝑛𝑒 = 1 − exp −
#INFLAMMATORY STIMULI − 𝑖𝑛𝑓𝑙𝑎𝑚𝑚𝑎𝑡𝑜𝑟𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑐𝑦𝑡𝑜𝑘𝑖𝑛𝑒𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡
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Thus, cytokineExponent controls the degree to which increasing stimulus causes CYTOKINE formation. 402 

Lastly, to prevent excess CYTOKINE formation in the presence of significant INFLAMMATORY STIMULUS, 403 

CYTOKINE cannot be created if there are already more than cytokineThreshold CYTOKINES in the CELL. 404 

The above equation is an example of a biomimetic rule. We lack sufficient detailed knowledge to 405 

describe exactly how a Kupffer cell in a particular lobule location determines whether to produce 406 

cytokine. The equation is a placeholder for yet to be specified fine-grain mechanisms. A risk of relying on 407 

such rules is committing inscription error, the logical fallacy of assuming the conclusion and 408 

programming in (consciously or not) aspects of the result we expect to see [36]. Cognizant of inscription 409 

error, we were careful not to explicitly encode a sigmoidal dose-response into INFLAMMATION HANDLER. 410 

We chose the above equation to mimic a Poisson distribution in which the probability of at least one 411 

binding event occurring within a simulation cycle depends on the extent to which the number of 412 

inflammatory stimuli exceeds a threshold value. The ability to generate a sigmoidal dose-response curve 413 

arises from a complex interplay among multiple analog mechanisms, facilitated by flexibility in the 414 

parameters inflammatoryThreshold and cytokineExponent. 415 

DOWN-REGULATION HANDLER maps to P450 down-regulation processes in response to a cytokine 416 

signal; it is unique to HEPATOCYTES. This mechanism is more complex and can follow one of two 417 

pathways: when executed, it has a chance to either 1) remove an ENZYME (in response to sufficient 418 

CYTOKINE) or 2) create an ENZYME (when CYTOKINE is not present). ENZYME removal maps to P450 419 

down-regulation; ENZYME creation maps to the gradual return to basal P450 levels. Importantly, each 420 

HEPATOCYTE contains a separate instance of DOWN-REGULATION HANDLER for each down-regulatable 421 

ENZYME type (call it T) it contains. In the descriptions that follow, each instance operates only on 422 

ENZYMES of type T. The instances operate independently. 423 

When CYTOKINE is present in the HEPATOCYTE, an ENZYME has a chance to be removed. For 424 

each CYTOKINE, the probability to do so is pRemove. However, the ENZYME is not removed immediately; 425 

instead, ENZYME removal is scheduled to occur after delay simulation cycles. Until then, the ENZYME is 426 

marked for removal but is not actually removed. The more CYTOKINES are present, the more chances 427 
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there are to schedule ENZYME removal; however, to prevent abrupt changes in the number of ENZYMES, at 428 

most one ENZYME may be scheduled for removal each simulation cycle. Further, if additional ENZYMES 429 

are scheduled for removal before the previously scheduled ENZYME is actually removed, their delay is 430 

added to the tail end of the currently remaining delay. Thus, when CYTOKINE levels are sufficiently high, 431 

there is a growing “queue” of scheduled ENZYME removal events. Including the delay parameter and 432 

removal queue was necessary to prevent rapid ENZYME down-regulation over the course of very few 433 

simulation cycles. 434 

Alternatively, ENZYMES may be created when there are no more CYTOKINES in the HEPATOCYTE 435 

and after the removal queue has cleared. Further, this pathway can only occur when the number of 436 

ENZYMES is less than the number at the start of the simulation. Thus, ENZYMES can gradually return to 437 

their original (basal) levels. If the three conditions are met—no CYTOKINES, empty queue, less than basal 438 

ENZYME—an ENZYME may be created with probability pReplenish. 439 

We designed DOWN-REGULATION HANDLER to be sufficiently general so that, when needed, we 440 

can include specific subtypes of CYTOKINES (or other SOLUTES) that can specifically and differentially 441 

down-regulate different sets of ENZYME types. Currently, each ENZYME type can have a different value for 442 

pRemove. In the future, as mechanisms for individual CYTOKINE types are teased out, pRemove can be 443 

specific to a particular pair of ENZYME and CYTOKINE type. In other words, parameters like pRemove can 444 

take on pairwise values: e.g. pRemovei,j, where i is a specific ENZYME type and j is a specific CYTOKINE 445 

type. 446 

The final mechanism, DEGRADATION HANDLER, maps to non-P450 degradation of compounds; it 447 

is in all CELLS. The mechanism is simple: when executed, each unbound SOLUTE can, with probability 448 

pDegrade, be “degraded” (removed from the system). There is no limit to the number of SOLUTES that 449 

can be degraded each simulation cycle via this mechanism. SOLUTES that do not specify a value for 450 

pDegrade cannot be degraded. 451 

Mappings between ISL/ISHC mechanism parameters (like pMetabolize) and kinetic, 452 

thermodynamic, and/or pharmacological properties exist, but need not be one-to-one. Quantitative 453 
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mappings can be made via methods including linear regression, artificial neural network, or fuzzy 454 

clustering algorithms. Indeed, these methods have each been shown to successfully predict ISL parameter 455 

values for several drugs, which, when plugged into an ISL and tested, produce simulated hepatic outflow 456 

profiles that closely match wet-lab data [37]. 457 

ENZYME mechanism falsification and generalization 458 

The ENZYME ontology and related binding and metabolism mechanisms were falsified by the 459 

observation that even a dramatic reduction in the number of ENZYMES does not significantly affect 460 

