
Lab 2: Getting started with Simbody
Simbody is a numerical software library that efficiently simulates systems governed by Newton’s laws
(F = ma). From a falling apple to a walking human to a protein with thousands of molecules, Simbody
simulates a wide range of biological structures and physical systems with user-specified forces, mass and
inertia properties, and joints/constraints. Simbody is built on efficient algorithms that optimize linear al-
gebra calculations, numerical integration, and forming/solving equations of motion. Simbody also provides
on-screen visualization of simulation results through VTK (Visualization ToolKit).

Developing physics-based simulations of biological structures with SimTK Simbody requires a rudimentary
understanding of biology and physics and a background in C or C++. Before starting Lab 2, you should have
a C++ compiler installed on your computer, should have read and understood the C++ coding standards,
and should have completed Lab 1. The point of this laboratory is to:

• Download and install the VTK and SimTK libraries
• Compile and build a simulation of a falling apple (1D motion)
• Specify initial values, mass and inertia properties, and integration parameters in Simbody
• Plot and animate your simulation results
• Modify the falling apple C++ code to simulate and animate 2D projectile motion
• Create and compile C++ code to simulate and animate a 3D rigid body

2.1 Downloading and installing VTK and SimTK libraries

To download and install the VTK and SimTK libraries, proceed as follows
(These libraries are described in Section 2.8.)

• Create a directory (folder) in the C:\Program Files directory named SimTK
In other words, ensure there is a directory whose path is C:\Program Files\SimTK

• Go to www.simtk.org/home/training

• Click on the link on the left-hand side

• Download the file LibrariesAndHeadersForVTKWin.zip to C:\Program Files\SimTK

• Download the file LibrariesAndIncludeFilesForSimTKWinIntel.zip to C:\Program Files\SimTK

• Unzip the VTK libraries to C:\Program Files\SimTK.
For example, right-mouse click on the file LibrariesAndHeadersForVTKWin.zip, hover the mouse on WinZip and

select Extract to Browse to C:\Program Files\SimTK and click Extract.

This extracts 1000+ files (≈ 100 MB) to the folder C:\Program Files\SimTK\VTK

• Unzip the SimTK libraries to C:\Program Files\SimTK.
For example, right-mouse click on the file LibrariesAndIncludeFilesForSimTKWinIntel.zip, hover the mouse on

WinZip and select Extract to Browse to C:\Program Files\SimTK and click Extract.

This extracts 100+ files (≈ 30 MB) to the folder C:\Program Files\SimTK\core

Note: These instructions and associated files (e.g., .h, .lib, and .dll files) have been tested on Windows
XP. If the VTK and SimTK libraries for your operating system are not available on www.simtk.org, try
to emulate the instructions for creating and packaging these files shown in Section 2.9.

0Last updated April 13, 2007 by Paul Mitiguy.

1

2.2 Simulating Newton’s apple

The figure to the right shows an apple falling from a tree. The point of
this lab is to simulate the falling apple “by-hand” and with Simbody-
and to loosely tie together biology (i.e., an apple and its biological
parent - the tree), Newtonian mechanics (i.e., F = ma), and
simulation (i.e., C++, Simbody, and your computer).
To simulate the falling apple, one must make a model.a Creating an
accurate model requires judgement to differentiate between what
can be simplified and what cannot. Shown below are simplifying
assumptions made when modeling this system.

aA model is a simplified representation of a complex system.

Modeling

1. The apple is a rigid body.
The rigid body assumption allows one to replace all the forces by a simpler equivalent set. For
example, the actual gravitational forces on the apple are distributed, but with the rigid body as-
sumption and uniform gravitational field assumption, the set of gravitational forces on the apple can
be replaced with a single resultant force at the apple’s mass center.

2. The apple can be modeled as a small uniform sphere.
This assumption is reasonable due to the fact that air-resistance and other forces (except gravity)
are neglected, and the body’s orientation is not of interest.

3. The only motion of interest is vertical translation of the apple relative to the Earth.
This assumption is useful if the motion of interest occurs over a short period of time (e.g., less than an
hour). Over longer periods of time, the rotation of the Earth causes the particle to move horizontally.

4. The Earth is a Newtonian reference frame.
A Newtonian reference frame is a reference frame in which Newton’s equation F = ma accurately
predicts forces and motion.1 Newton’s law F = ma requires a non-accelerating and non-rotating
reference frame. Although Earth is rotating (daily around its axis and yearly about the sun), the
acceleration associated with these motions is assumed to be insignificantly small.

5. The gravitational attraction of Earth can be approximated as a uniform field.
In reality, the gravitational forces on the system vary as objects move further or closer to Earth. This
assumption may be unreasonable if the apple falls for many kilometers.

6. Other than Earth, gravitational forces are negligible.
This assumes that the system’s motion is not affected by the gravitational attraction of other massive
objects, e.g., heavy objects in the same proximity, or the moon, sun, black holes, etc. An example
helps validate this assumption. The magnitude of the gravitational force between two identical
uniform lead spheres of radius one foot and weight 3035 lbf, whose centers are located only 3 feet
apart (their closest point is 1 foot apart) is 3.4 x 10-5 lbf. This is nearly ninety million times smaller
than the force exerted by Earth on the sphere.

7. Many forces are negligible.
This assumes that other forces (aerodynamic, friction, magnetic, electrostatic) do not substantially
affect the system. This assumption is flawed for certain analyses as it is clear that other forces, e.g.,
air resistance, can play a major role in the behavior of the system.

1A Newtonian reference frame is sometimes called an inertial reference frame or fixed reference frame or ground.

2 Lab 2: Getting started with Simbody

Analytical solution to Newton’s falling apple with F = ma

To explore the concepts of numerical simulation in Simbody, it is helpful to do a “by-
hand” problem. To analyze the falling apple, introduce a Newtonian reference frame
N ; right-handed orthogonal unit vectors nx, ny, nz fixed in N with nx pointing
horizontally right and ny pointing vertically upward; a point No fixed in N ; and
the following identifiers:

Quantity Symbol Type Value
Earth’s gravity g constant 9.8 m/sec
Mass of apple m constant 0.142 kg (5 ozm)
Apple’s vertical position from No y variable varies nx

ny
N

No

y

• Determine the resultant of all forces on the apple.
Note: The study of forces is called kinetics and varies significantly in fields such as molecular dynamics (electrostatics

and van der Waals forces), biomechanics (muscles), aerospace (lift/drag), robotics (actuators), etc. Simbody has special

subsystems for efficiently calculating forces e.g., intermolecular forces that can dominate the simulation speed.