SOLUTE clearance. The explanation is that the probabilities of binding events—and therefore metabolism 461 

events—is neither a function of the number of ENZYMES nor the number of SOLUTES that are already 462 

bound (provided there is at least one unbound ENZYME). There are two exceptional cases: 1) the case in 463 

which all ENZYMES are bound and 2) the subset of this case in which there are zero ENZYMES. In both 464 

exceptional cases, the probability of a binding event drops to zero (S2A Fig). These cases were found to 465 

be rare or nonexistent except under extreme parameter settings. Thus, within typical parameter settings, 466 

effective binding probability is unaffected by changes in the number of ENZYME (S2C Fig). The result is 467 

that a change, such as simulating P450 down-regulation, has no significant effect on SOLUTE clearance, 468 

thereby falsifying those earlier mechanisms. Hereafter, whenever necessary to avoid ambiguity between 469 

ENZYMES used earlier and those described below, we refer to the former as generation 1 ENZYME (G1-470 

ENZYME) and refer to the latter as generation 2 ENZYME (G2-ENZYME). 471 

Achieving validation targets like those drawn from P450 down-regulation required a finer-472 

grained, more generalized ENZYME ontology and mechanisms for binding and metabolism. We 473 

implemented the following refinements. 474 

ENZYME-specific properties 475 

Whereas all G1-ENZYMES were controlled by the same set of parameters, G2-ENZYMES are 476 

dynamic data structures that have ENZYME-specific parameters and maintain ENZYME-specific state 477 

information. Among important parameters is ENZYME type, which allows other components to recognize 478 
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and interact differently with different types of ENZYME. Each G2-ENZYME is assigned a type (e.g. “Phase 479 

1”), which maps to some set of xenobiotic-metabolizing enzymes. This allows different model 480 

components to recognize and interact with ENZYMES differently based on type. G2-ENZYMES can also 481 

have type-specific properties. For example, each ENZYME type contains a list of which SOLUTE types can 482 

bind ENZYMES of that type. Other parameters include Booleans controlling whether that ENZYME can 483 

metabolize SOLUTE (as opposed to binding only), is induced by DRUG, is down-regulated by CYTOKINE, 484 

etc. 485 

Each CELL contains G2-ENZYMES of each type required by the current use case. Different CELL 486 

types within a simulation can contain (or “express”) a different—possibly overlapping—set of ENZYME 487 

types, which are specified offline via a parameter file (see Table 3). In ISL simulations here, 488 

HEPATOCYTES contain all four ENZYME types (APAP-ENZYME, ANT-ENZYME, CZN-ENZYME, and 489 

NONSPECIFIC), and ENDOTHELIAL CELLS contain only NONSPECIFIC. 490 

Parameter-controlled binding probability 491 

G2-ENZYMES can bind and metabolize SOLUTES similarly to G1-ENZYMES; however, binding 492 

need not be controlled by a single constant parameter, pBind. Rather, the number of unbound ENZYMES of 493 

a given type in a given CELL determines the probability of a binding event. The probability function used 494 

is controlled by a whole-model parameter, bindingMode. Currently, there are two binding modes: 495 

stepwise and variable (illustrated in S2 Fig). Stepwise mode is intended to recapitulate the previous G1-496 

ENZYME mechanism behaviors, used primarily for verification purposes. Using the stepwise mode: 497 

𝑃 binding event = 𝑝𝐵𝑖𝑛𝑑 #𝑢𝑛𝑏𝑜𝑢𝑛𝑑 > 0
0 #𝑢𝑛𝑏𝑜𝑢𝑛𝑑 = 0

 

where #unbound is the total number of unbound ENZYMES. Thus, the binding probability is either zero 498 

(when all ENZYMES are bound) or pBind (when at least one ENZYME is unbound) (S2C Fig). Using the 499 

variable mode: 500 

𝑃 binding event = 𝑝𝐵𝑖𝑛𝑑 ∙ −
#𝑏𝑜𝑢𝑛𝑑 − 𝑡𝑜𝑡𝑎𝑙

𝑡𝑜𝑡𝑎𝑙initial

!"#$%&'(#)#*
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where #bound is the total number of bound ENZYMES, total is the total number of ENZYMES (bound or 501 

unbound), and totalinitial is the total number of ENZYMES at the start of the simulation. Thus, the binding 502 

probability decreases as more ENZYMES bind (moving down the line) and/or as ENZYMES are removed 503 

from the system (shifting the curve downward) (S2D Fig). The parameter bindExponent controls the 504 

nonlinearity of this effect (S2B Fig). The probability reaches zero when all ENZYMES are bound (i.e. the 505 

number of bound ENZYMES reaches the current total number of ENZYMES). Further, the y-intercept (the 506 

probability of binding when there are no bound ENZYMES) is scaled by total normalized by totalinitial. 507 

Thus, changes in the total number of ENZYMES are two-fold (S2D Fig): it changes both the probability of 508 

binding and the maximum number of SOLUTES that can be bound to the ENZYME (x-intercept). Because all 509 

metabolism events are preceded by a binding event, changes in binding probability will directly affect 510 

metabolism and clearance. 511 

G2-ENZYMES are designed to be inherently tunable [38]. If a future use case requires addition of 512 

non-P450 enzymes or further delineation into (say) specific P450 isoforms, the G2-ENZYME structure can 513 

still be used. On the other hand, if a future use case does not require this level of granularity, the G1-514 

ENZYME mechanisms can be restored by specifying only two ENZYME types (ENZYME and NONSPECIFIC) 515 

and setting the binding probability function to stepwise mode. In this way, the phenotype space of the G2-516 

ENZYME mechanism subsumes that of the G1-ENZYMES mechanism; that is, the new mechanism is a 517 

generalization of the earlier mechanism. 518 

Mechanism granularity and flexibility 519 

It is well established that a particular drug may be metabolized by several enzymes, each of 520 

which may be differentially down-regulated (or perhaps up-regulated or unaffected) by different 521 

cytokines. Given that a G2-ENZYME object does not map to a particular P450 isoform, why should we 522 

compare ENZYME measurements to wet-lab data using a single, specific P450 isoform? A similar question 523 

can be asked of CYTOKINES. The answer is two-fold. Firstly, the chosen validation data is not sufficiently 524 

detailed to extract differential effects of multiple specific P450 isoforms or specific cytokines. Following 525 
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our strong parsimony guideline, analog mechanisms should not include that level of isoform- or cytokine-526 

specific detail unless and until doing so is needed to achieve validation targets. For example, the 527 

validation data do not measure the regulation of more than one or two P450 isoforms. ([21] measures two 528 

isoforms, but they are down-regulated almost the same amount.) Thus, current use cases only require 529 

simulation and measurement of a single metabolizing ENZYME type per drug. Secondly, the current use 530 

case is to develop flexible methods for simulating immune-mediated P450 down-regulation. Future use 531 

cases may include validating against differential isoform- and/or cytokine-specific data. In these cases, 532 

the ISL and ISHC have built-in capabilities to further delineate ENZYMES and CYTOKINES using only 533 

changes in parameter values. Their differential effects on inflammation and P450 down-regulation can 534 

subsequently be specified using CYTOKINE-specific parameters (e.g. inflammatoryThreshold) and 535 

pairwise CYTOKINE-ENZYME parameters (e.g. pRemove), respectively. 536 

Modularity and integration 537 

We modularized the analog components and mechanisms using methods outlined in [10]. 538 

Modularization facilitates reusing and integrating components among different models. For example, 539 

immune system components (namely KUPFFER CELL) were initially developed as part of the ISHC. Since 540 

components were modularized, they were easily shared with the ISL with minimal code refactoring. 541 

Selecting parameter values 542 

Where applicable, we began with parameter values used to achieve validation targets in previous 543 

ISL and ISHC publications (e.g. [10,13]). For parameters introduced in this work, we began with modest 544 

values: e.g. 0.5 for probabilistic parameters like pRemove with range [0,1], 1 for threshold parameters like 545 

inflammatoryStimuli based on number of objects, and 1.0 for weighting parameters like 546 

cytokineExponent. From there, parameter value options are evaluated iteratively, following Steps 5 - 7 of 547 

the IRP (see Fig 1A). Simultaneous, small changes (e.g. 5 - 10%) in several parameter values can offset 548 

each other and may produce no detectable change in a measured phenomenon. Thus, conventional linear 549 

sensitivity studies are less informative and meaningful than complete location changes in analog 550 
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parameter space. When needed, we use batch parameter space sampling (as in [39,40]) to identify small 551 

subsets of parameter values that are most influential for particular attributes. We also often rely on 552 

heuristics and trial-and-error to arrive at validating parameterizations. For the exploratory studies herein, 553 

we only present one validating parameter set for each experiment (see Table 1). Narrative explanations 554 

for parameter value choices are provided at the end of each experiment in Results.555 
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Results 556 

  557 

A full list of parameters descriptions and their values used for validation experiments is provided 558 

in Table 1. Some parameters are specific to the SOLUTE or ENZYME types used in each simulation; these 559 

parameter values are provided in Tables 2 and 3, respectively. Validation targets and associated validation 560 

data are summarized in Table 4. 561 

 562 

Table 4. Validation targets achieved for immune-mediated P450 down-regulation attributes. 563 

 564 

Targeted attribute Validation data Similarity criteria 

Kupffer cells produce 

cytokine upon LPS 

stimulus in vitro (Fig 

2A). 

Dose-response curve between LPS dose 

and TNF-α response using an in vitro 

Kupffer cell culture [23]. 

In silico values fall 

within ± 1 standard 

deviation of wet-lab 

values. 

Cytokines down-regulate 

hepatic P450 levels in 

vitro (Fig 2B). 

Time-course drop in P450 levels after 

IL-1 stimulus using an in vitro 

hepatocyte culture [24]. 

In silico values fall 

within ± 1 standard 

deviation of wet-lab 

values. 

LPS reduces APAP 

clearance in rats (Figs 3-

5). 

1) Disappearance curves and 2) half-life 

values with/without LPS pretreatment in 

rats [20]. 

1) >50% in silico values 

fall within ± 25% of wet-

lab values. 2) In silico 

values fall within ± 1 

standard deviation of 

wet-lab values. 
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LPS reduces ANT 

clearance (Figs 3-5) and 

CYP3A2/2C11 levels 

(Fig 2C) in rats. 