Result:
F = ny

• Form the position vector r from point No to the apple’s center of mass (shown as).
Next, twice-differentiate this vector to form the apple’s velocity and acceleration.
Express your results in terms of ẏ and ÿ, the 1st and 2nd time-derivatives of y.
Note: Simbody has efficient algorithms for calculating kinematics, e.g., a point’s position, velocity, and acceleration,

a bases’ rotation matrix, and a rigid body’s angular velocity and angular acceleration.

Result:
r = y ny v = ny a = ny

• Form an equation of motion with Newton’s law F = ma .
Note: There are many ways to form equations of motion including Free-Body-Diagrams, D’Alembert, Lagrange, Hamil-

ton, Gibbs, Kane, Constraint-method, recursive Newton/Euler. Simbody uses a “Jain and Rodriguez Spatial Opera-

tor Generalized Coordinate Method” that has efficient O(n) (Order-N) properties similar to Featherstone’s method.

Result:
-m g = m ÿ

• Solve for the apple’s vertical acceleration ÿ.
Note: There are sophisticated linear algebra methods for solving the sets of coupled algebraic equations that arise in

solving for accelerations in multi-body systems. For example, methods for solving linear algebraic equations include

Choleksy, LU, QR, and SVD decomposition, PCBG (pre-conditioned bi-conjugate gradient), simplex solvers (inequality

constraints), sparse matrix solvers, and updating/downdating. The Simbody method for forming equations of motion

has O(n) (Order-N) properties that significantly reduce the computational cost of solving for accelerations.

Result:
ÿ = -g

• Integrate ÿ twice to find ẏ and y in terms of ẏ(0) and y(0), the initial values of ẏ and y.
Note: Frequently, it is impossible to find closed-form “by-hand” solutions to the differential equations that govern

motion. This unusually simple problem allows us to analytically integrate ÿ to find ẏ and y. Simbody uses effi-

cient, general-purpose numerical integrators to solve differential equations. In addition, Simbody allows users to

employ generalized coordinates (sometimes called internal coordinates) which, when chosen properly, provide a

near-minimal set of smooth variables which integrate quickly.

Result:
ẏ = ẏ(0) + -g t y = y(0) + ẏ(0) t +

-1
2

g t2

• The apple is dropped from rest from a height of 10 m. Plot (by hand) the time-history of ẏ and y
for 0 ≤ t ≤ 4 sec. Note: Plotting functions and data is usually done with programs such as Excel or Matlab.

3 Lab 2: Getting started with Simbody

Compiling, linking, and simulating Newton’s apple

The point of the last section was to simulate a falling apple “by-hand”. The point of this section is to use
Simbody to simulate the falling apple.

• Go to www.simtk.org/home/training

• Click on the link on the left-hand side
• Download the file LabGettingStartedWithSimbody.zip

• Unzip the file NewtonsApple.cpp

• Compile this file, link it with the SimTK libraries, and run it (see Section 2.6 for more information)
• Numbers should scroll on your screen. These numbers are also written to the file NewtonsAppleResults.txt.

This file is useful for plotting (see the next section).

Plotting numerical results for Newton’s apple

The apple is dropped from rest from a height of 10 m. Using the data in NewtonsAppleResults.txt
and Excel, Octave, Matlab, or other plotting software, plot the time-history of ẏ and y for 0 ≤ t ≤ 4 sec.

-40

-35

-30

-25

-20

-15

-10

-5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

V
el

oc
ity

 (
m

/s
ec

)

Time (seconds)

-70

-60

-50

-40

-30

-20

-10

0

10

0 0.5 1 1.5 2 2.5 3 3.5 4

H
ei

gh
t

(m
et

er
s)

Time (seconds)

Overlay and visually compare the graph of the results for y produced by Simbody with the graph of
the exact analytical function y(t) = 10 − 4.9 t2. Knowing the exact analytical results at t = 4 sec are
y(4) = -68.4 m, determine the number of accurate digits Simbody produces for y at t =4 sec. Assess how
accurately Simbody simulates the falling apple2 in light of the fact that double precision calculations carry
≈ 16 significant digits.3

Result:
Number of accurate digits = Accuracy: High/Medium/Low

Visualizing Newton’s apple with VTK in Simbody

Plots show relationships between various quantities and are useful for inclusion in printed matter (e.g.,
journals, textbooks, and .pdf documents). On-screen visualization of a simulation provides significantly
more information and enjoyment. To visualize Newton’s falling apple with VTK in Simbody

• Go to www.simtk.org/home/training

• Click on the link on the left-hand side
• Download the file LabGettingStartedWithSimbody.zip

• Unzip the file NewtonsAppleForVisualization.cpp

• Compile this file, link it with the SimTK and VTK libraries, and run it (see Section 2.6)
• Enjoy the animation

2Due to numerical integration error, Simbody is unable to simulate every system with the same accuracy.
3The largest positive and negative IEEE double precision numbers are ≈ ± 1.7976931348623157 x 10308. The double

precision numbers with the smallest exponents are ≈ ± 2.22507385072020 x 10
-308.

4 Lab 2: Getting started with Simbody

2.3 Simulating projectile motion

The figure to the right shows a baseball being hit out
of AT&T park. The point of this lab is to modify
the 1D falling apple simulation from Section 2.2 to
investigate 2D projectile motion of a baseball.

For the following questions: use the same modeling assumptions as were used for the falling apple in
Section 2.2; assume the baseball is launched at 35◦ from the horizontal with an initial speed of 44.7 m/sec
(100 mph); and use the following symbols and values.

Quantity Symbol Type Value
Earth’s gravity g constant 9.8 m/sec
Mass of baseball m constant 0.142 kg (5 ozm)
Radius of gyration of baseball (sphere) r constant 2.3114 cm (0.91 in)
Baseball’s horizontal position from No x variable Initially x= 0
Baseball’s vertical position from No y variable Initially y = 0

• Verify the analytical solutions for x(t), y(t), and y(x) are

x(t) = 44.7 cos(35◦) t y(t) = 44.7 sin(35◦) t− 4.9 t2 y(x) = tan(35◦)x − 4.9
[44.7 cos(35◦)]2

x2

• Knowing y = 0 is ground, verify that the ball hits the ground at t ≈ 5.232422 sec and x ≈ 191.5909 m.