 

1) Disappearance curves, 2) relative 

CYP3A2/2C11 levels, 3) half-life 

values, and 4) relative systemic 

clearance with/without LPS pretreatment 

in rats [21]. 

1) >50% in silico values 

fall within ± 25% of wet-

lab values. 2) In silico 

values fall within ± 1 

standard deviation of 

wet-lab values. 

LPS reduces CZN 

clearance (Figs 3-5) and 

CYP2E1 levels (Fig 2C) 

in rats. 

1) Disappearance curves, 2) CYP2E1 

levels, 3) half-life values, and 4) relative 

intrinsic clearance with/without LPS 

pretreatment in rats [22]. 

1) >50% in silico values 

fall within ± 25% of wet-

lab values. 2-4) In silico 

values fall within ± 1 

standard deviation of 

wet-lab values. 

 565 

ISHC experiments 566 

We first aimed to achieve a degree of validation for the first part of the pathway: an LPS stimulus 567 

causes Kupffer cell-mediated cytokine release. The validation data, derived from [23], is a dose-response 568 

curve between LPS dose and TNF-α response using an in vitro Kupffer cell culture. TNF-α was measured 569 

after 48-hr LPS treatment using LPS concentrations of 0, 0.1, 1, 10, and 1,000 ng/ml. To simulate this in 570 

vitro Kupffer cell culture, we instantiated an ISHC with the only CELLS being KUPFFER CELLS (i.e. 571 

kcDensity = 1.0 and hepDensity = 0.0). We specified the analog-to-referent mapping of 700 LPS objects to 572 

1 ng/ml LPS, and 1 simulation cycle to 1 min. We arrived at this LPS mapping after several iterations, as 573 

it provided a consistent sigmoidal dose-response curve over a wide range of parameter values. The time 574 

mapping was the same as previous ISHC experiments [10]; it is intentionally coarse-grain, as current use 575 

cases do not require mimicking temporally fine-grain phenomena. 576 
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To mimic the dose-response curve between 0 and 1,000 ng/ml LPS, a DOSE ranging from 0 to 577 

700,000 LPS objects was injected at the start of the simulation. The total number of CYTOKINES was 578 

measured after 2,880 simulation cycles (maps to 48 hr). The resulting values were used to construct a 579 

dose-response curve, normalized by the maximum obtained number of CYTOKINES. We prespecified that 580 

the analog dose-response curve would be acceptably similar to the referent if each in silico point falls 581 

within ± 1 standard deviation of the corresponding wet-lab value. In accordance with the IRP, we sampled 582 

ISHC parameter space until similarity criteria were achieved. The resulting validated dose-response curve 583 

is shown in Fig 2A. 584 

 585 

Fig 2. Validation targets for LPS treatment, before or without drug administration. A. Dose-586 

response curve between LPS stimulus and normalized cytokine response. Values were measured after 48 587 

hr (2,880 simulation cycles). Error bars: wet-lab standard deviation. In silico points are averages of 16 588 

Monte Carlo trials. Wet-lab values are from [23]. B. Time-course levels of enzymes, normalized by the 589 

starting value. Error bars: wet-lab standard deviation. In silico points are averages of 16 Monte Carlo 590 

trials. Wet-lab values are from [24]. C. Wet-lab and in silico P450 levels relative to control values. Wet-591 

lab values are relative measures of CYP3A2 (ANT) or CYP2E1 (CZN). In silico values are relative 592 

measures of the respective ENZYME type. Error bars: standard deviation. Wet-lab values are from [20] 593 

(APAP), [21] (ANT), and [22] (CZN). Note [20] did not provide P450 data for APAP, but we included in 594 

silico values for comparison. 595 

 596 

When selecting parameter values and the LPS analog-to-referent mapping for this experiment, the 597 

resulting dose-response curve followed a sigmoidal shape for all tested parameter values. Thus, we first 598 

arrived at a robust choice for the LPS analog-to-referent mapping. The LPS mapping was chosen as a 599 

balance between granularity and computational efficiency. It is reasonable to strike that balance because 600 

both ISL and ISHC are analogies, not one-to-one models of their referents. When the mapping was too 601 

large (e.g. 1000 LPS objects maps to 1 ng/ml LPS), large DOSES (over one million LPS objects) 602 
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significantly increased computational costs. When the mapping was too small (e.g. 100 LPS objects maps 603 

to 1 ng/ml LPS), the smallest non-zero DOSE (mapping to 0.1 ng/ml LPS) consisted of only 10 LPS objects 604 

(in the presence of 625 grid points in CELL SPACE), which was deemed too coarse-grain to provide 605 

meaningful insight. We arrived at the mapping of 700 LPS objects to 1 ng/ml LPS after several iterations, 606 

then proceeded to test selected parameter values. The challenge in specifying parameter values was to 607 

control the microstructure of the resulting sigmoidal curve (e.g. the slope of the inflection point). In this 608 

case, inflammatoryThreshold was a sensitive parameter; it effectively controlled the DOSE at which the 609 

CYTOKINE response begins to sharply increase. The value of pDegrade for CYTOKINE was also sensitive; 610 

when too small (e.g. 0.001), the slope of the inflection point was too shallow; when too large (e.g. 0.1), 611 

the inflection point would shift too far to the right. 612 

We then aimed to achieve a degree of validation for the second part of the pathway: an increase in 613 

cytokines results in hepatic P450 down-regulation. The targeted attribute was data from an in vitro 614 

hepatocyte culture: specifically, time-course P450 levels after IL-1 stimulus [24]. We mimicked the in 615 

vitro hepatocyte culture by instantiating an ISHC with only HEPATOCYTES (i.e. kcDensity = 0.0 and 616 

hepDensity = 1.0). A DOSE of 2,000 CYTOKINES was injected at the start of the simulation. The total 617 

number of G1-ENZYMES was measured at intervals mapping to corresponding wet-lab points (0, 12, and 618 

24 hr), plotted against time, and normalized by the starting number of G1-ENZYMES. Similarity criteria 619 

stipulated that each in silico time measurement fall within ± 1 standard deviation of the corresponding 620 

wet-lab value. Fig 2B illustrates the time-course plot after identifying parameter values that achieved 621 

validation. 622 

 Despite DOWN-REGULATION HANDLER being a finer grain mechanism, specifying parameter 623 

values for Fig 2B was straightforward. Parameter value choices were influenced by the following 624 

deduction: given enough time, the simulation would eventually return to basal levels of ENZYME. This is 625 

because the CYTOKINE signal would eventually die due to DEGRADATION HANDLER, and ENZYMES will 626 

eventually be replenished (provided pReplenish is greater than zero). That scenario is consistent with 627 

what one would expect physiologically. Thus, a moderate value for delay (mapping to 30 minutes) and 628 



 35 

small value for pReplenish (0.007) produced the relatively slow time-course P450 down-regulation as 629 

found in the wet-lab validation data. 630 

Single-DRUG ISL experiments 631 

The next three sets of validation targets were designed to achieve degrees of validation for the 632 

entire coarse-grain pathway: an LPS stimulus results in hepatic P450 down-regulation and downstream 633 

changes in measures of drug clearance. We drew validation targets from three wet-lab experiments, each 634 

of which followed a similar experimental protocol but used a different drug and measure of drug 635 

clearance. Each experiment pretreated rats with LPS (experimental) or saline (control) for 24 hr before 636 

injecting a drug. Clearance was measured at prespecified time points following drug injection. Enzyme 637 

measures were taken after the 24-hr pretreatment. All experiments measured disappearance curves from 638 

blood (APAP) or plasma (ANT, CZN) for their respective drug. In addition, [20] provide APAP half-life 639 

values; [21] measure ANT half-life and systemic clearance (CLsys) and CYP3A2/CYP2C11 levels; [22] 640 

measure CZN half-life and create a scatterplot of CZN intrinsic clearance versus CYP2E1 levels. 641 

Similarity criteria were prespecified as follows. For drug disappearance curves, at least 50% of in silico 642 

values must fall within ± 25% of the corresponding wet-lab value. For enzyme measurements, in silico 643 

values must fall within ± 1 standard deviation of the wet-lab value. For all clearance measures except 644 

ANT half-life, the in silico value must fall within ± 1 standard deviation of the corresponding wet-lab 645 

value. Standard deviation for ANT half-life was neither given nor able to be determined from the data 646 

given, so we specified the similarity criteria that in silico values fall within ± 10% of the corresponding 647 

wet-lab value. 648 

Simulating whole rat experiments required switching from experimenting on an ISHC to an ISL. 649 

We first instantiated an ISL for each of the six experiments: two treatment groups (control and LPS) for 650 

each of three drugs. For ISL simulations, we specified the analog-to-referent mapping of 1 simulation 651 

cycle to 1 sec, consistent with previous ISL experiments [37]. This constitutes a 60-fold finer temporal 652 

resolution than the ISHC mapping of 1 simulation cycle to 1 min. Thus, the ISL is intended to be a 653 
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temporally finer-grained analog, as required to capture hepatic transit times on the order of seconds. (Note 654 

we did not need analog-to-referent mappings for drug or enzyme concentrations because measurements 655 

were normalized.) At the start of each simulation in the LPS group, an initial DOSE of 125,000 LPS objects 656 

was injected into BODY. After 86,400 simulation cycles (maps to 24 hr), a second DOSE of 125,000 DRUG 657 

objects (APAP, ANT, or CZN) was injected into BODY. At this point we also measured the total number of 658 

ENZYMES of the type corresponding to the injected DRUG. At time points corresponding to the respective 659 

wet-lab data, we measured the number of DRUG objects in BODY. 660 

For control group simulations, we bypassed the 86,400-simulation cycle phase. So doing spared 661 

computational costs without altering simulation results, because without LPS there are no ISL mechanisms 662 

that could alter ENZYME levels or affect DRUG clearance; further, these simulations do not require 663 

“priming” from initialization. Thus, there was only a single DOSE of 125,000 DRUG objects at the start of 664 

each control group simulation. After DRUG injection, control and LPS group experiments operated 665 

identically. 666 

Various parameter value combinations were evaluated for each experiment until validation targets 667 

were achieved. We imposed several constraints when selecting those parameters. Namely, we ensured 668 

that whole-model parameter values (which are neither SOLUTE- nor ENZYME-specific) could not change 669 

among the six experiments. Furthermore, DRUG and ENZYME properties could not change between control 670 

and LPS experiments of the same DRUG type. The reasoning behind these constraints was to mimic 671 

experimenting on the same (or similar) rats. For experiments involving a particular DRUG (say APAP), the 672 