• Plot the exact analytical results for y(x) for 0 ≤ x ≤ 192 m.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180

y
 (

m
et

er
s)

x (meters)

• Modify the Simbody C++ program NewtonsAppleForVisualization.cpp to simulate the baseball
and visualize its motion. Submit your modified and fully commented C++ program
ProjectileMotion.cpp to your SimTK project at www.simtk.org.

• Plot the Simbody results for y(x) for 0 ≤ x ≤ 192 m (simulate for 5.23 sec with an integration step of 0.01 sec).
Result:

See previous plot.

• Assess how accurately Simbody simulates the baseball by comparing its solution for y(t) with the
exact analytical solution for y(t) at t = 5.2 sec.
Result:

Number of accurate digits = Accuracy: High/Medium/Low

• Optional∗∗: Use the Simbody numerical integrator root finder to find the value of x at which the ball
hits the ground.

5 Lab 2: Getting started with Simbody

2.4 Simulating a 3D rigid body

The figure to the right shows a rotating rigid book.
The point of this lab is to create C++ code that links
with Simbody and to investigate the affect of mo-
ments of inertia on 3D rotation.

To facilitate this simulation, right-handed orthogonal unit vectors bx, by, bz are fixed in the book and
parallel to central principal axes. The following table describes other relevant quantities.
(It is interesting that the equations governing the book’s rotation (shown below and to the right for reference only) are

significantly more difficult to form and solve than the falling apple in Section 2.2 or the projectile motion in Section 2.3.)

Quantity Symbol Type
Central moment of inertia for bx Ixx constant
Central moment of inertia for by Iyy constant
Central moment of inertia for bz Izz constant
bx measure of angular velocity ωx dependent variable
by measure of angular velocity ωy dependent variable
bz measure of angular velocity ωz dependent variable

ω̇x =
[
(Iyy − Izz)ωz ωy

]
/ Ixx

ω̇y = [(Izz − Ixx)ωx ωz] / Iyy

ω̇z =
[
(Ixx − Iyy)ωy ωx

]
/ Izz

• Assuming the book is not translating, its kinetic energy and central angular momentum are

K =
1
2

(
Ixx ω2

x + Iyy ω2
y + Izz ω2

z

)

H = Ixx ωx bx + Iyy ωy by + Izz ωz bz

= Hx bx + Hy by + Hz bz

Using your intuition, circle the quantities that you guess remain constant (are “conserved”).

ωx ωy ωz K Hx Hy Hz |H|

•

Spin about the minimum axis.
Use Simbody to simulate this system for 0 ≤ t ≤ 4 with initial values (in
rad/sec) of ωx=0.2, ωy=7.0, and ωz=0.2. Output t, ωx, ωy, ωz, Hx, Hy,
Hz, |H|, and K . Use a uniform-density book of mass 0.4 kg and dimensions
Lx=20 cm high, Ly=30 cm wide, and Lz=5 cm thick.

B

nx
ny

nz

N

bx

by

bz

• Checking your numerical results, circle the quantities that remain constant (are “conserved”).

ωx ωy ωz K Hx Hy Hz |H|

• Spin about the intermediate axis.
Simulate this system again except use initial values ωx=7.0, ωy=0.2, and ωz=0.2.

• Spin about the maximum axis.
Simulate this system again except use initial values ωx=0.2, ωy=0.2, and ωz=7.0.

• Create plots corresponding to initial spin about the minimum axis, intermediate axis, and
maximum axis. In view of your plots and by experimentally spinning a book about each of the
three axes, circle the phrase that best describes the stability of spin about each axis.

6 Lab 2: Getting started with Simbody

Spin about the minimum axis appears to be stable/neutrally stable/unstable .

-1

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

w
x,

 w

y,

 w
z

 (
ra

d/
se

c)

Time (seconds)

wx
wy
wz

Spin about the intermediate axis appears to be stable/neutrally stable/unstable .

-8

-6

-4

-2

0

2

4

6

8

0 0.5 1 1.5 2 2.5 3 3.5 4

w
x,

 w

y,

 w
z

 (
ra

d/
se

c)

Time (seconds)

wx
wy
wz

Spin about the maximum axis appears to be stable/neutrally stable/unstable .

-1

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

w
x,

 w

y,

 w
z

 (
ra

d/
se

c)

Time (seconds)

wx
wy
wz

7 Lab 2: Getting started with Simbody

2.5 Biosimulation project description

Submit a description of your project and include the following:
• One or more schematics showing the points, particles, bodies, constraints, etc.
• A short paragraph describing the physical system
• A short list of modeling considerations
• An interesting question that you would like to answer
• A list of simple numerical experiments that help validate your simulation results

(e.g., with no gravity, no other applied forces, and no initial motion, the system remains at rest.)

To help understand what to do, consider the following simple system.
(Note: Your project should be more biologically significant.)

The figure to the right is a schematic representation of a swinging baby-
boot attached by a shoelace to a rigid support. The mechanical model
of the babyboot consists of a thin uniform rod A attached to a fixed
support N by a revolute joint, and a uniform plate B connected to A
with a second revolute joint so that B can rotate freely about A’s axis.
(Note: The revolute joints’ axes are perpendicular, not parallel.)

Modeling considerations

• The bodies are rigid.
• The revolute joints are frictionless.
• There is no slop or flexibility in the revolute joints.
• The Earth is a Newtonian reference frame.
• Air resistance is negligible.
• The force due to Earth’s gravitation is uniform and constant.
• Other distance forces, e.g., electromagnetic and gravitational

forces, are negligible.

A

bx

qA

N

B

qB bybz

ay

az

ny

nz

No

LA

LB

Ac

Bc

8 Lab 2: Getting started with Simbody

2.6 Creating Simbody programs with Microsoft Visual C++

To compile or link your own C++ program with Simbody, you need to inform the Microsoft Visual Studio
compiler and linker of the existence and location of the library header files (.h files) as well as the library
(.lib and .dll) files.

2.6.1 Creating an empty Simbody Win32 Console Application in the SimTK folder

• Ensure Microsoft Visual C++ Express Edition is installed on your computer

• Click on the Windows menu, select Programs, then slide-the-mouse to the Visual C++

2005 Express Edition folder, then slide-right-and-down to the Microsoft Visual C++ 2005
Express Edition executable

• From within the Visual C++ 2005 Express Edition, click on the File menu, click on the New
menu item, and the slide-right to click on the Project. . . menu item.

– Under Project types:, select Win32
– Give the project a sensible name, e.g., NewtonsApple
– Make the project’s location C:\Program Files\SimTK (If necessary, create the folder SimTK)

– Click the button, then click the button (not the Finish button)
– Ensure the Application Settings are set to create a Console Application, an Empty

Project, with NO precompiled header.
– Click the button

• This process creates a file NewtonsApple.sln in the folder C:\Program Files\SimTk\NewtonsApple

• From within Visual C++, click on the File menu and then click on the Exit menu item.

2.6.2 Adding files to the “NewtonsApple” Win32 Console Application

• Double-click on the file NewtonsApple.sln in the folder C:\Program Files\SimTk\NewtonsApple
(This should invoke Microsoft Visual C++ and open the “NewtonsApple” project.)

• Click on the Project menu and slide-down and click on Add Existing Item. . . .

• Browse to the directory containing the files to add, select the files, and click .
(For example, to add the file C:\Program Files\SimTK\NewtonsApple\NewtonsApple.cpp, browse to the

directory C:\Program Files\SimTK\NewtonsApple, select the file NewtonsApple.cpp, then click .
Note: A commented sample NewtonsApple.cpp file is available by visiting www.simtk.org/home/training,

clicking on the link on the left-hand side, downloading LabGettingStartedWithSim-
body.zip, and extracting the file NewtonsApple.cpp. Alternately, type the file in Section 2.7.

• From within Visual C++, click on the File menu and then click on the Save all menu item.

• Click on the File menu and then click on the Exit menu item.

2.6.3 Compiling your project with the SimTK libraries

Certain information must be present in your program to compile a program that uses Simbody. The
following three lines should appear near the top of a C++ file that calls Simbody methods:

#include "SimTKsimbody.h"
using namespace SimTK;
using namespace std;

Additionally, certain information must be available for your compiler.
• If the NewtonsApple project is not already open, double-click on the file NewtonsApple.sln

9 Lab 2: Getting started with Simbody

• From within your Microsoft Visual C++ compiler, click on the Project menu, slide-down and click
on NewtonsApple Properties

• If necessary, expand Configuration Properties by clicking on its + sign.
• To the right of the drop-down menu titled Configuration:, select All configurations
• If necessary, expand C/C++ by clicking on its + sign.
• Click on General
• In the right-hand panel, click on Additional Include Directories and click on the . . . to the

far-right (i.e., the button). This opens the Additional Include Directories panel.

•

Click in this panel and type:
C:\Program Files\SimTK\core\include

Click the button to exit this panel.

Click the to exit the Property panel.

• From within Visual C++, click on the File menu and then click on the Save all menu item.
• Click on the File menu and then click on the Exit menu item.

2.6.4 Linking your project with the SimTK libraries

In addition to information that must be present in your program and available to your compiler, certain
information must be available to your Microsoft Visual linker.

• If the NewtonsApple project is not already open, double-click on the file NewtonsApple.sln

• From within your Microsoft Visual C++ compiler, click on the Project menu, slide-down and click
on NewtonsApple Properties

• If necessary, expand Configuration Properties by clicking on its + sign.
• To the right of the drop-down menu titled Configuration:, select All configurations
• If necessary, expand Linker by clicking on its + sign.
• Click on General
• In the right-hand panel, click on Additional Library Directories and click on the . . . to the

far-right (i.e., the button). This opens the Additional Library Directories panel.

•

Click in this panel and type:
C:\Program Files\SimTK\core\lib

Click the button to exit this panel.

Go to the next step.
Do not exit the Property panel.

• Under Linker, click Input. In the right-hand panel, click Additional Dependencies and click
the . . . to the far-right (i.e., the button). This opens the Additional Dependencies panel.

•

Click in this panel and type:
SimTKcommon.lib
SimTKcpodes.lib
simTKlapack.lib
SimTKsimbody.lib
SimTKsimbody_aux.lib

Click the button to exit this panel.
Click the to exit the Property panel.

• From within Visual C++, click on the File menu and then click on the Save all menu item.
• Click on the File menu and then click on the Exit menu item.

10 Lab 2: Getting started with Simbody

2.6.5 Running your project with the SimTK dynamic-linked libraries

In addition to information that must be present in your program and available to your compiler and
linker, certain information must be available when your program is executed so it can find the SimTK
dynamic-linked library (.dll) files. To set the computer’s PATH environment variable:

• Click on the Windows menu, select Settings, and then Control Panel.
Next, choose the System icon which opens up a dialogue box.
(Note: You may access this same dialogue box by right-mouse-clicking on the icon and selecting .)

• Click on the Advanced tab and click on the Environment variables button.
• Under System Variables, click Path and then click the Edit button.
• Ensure the Variable value starts with: C:\Program Files\SimTK\core\lib;

• Click OK to exit each open dialogue box.

2.6.6 Running your project with Microsoft’s dynamic link libraries

Certain Microsoft dynamic-linked libraries (.dll) must be available when your program is executed.
Many (or all) of these may already be installed. If you find a .dll error when your program launches, you
may want to try the following:

• Go to www.simtk.org/home/training

• Click on the link on the left-hand side

• Download the file ZZMicrosoftVisualStudioDllsRequiredBySimbody.zip

• Unzip the files to C:\Program Files\SimTK\core\lib.

11 Lab 2: Getting started with Simbody

2.6.7 Building and running the “NewtonsApple” Win32 Console Application

• If the NewtonsApple project is not already open, double-click on the file NewtonsApple.sln

• Click on the Build menu and then slide-down and click on Build Solution

• The compiler will attempt to compile the relevant C++ source files.
For example, the source file NewtonsApple.cpp will compile to the object file named NewtonsApple.obj

• You must fix all compiler errors (bugs in your program) before you can link.
It is highly advisable to also fix all your warnings as many of them will show up later as run-time errors.

• If compiling all the source files is successful, Visual C++ will attempt to link your object files to each
other and to the standard C++ libraries.4

You may see compile and/or link errors if you are trying to use the Simbody libraries and have not informed the

compiler and/or linker of the existence and location of certain .h, .lib, and .dll files. See Section 2.6.4 for information.

• If all goes well, you may see a message such as

------ Build started: Project: NewtonsApple, Configuration: Debug Win32 ------
Compiling...
NewtonsApple.cpp
Compiling manifest to resources...
Linking...
Embedding manifest...
Build log was saved at "file://c:\Program Files\SimTK\NewtonsApple\Debug\BuildLog.htm"
NewtonsApple - 0 error(s), 0 warning(s)
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

• To run the program from within the Visual C++ environment, click on the Build menu and select
Start Debugging

• If you encounter a run-time debug error (the program runs but it produces incorrect results), try the
Visual C++ debugger. To start the debug process, do the following:

– Get help (preferably human) to understand the debugging process
– Ensure that the build is set to Win32 Debug (not Win32 Release)
– Insert a breakpoint in your code by right-mouse clicking on a suspect line in your code.