DRUG-specific parameter values of other DRUGS (i.e. ANT and CZN) were still included in the parameter 673 

set, but their DOSE was set to zero. Similarly, all three ENZYME types are included in APAP simulations, 674 

though ANT-ENZYMES and CZN-ENZYMES do not affect APAP results. Thus, the only parameter values that 675 

actually changed between simulation experiments were in silico experiment design parameters (i.e. those 676 

having no biological counterpart): those specifying DOSE (i.e. whether or not to inject LPS; which DRUG to 677 

inject), experiment duration (i.e. how many simulation cycles), and measurements (i.e. when to take 678 

measurements). As a consequence of the above constraints, validation is properly limited to those cases in 679 
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which each experiment achieved validation targets using a common set of in silico experiment design 680 

parameters. 681 

Meeting the above set of strict validation targets required several rounds of iterative refinement. 682 

The most significant refinement was the need to generalize ENZYME mechanisms, outlined in Methods. 683 

While ISHC experiments achieved validation targets using G1-ENZYMES and associated mechanisms, 684 

achieving ISL validation targets required G2-ENZYMES. Additional refinements are detailed in 685 

Discussion. 686 

The following figures recapitulate the selected wet-lab data using in silico results from validating 687 

experiments. Fig 3 shows the disappearance curves with wet-lab data overlaid. Sixty percent of values fall 688 

within acceptable similarity (± 25% of the wet-lab value) for APAP data; 100% of values fall within 689 

acceptable similarity for ANT and CZN data. Fig 2C shows the relative change in P450 levels after 24 hr 690 

LPS pretreatment. While [20] did not provide P450 data (and thus no validation targets can be drawn for 691 

APAP experiments), in silico values for ANT and CZN experiments fall within the prespecified similarity 692 

criteria of ± 1 standard deviation of the wet-lab value. In fact, they fall within a more stringent ± 0.5 693 

standard deviation similarity criteria. Fig 4 shows the half-lives for control experiments, relative half-lives 694 

for LPS experiments, and relative clearance measures (half-life, systemic clearance, and intrinsic 695 

clearance for APAP, ANT, and CZN, respectively) alongside validation data. All values fall within 696 

acceptable similarity (± 1 standard deviation of the wet-lab value). Lastly, Fig 5 shows scatterplots of 697 

relative enzyme versus clearance measures, with validation data overlaid. 698 

 699 

Fig 3. Wet-lab and in silico normalized drug disappearance curves. A. APAP [20]; B. ANT [21]; C. 700 

CZN [22]. Closed circles: in silico averages of 16 Monte Carlo trials. Gray circles: wet-lab averages. 701 

Red/blue lines: additional in silico values between wet-lab time points. The initial spike in drug 702 

corresponds to the administered DOSE. All drug values are normalized by the control value at the first 703 

time point. Error bars: ± 25% of the wet-lab value (the similarity criteria).  704 

  705 
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Fig 4. Wet-lab and in silico measures of drug clearance. A. Wet-lab and in silico half-life measures 706 

without LPS pretreatment (control). B. Wet-lab and in silico half-life given 24 hr LPS pretreatment, 707 

relative to control. C. Wet-lab and in silico clearance measures given 24 hr LPS pretreatment, relative to 708 

control. Error bars: standard deviation. Wet-lab values are from [20] (APAP), [21] (ANT), and [22] 709 

(CZN). 710 

  711 

Fig 5. Scatterplots between enzyme measurements and clearance measurements for both control 712 

and LPS experiments. A. APAP [20]; B. ANT [21]; C. CZN [22]. Gray circles: wet-lab data points 713 

(when provided). Red/blue circles: in silico data points. Error bars: in silico standard deviation, extending 714 

from the mean of 16 Monte Carlo trials. Blue box: area of acceptable similarity (± 1 standard deviation of 715 

wet-lab value). Since [20] did not provide enzyme data, there is no associated validation target (A). Only 716 

[22] provided values for individual wet-lab trials (C). 717 

 718 

 Whereas ISHC experiments focused on small parts of the P450 down-regulation pathway—and 719 

thus selecting parameter valuess required focus on the one or two relevant mechanisms—the process for 720 

ISL experiments required attention to all mechanisms. For example, changes in INFLAMMATION HANDLER 721 

parameter values affect CYTOKINE levels, which directly affects downstream DOWN-REGULATION 722 

HANDLER behavior even if its parameters do not change. We first focused on INFLAMMATION HANDLER 723 

because it contains no SOLUTE- or ENZYME-specific parameters. Most notably, inflammatoryThreshold 724 

was chosen higher than the ISHC value (see Table 1); this was necessary to avoid excessive CYTOKINE 725 

levels. DOWN-REGULATION HANDLER required significant parameter changes compared to the ISHC. The 726 

DOWN-REGULATION HANDLER parameters are all sensitive to time: an ENZYME removal or replenish event 727 

may be scheduled each simulation cycle. Thus, it is not surprising that the ISL—with a 60-fold finer grain 728 

temporal mapping than the ISHC—required smaller values for pRemove and pReplenish and a larger 729 

value for delay compared to the ISHC. The simulation must eventually return to basal levels of ENZYME if 730 

left running indefinitely. However, if down-regulation were too sensitive (e.g. pRemove too high or 731 
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CYTOKINE’S pDegrade too low), ENZYME levels could reach zero for long periods of time before 732 

replenishing. Thus, selection of parameter values often revolved around achieving sustained, but not 733 

excessive, levels of P450 down-regulation. 734 

Multi-DRUG ISL experiments 735 

Lastly, we repeated both control and LPS experiments for a new use case in which all three 736 