If in doubt, set the breakpoint at the first line of code in main (the line that appears after the first { in main).

– Click on the Debug menu and then slide-down and click on Start Debugging.
– Press function key F10 to step over a function/method
– Press function key F11 to step into a function/method
– Press function key F5 to go to the next breakpoint

2.6.8 Deploying your executable programs to end-users (who are not developers)

• Create a “release” version of the program.
In the top-middle of Microsoft Visual Studio, select Release

• Ensure the end-user has the executable program (e.g., NewtonsApple.exe)

• Ensure the end-user has the SimTK libraries (.dlls and .libs) in the same directory as NewtonsAp-
ple.exe. Also ensure the end-user has the appropriate Microsoft .dlls. (see Section 2.6.6).
Alternately, place the SimTK libraries in a directory named in the computer’s PATH environment variable
Note: The end-user does not need header files (.h files) or .lib files - these are only useful for developers.

• Alternately, link with the SimTK static libraries and deploy as a large, single executable.

4The standard C++ libraries include the standard math library that calculates cos(0.2), the standard input/output library
that prints characters to the screen, and the standard time library that gets time and date information from your computer.

12 Lab 2: Getting started with Simbody

2.7 Sample NewtonsApple.cpp

//---
// File: NewtonsApple.cpp
// Class: None
// Parent: None
// Children: None
// Purpose: Simulates Newton’s falling apple
//---
// The following are standard C/C++ header files.
// If a filename is enclosed inside < > it means the header file is in the Include directory.
// If a filename is enclosed inside " " it means the header file is in the current directory.
#include <ctype.h> // Character Types
#include <math.h> // Mathematical Constants
#include <stdarg.h> // Variable Argument Lists
#include <stdio.h> // Standard Input/Output Functions
#include <stdlib.h> // Utility Functions
#include <string.h> // String Operations
#include <signal.h> // Signals (Contol-C + Unix System Calls)
#include <setjmp.h> // Nonlocal Goto (For Control-C)
#include <time.h> // Time and Date information
#include <assert.h> // Verify Program Assertion
#include <errno.h> // Error Codes (Used in Unix system())
#include <float.h> // Floating Point Constants
#include <limits.h> // Implementation Constants
#include <stddef.h> // Standard Definitions
#include <exception> // Exception handling (e.g., try, catch throw)
//---
#include "SimTKsimbody.h"
using namespace SimTK;
using namespace std;
//---

//---
// Prototypes for local functions (functions not called by code in other files)
//---
bool SimulateNewtonsApple(void);
bool WriteStringToFile(const char outputString[], FILE *fptr) { return fputs(outputString, fptr) != 0; }
bool WriteStringToScreen(const char outputString[]) { return WriteStringToFile(outputString, stdout
bool WriteDoubleToFile(double x, int precision, FILE *fptr);
FILE* FileOpenWithMessageIfCannotOpen(const char *filename, const char *attribute);

//---
// The executable program starts here
//---
int main(int numberOfCommandLineArguments, char *arrayOfCommandLineArguments[])
{

// Simulate the multibody system
bool simulationSucceeded = SimulateNewtonsApple();

// Keep the screen displayed until the user presses the Enter key
WriteStringToScreen("\n\n Press Enter to terminate the program: ");
getchar();

// The value returned by the main function is the exit status of the program.
// A normal program exit returns 0 (other return values usually signal an error).
return simulationSucceeded == true ? 0 : 1;

}

//---
bool SimulateNewtonsApple(void)
{

// Declare a multibody system (contains one or more force and matter sub-systems)
MultibodySystem mbs;

// 0. The ground’s right-handed, orthogonal x,y,z unit vectors are directed with x horizontally right and y vertic
// 1. Create a gravity vector that is straight down (in the ground’s frame)
// 2. Create a uniform gravity sub-system
// 3. Add the gravity sub-system to the multibody system
Vec3 gravityVector(0, -9.8, 0);
UniformGravitySubsystem gravity(gravityVector);
mbs.addForceSubsystem(gravity);

// Create a matter sub-system (the apple)
SimbodyMatterSubsystem apple;

13 Lab 2: Getting started with Simbody

// Create the mass, center of mass, and inertia properties for the apple
const Real massOfApple = 0.142;

// The location of the apple’s center of mass is a vector from the apple’s
// origin expressed in the "x, y, z"’ unit vectors fixed in the apple’s frame.
// Example: The vector(0,0,0) locates the apple’s center of mass at the apple’s origin.
// Example: The vector(1,0,0) locates the apple’s center of mass 1 unit in the "x" direction from the apple’s origin.
const Vec3 appleCenterOfMassLocation(0, 0, 0);

// Create the apple’s inertia matrix about its origin for the "x, y, z" unit vectors fixed in the apple’s frame.
// Note: The 3x3 inertia matrix is symmetric - so only 6 elements need to be defined.
// Ixx, Iyy, Izz are moments of inertia (diagonal terms in the matrix)
// Ixy, Ixz, Iyz are products of inertia (off-diagonal terms in the matrix)
// The following assumes an apple of radius 1.44 inches (3.6576 cm) with a radius of gyration of 0.91 inches (2.3114 c
// which approximates a perfect sphere of radius 1.44 inches (3.6576 cm)
const Real I = massOfApple * pow(0.023114, 2); // Inertia = mass * radiusOfGyration^2
const Real Ixx = I, Iyy = I, Izz = I;
const Real Ixy = 0, Ixz = 0, Iyz = 0;
const Inertia appleInertiaMatrix(Ixx, Iyy, Izz, Ixy, Ixz, Iyz);

// The MassProperties class holds the mass, center of mass, and inertia properties of a rigid body.
// Although the next line creates an instance of the MassProperties class for the apple,
// it does not get associated with the apple until the addRigidBody method.
MassProperties appleMassProperties(massOfApple, appleCenterOfMassLocation, appleInertiaMatrix);

// The apple’s motion is related to ground via "mobilizers".
// The "mobilizers" specify the allowable motion of the apple to the ground.
// More specifically, the motion of an "outboard body" (e.g., the apple)
// to its inboard body (e.g., the ground) is specified by first constructing:
// 1. An "outboard frame" on the ground (which hooks to the "outboard body" - the apple)
// 2. An "inboard frame" on the apple (which hooks to the "inboard body" - the ground)