DRUGS are co-administered. Wet-lab validation data for such co-administration experiments in the context 737 

of P450 down-regulation are unavailable. However, in silico multi-DRUG experiments represent an 738 

important use case for several reasons. 1) Multi-DRUG simulations stand as challengeable predictions of 739 

hypothetical wet-lab co-administration experiment results. Given new wet-lab co-administration data that 740 

falsifies these predictions, we can then hypothesize model refinements in accordance with the IRP. 741 

Refinements may include analog mechanisms of drug-drug interactions; however, details of the path to 742 

revision would depend on the nature of the results. 2) We demonstrate a proof-of-concept that the ISL can 743 

be made robust to changes in analog DRUG, and thus able to support co-simulation of any number of 744 

DRUG types. Extensibility to multiple DRUG types is essential to support future simulations designed to 745 

better understand and anticipate drug-drug interactions. 3) We demonstrate that all three DRUG types can 746 

simultaneously achieve validation targets using a single ISL parameter set. Simultaneous validation is 747 

significant because, if achieved, we can then conclude that the DRUG- and ENZYME-specific 748 

parameterizations are sufficient to span the mechanistic changes needed to generate patterns in drug 749 

clearance and P450 down-regulation. In other words, values for whole-model parameters that are neither 750 

DRUG- nor ENZYME-specific (e.g. hepDensity) need not be specified independently for each DRUG type. 4) 751 

Most importantly, failure to achieve simultaneous validation could be taken as evidence that hypotheses 752 

and several aspects of the ISL are falsified. 753 

Notably, for this work, multi-DRUG experiments were not intended to explore or mimic drug-drug 754 

interactions. However, we also did not expect identical results between single- and multi-DRUG 755 

simulations because the presence of additional DRUG objects (even without the inclusion of explicit drug-756 
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drug interactions) may still indirectly affect ISL mechanisms. For example, the flow of SOLUTES depends 757 

on the total number of SOLUTE objects , so multi-DRUG experiments with a larger total number of 758 

SOLUTES may lead to subtle changes in the cascading of events. We expect more pronounced differences 759 

between single- and multi-DRUG experiments when individual cytokines and P450 isoforms are made 760 

explicit and/or when we explicitly add mechanisms that handle drug-drug interactions. 761 

While the three wet-lab validation studies administered different amounts of LPS stimulus, we 762 

assumed an equipotent stimulus. We do not expect this equipotent assumption to be biologically realistic; 763 

however, in the absence of P450 down-regulation wet-lab data spanning both single and multiple drug 764 

experiments, we needed to make some assumption to simulate multi-drug experiments. Thus, BODY was 765 

injected with 125,000 LPS objects, similar to single-DRUG experiments. The second DOSE comprised 766 

125,000 (for LPS experiments) or 62,500 (for control experiments) objects of each DRUG type (APAP, 767 

ANT, and CZN). Thereafter, single- and multi-DRUG experiments operated identically. 768 

The validation target for the multi-DRUG experiments was to simultaneously achieve all 769 

validation targets for the single-DRUG experiments. Besides the in silico experiment design parameters 770 

(those controlling DOSE, experiment duration, and measurements), parameter values were not changed 771 

between single- and multi-DRUG experiments. Notably, all multi-DRUG validation targets were achieved 772 

without changing parameterizations that achieved the single-drug validation targets. Figs 2C and 4 773 

include values for the multi-DRUG experiments alongside single-DRUG results and wet-lab validation data.774 
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Discussion 775 

  776 

We execute a series of virtual experiments that together achieve several quantitative validation 777 

targets involving immune system interactions in drug metabolism. The described mechanisms—those that 778 

finally achieved validation targets—are supportive of the mechanistic hypothesis that in response to LPS, 779 

Kupffer cells down-regulate P450 via inflammatory cytokines, thus leading to a reduction in metabolic 780 

capacity. Given the synthetic nature of the analogs, we can continue to iteratively refine them to test 781 

additional and/or alternative mechanistic hypotheses, validating an increasingly large set of targeted 782 

attributes along the way. 783 

Trajectory of model falsification and refinement 784 

Falsification is the primary source of knowledge generation, integral to the scientific method 785 

itself [41]. Unfortunately, published computational models tend to describe a finished product without 786 

detailing—or even mentioning—the many rounds of falsification and revision along the way. Describing 787 

this trajectory of iterative falsification and refinement requires detailed annotations of simulation 788 

experiments (including unsuccessful ones) and paying special attention to how, when, and why a 789 

mechanism fails to achieve given validation targets. Having that information is essential to the scientific 790 

process because it is falsification that provides new knowledge: specifically, the current (falsified) 791 

mechanisms are flawed—they are not a good analogy of the referent biological mechanisms [42]. 792 

Following falsification, analog mechanisms (the hypothesis) can be refined. Focusing on falsification as a 793 

scientifically productive endeavor helps one adhere to parsimony, as it curbs the tendency to commit 794 

inscription error and/or to succumb to the urge to incorporate “everything we know” into a model. 795 