// The orientation and position of the outboard frame from the ground’s frame is specified below.
// The outboard frame’s axes are aligned with the ground’s axes and its origin is coincident with the ground’s origin.
// In other words, for this simple problem the outboard frame and the ground frame are identical.
const Transform outboardFrameTransformFromGround; // The default constructor is the identity transform

// The orientation and position of the inboard frame from the apple’s frame is specified below.
// The inboard frame’s axes are aligned with the apple’s axes and its origin is coincident with the apple’s origin
// In other words, for this simple problem the inboard frame and the apple frame are identical.
// Although the inboard frame can be constructed in a simple manner analogous to the outboardFrameTransformFromGround
// it is worthwhile to look at the details of the rotation matrix and position vector in the transform:
// a. The rotation matrix relating the InboardFrame’s x,y,z axes to the AppleFrame’s x,y,z axes is specified InboardFr
// b. The position of the InboardFrame’s origin from the AppleFrame origin, expressed in terms of the AppleFrame’s "x,
const Rotation inboardFrameOrientationInApple; // (1,0,0, 0,1,0, 0,0,1);
const Vec3 inboardFrameOriginLocationFromAppleOrigin(0, 0, 0);
const Transform inboardFrameTransformFromApple(inboardFrameOrientationInApple, inboardFrameOriginLocationFromAppleOr

// There are many ways that the apple can move relative to the ground.
// The following allows the apple to move in "x", "y", and "z" directions.
// Another option producing the same result is Mobilizer::Free
Mobilizer appleToGroundMobilizer = Mobilizer::Cartesian;
const BodyId appleBodyId = apple.addRigidBody(appleMassProperties, inboardFrameTransformFromApple, GroundId, outboard

// Add the matter (apple) sub-system to the system.
mbs.setMatterSubsystem(apple);

// Create a state for this system.
// Define appropriate states for this multi-body system.
// Set the initial time to 0.0
State s;
mbs.realize(s);
s.setTime(0.0);

// Set the initial values for the configuration variables (x,y,z)
apple.setMobilizerQ(s, appleBodyId, 0, 0.0);
apple.setMobilizerQ(s, appleBodyId, 1, 10.0);
apple.setMobilizerQ(s, appleBodyId, 2, 0.0);

// Set the initial values for the motion variables
apple.setMobilizerU(s, appleBodyId, 0, 0.0);
apple.setMobilizerU(s, appleBodyId, 1, 0.0);
apple.setMobilizerU(s, appleBodyId, 2, 0.0);

// Create a study using the Runge Kutta Merson integrator (alternately use the CPodesIntegrator)
RungeKuttaMerson myStudy(mbs, s);

// Set the numerical accuracy for the integrator
myStudy.setAccuracy(1.0E-7);

14 Lab 2: Getting started with Simbody

// The next statement does lots of accounting
myStudy.initialize();

// Open a file to record the simulation results (they are also displayed on screen)
FILE *outputFile = FileOpenWithMessageIfCannotOpen("NewtonsAppleResults.txt", "w");
WriteStringToFile("time yLocation yVelocity mechanicalEnergy yDifferenceFromExact\n", outputFile);
WriteStringToScreen("time yLocation yVelocity mechanicalEnergy yDifferenceFromExact\n");

// Set the numerical integration step and the time for the simulation to run
const Real integrationStepDt = 0.01;
const Real finalTime = 4.0;
const Real finalTimeCompare = finalTime - 0.01*integrationStepDt;

// Run the simulation and print the results
while(1)
{

// Query for results to be printed
Real time = s.getTime();
Real kineticEnergy = mbs.getKineticEnergy(s);
Real uniformGravitationalPotentialEnergy = mbs.getPotentialEnergy(s);
Real mechanicalEnergy = kineticEnergy + uniformGravitationalPotentialEnergy;

// Locate the apple origin’s from the ground’s origin, expressed in terms of the ground’s "x,y,z" unit vectors
// Extract the apple’s y-location from this vector.
const Vec3 appleLocation = apple.calcBodyOriginLocationInBody(s, appleBodyId, GroundId);
Real yLocation = appleLocation[1];

// Get the apple origin’s velocity in ground, expressed in terms of the ground’s "x,y,z" unit vectors.
// Extract the apple’s y-velocity from this vector.
const Vec3 appleVelocity = apple.calcBodyOriginVelocityInBody(s, appleBodyId, GroundId);
Real yVelocity = appleVelocity[1];

// Get the apple origin’s acceleration in ground, expressed in terms of the ground’s "x,y,z" unit vectors.
// Extract the apple’s y-acceleration from this vector.
// const Vec3 appleAcceleration = apple.calcBodyOriginAccelerationInBody(s, appleBodyId, GroundId);
// Real yAcceleration = appleAcceleration[1];

// Exact analytical results and difference of numerical integration results
double yExact = 10 - 4.9*time*time;
double yDifferenceFromExact = yExact - yLocation;

// Print results to screen
WriteDoubleToFile(time, 2, stdout);
WriteDoubleToFile(yLocation, 4, stdout);
WriteDoubleToFile(yVelocity, 4, stdout);
WriteDoubleToFile(mechanicalEnergy, 7, stdout);
WriteDoubleToFile(yDifferenceFromExact, 7, stdout);
WriteStringToScreen("\n");
// Print results to file
WriteDoubleToFile(time, 2, outputFile);
WriteDoubleToFile(yLocation, 4, outputFile);
WriteDoubleToFile(yVelocity, 4, outputFile);
WriteDoubleToFile(mechanicalEnergy, 7, outputFile);
WriteDoubleToFile(yDifferenceFromExact, 7, outputFile);
WriteStringToFile("\n", outputFile);

// Check if integration has completed
if(time >= finalTimeCompare) break;

// Increment time step
myStudy.step(time + integrationStepDt);

}

// Simulation completed properly
return true;

}

//---
FILE* FileOpenWithMessageIfCannotOpen(const char *filename, const char *attribute)
{

// Try to open the file
FILE *Fptr1 = fopen(filename, attribute);

// If unable to open the file, issue a message
if(!Fptr1)
{

WriteStringToScreen("\n\n Unable to open the file: ");
WriteStringToScreen(filename);
WriteStringToScreen("\n\n");

15 Lab 2: Getting started with Simbody

}

return Fptr1;
}

//---
bool WriteDoubleToFile(double x, int precision, FILE *fptr)
{

// Ensure the precision (number of digits in the mantissa after the decimal point) makes sense.
// Next, calculate the field width so it includes one extra space to the right of the number.
if(precision < 0 || precision > 17) precision = 5;
int fieldWidth = precision + 8;

// Create the format specifier and print the number
char format[20];
sprintf(format, " %%- %d.%dE", fieldWidth, precision);
return fprintf(fptr, format, x) >= 0;

}

16 Lab 2: Getting started with Simbody

2.8 Optional∗∗: Description of SimTK and VTK libraries

Library Description
VTK VTK is a free, “easy-to-use” VVVVVVVVVVVVV isualization TTTTTTTTTTTTToolKKKKKKKKKKKKK it for 3D computer graphics and

image processing. VTK supports many visualization algorithms, including scalar,
vector, tensor, texture, and volumetric methods; and advanced modeling techniques
such as implicit modeling, polygon reduction, mesh smoothing, cutting, contouring,
and Delaunay triangularition. Users can mix 2D imaging with 3D graphics and data.
VTK runs on most computers (Windows 98/ME/NT/2000/XP, Mac OSX, and Unix
platforms). More information about VTK is available at www.vtk.org.

SimTKlapack Lapack is a highly efficient LLLLLLLLLLLLLinear aaaaaaaaaaaaalgebra packpackpackpackpackpackpackpackpackpackpackpackpackage. Lapack runs on most com-
puters and is optimized for a computer’s processor (optimizing for cache, instruc-
tion set, number of processors, etc.). More information about Lapack is available at
www.simtk.org/home/lapack and at www.netlib.org/lapack.

SimTKsimmath SimTKsimmath is a library of classes, methods, and functions for nonlinear opti-
mization, numerical differentiation, numerical integration, polynomial interpolation,
random number generation, etc. More information about SimTKsimmath is available
at www.simtk.org/home/simmath.

SimTKcommon SimTKcommon is a library of SimTK classes, methods, functions, and data that
are common to many of the SimTK libraries. This library holds physical constants,
exception and error checking, macros for handling binary capabilities, and compiler
dependencies. It also contains an easy-to-use C++ interface to SimTK Lapack that ef-
ficiently and naturally handles arrays and matrices. More information about SimTK-
common is available at www.simtk.org/home/simtkcommon.

SimTKcpodes SimTKcpodes is a highly-efficient, high-order, multi-step, numerical integrator that
is capable of integrating stiff systems. CPODES is a branch of the better-known
CVODES integrator (http://acts.nersc.gov/sundials) that provides an accuracy-
enhancing method for enforcing algebraic equations associated with differential al-
gebraic equations (DAEs). (Algebraic equations arise in multibody systems due to closed loops,

rolling, sum-squared of Euler parameters, conservation of energy/momentum, etc.) More informa-
tion about SimTKcpodes is available at www.simtk.org/home/cpodes.

SimTKsimbody SimTKsimbody is an efficient multibody simulator that manages systems (e.g., force
and mass subsystems), states (e.g., variables being integrated), and studies (e.g.,
statics, dynamics, optimization, etc.). More information about Simbody is available
at www.simtk.org/home/simbody

17 Lab 2: Getting started with Simbody

2.9 Optional∗∗: Developer instructions for packaging SimTK libraries

The following steps were used in April 2007 to package the SimTK libraries for Windows XP. At that
time, all the libraries depended on the Operating System (e.g., Windows, Macintosh or Linux), some
depended on the CPU (central processing unit) (e.g., Intel or AMD), and some depended on other
installed libraries and header files.

Library Dependencies Website
VTK www.vtk.org
SimTKlapack CPU www.simtk.org/home/lapack
SimTKcommon SimTKlapack www.simtk.org/home/simtkcommon
SimTKsimmath SimTKcommon, SimTKlapack www.simtk.org/home/simmath
SimTKcpodes SimTKcommon, SimTKlapack www.simtk.org/home/simtkcpodes
SimTKsimbody SimTKcommon, SimTKlapack,

SimTKsimmath, SimTKcpodes
www.simtk.org/home/simbody

2.9.1 Installing CMake

CMake reads a generic ASCII text file which contains instructions on how to compile and link source
code, libraries, and object files and generates compiler-specific files (e.g., .dsw files for older Microsoft
Visual Studio C++ compilers, .sln files for newer Microsoft Visual Studio C++ compilers, or makefiles for
gcc compilers, etc.) CMake is helpful for building various SimTK libraries, including SimTKSimmatrix,
SimTKcommon, and SimTKSimbody.

• Go to www.cmake.org and click on the Download link on the left-hand side

• Download the latest CMake installer for your computer, e.g., cmake-2.4.6-win32-x86.exe

• Double-click on the downloaded installer .exe file and follow the on-screen instructions.
(Accept the default installation options.)

• Optional∗∗: Delete the downloaded CMake installer .exe file to free up some disk space

2.9.2 Installing VTK

Downloading and installing VTK to your computer

• Go to www.vtk.org and click on the Download link on the left-hand side

• Click on Download the latest release

• Click on (and download) the appropriate source .zip file, e.g., vtk-5.0.3.zip

• Right-mouse-click on the downloaded .zip file and select Extract all

• Click Next, select the destination C:\Program Files\SimTK, and click Next

• Follow the on-screen and web-based instructions to finish the installation

Using CMake to create instructions for your C++ compiler

• Click on Windows , select Programs, then CMake folder, then CMake executable

• Change the information in the CMake fields to:
Where is the source code: c:\code\vtk
Where to build the binaries: c:\code\vtk\compiler
Enter the rest of the information as follows:

18 Lab 2: Getting started with Simbody

• Click Configure
• From the drop-down menu, select Visual Studio 8 2005 (or your installed compiler) and click OK

If necessary, allow CMake to create the directory c:\code\vtk\compiler by clicking OK.
• Wait until a new panel appears
• Click Configure again, then click OK to exit CMake.

This creates files containing instructions for the Microsoft Visual Studio 8 2005 compiler.

Building source code and installing library files

• If you selected Microsoft Visual Studio 8 2005, double click on the file:
c:\code\vtk\compiler\vtk.sln

• In the top-middle of Microsoft Visual Studio, select Release.
• Right-mouse-click on ALL BUILD and select Build

This compiles, links, and builds the VTK library files.
• Right-mouse-click on INSTALL and select Build

This copies the library and header files to the proper directories.
• Exit from your compiler

2.9.3 Installing SimTKlapack

Before installing Lapack, you need information about your computer’s CPU which is available by clicking
on the Windows menu, selecting Settings, and then Control Panel. Next, choose the System
icon which opens up a dialogue box. Information about your computer’s operating system and CPU are
displayed under the tab. Click when you are finished.
(Note: CPU information may be available by right-mouse-clicking on the icon and selecting .)