We describe the trajectory of three demonstrative falsification and refinement efforts encountered 796 

with the P450 down-regulation validation targets, and commentate on any mechanistic insight gained 797 

from this new knowledge. 1) We described earlier the G1-ENZYME mechanism falsification and the need 798 

for the finer-grain, generalized G2-ENZYME (see “ENZYME mechanism falsification and generalization”). 799 
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Validation required three changes: 1) ENZYME concentration-dependent binding probability 2) ENZYME 800 

type-specific properties, and 3) the inclusion of various ENZYME types within a single simulation. Taken 801 

together, these changes suggest that differential properties of multiple groups of enzymes influence drug 802 

clearance events during inflammatory states. While this dependence might be expected, we anticipate 803 

providing additional insight when ISL experiments move toward explicitly modeling individual P450 804 

isoforms. 805 

2) The large drop in CZN clearance (drops to 29.2% of control value), coupled with a moderate 806 

drop in CZN enzyme levels (drops to 57.8% of control value), could not initially be reproduced in silico. 807 

Using original mechanisms, relative decreases in clearance values were always too weak compared to 808 

corresponding decreases in the number of ENZYMES. After falsification, we noted that the wet-lab 809 

validation experiment recorded a 1.69-fold increase in CZN volume of distribution after the addition of 810 

LPS. Thus, we posited a revision hypothesis that validation could be achieved by adding a coarse-grain 811 

mechanism for changes in volume of distribution. Recall that a fraction of SOLUTES in BODY are 812 

transferred to LOBULE each simulation cycle. This fraction is equal to sampleRatio (a whole-model 813 

parameter between 0 and 1) multiplied by sampleRatioFactor (a SOLUTE-specific parameter). We 814 

implemented the following coarse-grain change. In LPS experiments, the size of the initial DOSE and the 815 

value of sampleRatioFactor for CZN are reduced by a factor of Vd,change, where Vd,change is the wet-lab fold 816 

change in volume of distribution. After implementing this revision, we achieved the original validation 817 

targets. Thus, accounting for changes in volume of distribution is necessary to mimic P450 down-818 

regulation phenomena for some drugs. As new, finer-grained validation targets are considered, ISL 819 

experiments can flesh out mechanistic details driving changes in volume of distribution. 820 

3) Initially, INFLAMMATION HANDLER did not include cytokineThreshold, a parameter that “turns 821 

off” CYTOKINE production if there is enough CYTOKINE in the CELL. However, this exclusion resulted in 822 

unchecked CYTOKINE formation (and thus a non-sigmoidal dose-response curve) when the amount of 823 

INFLAMMATORY STIMULUS was sufficiently high. Since our validation experiments included large 824 

amounts of CYTOKINE (up to 700,000 objects), that mechanism was falsified. We implemented the 825 
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cytokineThreshold parameter, with which we found sets of parameter values that achieved validation 826 

targets. This cytokine threshold mechanism is coarse-grain. It may map to more complex cytokine-827 

suppression mechanisms including feedback inhibition and suppressor of cytokine signaling proteins [43]. 828 

Given sufficient validation data, we can add finer grain mechanistic features by introducing new SOLUTE 829 

types (e.g. those that map to suppressor of cytokine signaling proteins) and behaviors in place of the 830 

existing cytokine threshold mechanism. 831 

Current model falsification 832 

Reporting validation results without demonstrating subsequent falsification would provide an 833 

incomplete picture of the IRP. We describe current model falsification to address both the limitations and 834 

future direction of the ISHC and ISL. The current models are limited to the majority of P450s that are 835 

down-regulated by an inflammatory state; however, a small subset of P450s are actually induced [1]. 836 

Clearance data for drugs primarily metabolized by this subset is expected to falsify existing mechanisms. 837 

Given that scenario, we can iteratively refine mechanisms to simultaneously allow both inflammatory-838 

induced P450 down-regulation and induction. 839 

The analogs are also falsified by additional immune system mechanisms other than P450 down-840 

regulation. For example, inflammatory states cause leukocyte recruitment and localization via 841 

chemokines secreted from sites of necrosis [44,45]. Achieving validation targets drawn from these 842 

phenomena would require in silico mechanisms for leukocyte circulation, recruitment, and extravasation, 843 

as well as their downstream effects on hepatotoxicity. As we continue expanding the set of targeted 844 

attributes to include more diverse yet still interconnected phenomena, we expect IRP cycles to continue 845 

improving explanatory mechanistic insight into immune system involvement in drug metabolism and 846 

toxicity.847 
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Supporting Information Captions 957 

S1 Fig. Flowcharts of mechanism logic. U[0,1) represents a random probability draw from the standard 958 

uniform distribution. 959 

 960 

S2 Fig. Binding probabilities used by BINDING HANDLER. E1 – E4 represent four ENZYMES. S1 – S5 961 

represent 5 SOLUTES. A. Binding probability using stepwise binding mode. B. Binding probability using 962 

variable binding mode. C. P450 up- or down-regulation causes the binding curve to shift right or left, 963 

respectively, which has no effect on binding probability in the yellow region (typical range of number of 964 

bound ENZYMES). D. P450 up- or down-regulation causes the binding curve to shift right or left, 965 

respectively, which affects binding probability within the yellow region. 966 
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