Downloading SimTK Lapack to your computer

• Go to www.simtk.org/home/lapack and click on the link on the left-hand side
• For a 32-bit Windows computer with an Intel processor, download the file
Simtklapack_windows_32bit_Intel_generic.exe

• For a 32-bit Windows computer with an AMD processor, download the file
Simtklapack_windows_32bit_AMD_generic.exe

19 Lab 2: Getting started with Simbody

Installing SimTK Lapack to your computer

• Double-click on the downloaded file and then unzip to (possible by clicking the Browse button)

C:\Program Files\SimTK

• This installs the following files to the following folders:
File Folder Comment
SimTKlapack.dll C:\Program Files\SimTK\core\lib
SimTKlapack.lib C:\Program Files\SimTK\core\lib
SimTKlapack.h C:\Program Files\SimTK\core\include
Examples C:\Program Files\SimTK\examples Not complete or necessary
Documentation C:\Program Files\SimTK\doc Not complete or necessary

2.9.4 Installing SVN

SVN is a command-line program which helps “get” and “check-in” source code from web-based repositories.
SVN is required to get source-code from www.simtk.org to your computer.

• Go to www.svn.org and download and install the latest version of SVN for your computer

• Note: Windows users typically prefer Tortoise SVN because it has an easy-to-use graphical user
interface. To installer Tortoise SVN (instead of plain SVN), do the following:

– Go to www.tortoisesvn.net
– Click on the Download link on the left-hand side
– Download the installer for your computer (e.g., 32-bit or 64-bit version)
– Double-click on the downloaded installer .msi file and follow the on-screen instructions.

(Accept the default installation options.)

– You may have to restart your computer to finish the installation
– Optional∗∗: Delete the downloaded Tortoise SVN installer .msi file to free up disk space

2.9.5 Installing SimTKcommon

Downloading source code to your computer

• Create a directory c:\code\simtkcommon

• Right-mouse-click in that empty directory and select SVN checkout

• Enter the URL of repository as: https://simtk.org/svn/simtkcommon/trunk and click OK

• After the files download to your computer, click OK to finish

Using CMake to create instructions for your C++ compiler

• Click on the Windows menu, select Programs, then CMake folder, then CMake executable

• Change the information in the CMake fields to:
Where is the source code: c:\code\simtkcommon
Where to build the binaries: c:\code\simtkcommon\compiler

• Click Configure

• From the drop-down menu, select Visual Studio 8 2005 (or your installed compiler) and click OK
If necessary, allow CMake to create the directory c:\code\simtkcommon\compiler by clicking OK.

• Wait until a new panel appears

• Click Configure again, then click OK to exit CMake.
This creates files containing instructions for the Microsoft Visual Studio 8 2005 compiler.

20 Lab 2: Getting started with Simbody

Building source code and installing library files

• If you selected Microsoft Visual Studio 8 2005, double click on the file:
c:\code\simtkcommon\compiler\simtkcommon.sln

• In the top-middle of Microsoft Visual Studio, select Release.

• Right-mouse-click on ALL BUILD and select Build
This compiles, links, and builds the simtkcommon library files.

• Right-mouse-click on INSTALL and select Build
This copies the library and header files to the proper directories.

• Exit from your compiler

This installs the following files to the following folders:

File Folder
SimTKcommon.dll C:\Program Files\SimTK\core\lib
SimTKcommon.lib C:\Program Files\SimTK\core\lib
SimTKcommon.h C:\Program Files\SimTK\core\include

2.9.6 Installing SimTKsimmath, SimTKcpodes, and SimTKsimbody

The installation instruction for various SimTK libraries are similar to the installation instructions for
SimTKcommon in Section 2.9.5. The following table shows differences in installation of the various libraries.

Library name and usage Source code directory URL of repository
SimTKsimmath c:\code\simtksimmath https://simtk.org/svn/simmath/trunk

SimTKcpodes c:\code\simtkcpodes https://simtk.org/svn/cpodes/trunk

SimTKsimbody c:\code\simtksimbody https://simtk.org/svn/simbody/trunk

Downloading source code to your computer

• Create a source code directory, e.g., c:\code\simtksimmath

• Right-mouse-click in that empty directory and select SVN checkout

• Enter the URL of repository as: https://simtk.org/svn/simmath/trunk and click OK

• After the files download to your computer, click OK to finish

Using CMake to create instructions for your C++ compiler

• Click on the Windows menu, select Programs, then CMake folder, then CMake executable

• Change the information in the CMake fields, e.g., for SimTKsimmath to:
Where is the source code: c:\code\simtksimmath
Where to build the binaries: c:\code\simtksimmath\compiler

• Click Configure

• From the drop-down menu, select Visual Studio 8 2005 (or your installed compiler) and click OK
If necessary, allow CMake to create the directory c:\code\simtksimmath\compiler by clicking OK.

• Wait until a new panel appears

• Click Configure again, then click OK to exit CMake.
This creates files containing instructions for the Microsoft Visual Studio 8 2005 compiler.

21 Lab 2: Getting started with Simbody

Building source code and installing library files

• Double-click on the appropriate Microsoft Visual Studio file, e.g., for SimTKsimmath:
c:\code\simtksimmath\compiler\simtksimmath.sln

• In the top-middle of Microsoft Visual Studio, select Release.
• Right-mouse-click on ALL BUILD and select Build
• Right-mouse-click on INSTALL and select Build
• Exit from your compiler

The table below shows the installed files and associated folders:

File Folder
simmath.dll C:\Program Files\SimTK\core\lib

simmath.lib C:\Program Files\SimTK\core\lib

simmath.h C:\Program Files\SimTK\core\include

SimTKcpodes.dll C:\Program Files\SimTK\core\lib

SimTKcpodes.lib C:\Program Files\SimTK\core\lib

SimTKcpodes.h C:\Program Files\SimTK\core\include

SimTKsimbody.dll C:\Program Files\SimTK\core\lib

SimTKsimbody.lib C:\Program Files\SimTK\core\lib

SimTKsimbody.h C:\Program Files\SimTK\core\include

22 Lab 2: Getting started with Simbody

