
Lab 1: Getting started with SimTK

Developing physics-based simulations of biological structures with SimTK requires a rudimentary under-
standing of biology and physics and a background in C or C++. The point of this first lab is to:

• Create a SimTKproject to submit your computer projects

• Install the Microsoft Visual Studio C++ compiler

• Read and understand the C++ coding standards

• Submit the “Hello Math” exercises (basic mathematical calculations, input, and output)

• Learn about creating, compiling, running, and debugging C++ programs

1.1 Create a SimTKProject at www.simtk.org

All computer/electronic assignments are passed in via
your project on the Simtk.org website. To become
a member of Simtk.org (required to set-up a project),
go to www.simtk.org, click on register and follow the
on-screen information. Your SimTK login informa-
tion is set to the e-mail you provide during registra-
tion. After receiving your login information, go back
to www.simtk.org, click on Log In and enter your
Login Name and Password. Next, create a project,
e.g., by clicking on Register Project and following
the on-screen instructions. Use a project identifier
with your last name (all in lower case) and a project
title of “2007BioE215 YourLastName” .

The labs in this course are distributed via the train-
ing project on the Simtk.org website. To get labs,
go to www.simtk.org/home/training, and click on the

link on the left-hand side.

1.2 Install a C++ compiler

There are many excellent C++ compilers, including Code Warrior, Borland, g++, etc. Instructions for
programming with Microsoft Visual C++ are provided in Section 1.8. Programmers who are proficient
with another compiler can translate these directions to work with their preferred compiler.1

One way to install the free Microsoft Visual C++ Express compiler, is to downloaded and install it from
http://www.microsoft.com/vstudio/express/support/install/. To use this compiler, you need Microsoft Windows

XP with Service Pack 2 (or later) and you need to install the compiler on the C: drive.

Alternately, request an easy-to-use installation CD from your SimTK instructor.

0Last updated April 13, 2007 by Paul Mitiguy.
1For example, to use the GNU C++ compiler, type g++ HelloMath.cpp -o HelloMath

1

1.3 Read the short C++ coding standards

Coding standards increase the efficiency and enjoyment of team-based C++ development and reflect the
significant value of uniform coding practices. To get coding standards, visit www.simtk.org/home/training,

click on the link on the left-hand side, and download CodingStandardsCpp.pdf.

1.4 Hello Math Exercises

The point of these exercises is to ensure that C and C++ programmers have sufficient programming and
mathematical knowledge to use C++ SimTK source code.2 In addition, programmers will build highly
modular code that is reused in later lab examples, e.g., code to read input and/or write output with files,
the keyboard, or screen.

To start, go to www.simtk.org/home/training, click on the link on the left-hand side,
download the file LabGettingStartedWithSimTK.zip, and unzip the file HelloMath.cpp. Ensure that you
can compile, link, and run this file (e.g., as described in Section 1.8).
Note: HelloMath.cpp is a helpful starting point for the exercises that follow.

1.5 Hello Math Exercise 1

Submit a C++ program to your SimTK project called HelloMath1.cpp that does the following:
• Prompts the user to enter an angle in degrees (from the keyboard)

Use GetStringFromKeyboard(...) to call GetStringFromFile(..., stdin) which itself uses the fast,

efficient, standard C input function fgets.

• Verifies that the quantity entered can be unambiguously interpreted as a real number.
Otherwise, inform the user that 45◦ will be used. Hint: See the example in CodingStandardsCpp.pdf.

• Converts the angle to radians

• Calculates the sine, cosine, and tangent of the angle

• Writes information to the screen which clearly communicates the angle in degrees, the angle in
radians, and the sine, cosine, and tangent of the angle.
Note: Use the standard C output function fprintf instead of the C++ overloaded operators >> and <<.

For example, printf("%g", someNumber) will write the double-precision number someNumber to the screen.

The prototypes for the functions that you need to create and use are:3

bool GetStringFromKeyboard(char inputString[], unsigned long sizeOfString);

bool GetStringFromFile(char inputString[], unsigned long sizeOfString, FILE *fptr);

bool WriteStringToScreen(const char outputString[]);

bool WriteStringToFile(const char outputString[], FILE *fptr);

const char* ConvertStringToDouble(const char *s, double &returnValue, double defaultValue);

double ConvertFromRadiansToDegrees(double angleInRadians);

double ConvertFromDegreesToRadians(double angleInDegrees);

2Programmers who know C (instead of C++) need to learn how to use C++ comments, the better ways of writing for-loops
in C++, how to declare variables where they are needed (instead of at the top of a function), how to use references (&), and
how to call object-oriented methods. Conversely, C programmers do not have to learn how to create their own classes or
methods as they are provided for you.

3Note: A simple modular way to implement GetStringFromKeyboard is to call GetStringFromFile(inputString,
sizeOfString, stdin); This uses the fact that stdin is the file pointer associated with the keyboard. Similarly, a
simple modular way to implement WriteStringToScreen is to call WriteStringToFile(outputString, stdout);
This uses the fact that stdout is the file pointer associated with the screen.

2 Lab 1: Getting started with SimTK

1.6 Hello Math Exercise 2

The first exercise used the screen for output. This second exercise writes numbers to a file for subsequent
plotting and requires a function that opens a file or issues a message if it does not open.
Note: To turn off the Microsoft Visual C++ warning about fopen being deprecated (it prefers a safer, non-ANSI, non-portable,

function), add the line #pragma warning(disable:4996) to the top of your code.

Submit a C++ program to your SimTK project called HelloMath2.cpp that does the following:
• Prompts the user to enter an integer between 180 and 720 that represents an angle in degrees.
• Verifies that angleInDegrees is an integer and 180 ≤ angleInDegrees ≤ 720.

Otherwise, informs the user that angleInDegrees = 360 will be used.

• Prompts the user to enter the precision for writing numbers.
Precision is the number of digits in the mantissa after the decimal point, e.g., precision=5 for 0.12345E78.

• Verifies that precision is an integer and 1 ≤ precision ≤ 17.
Otherwise, informs the user that precision = 5 will be used. Hint: See strtol.

• Creates a for-loop starting at i= 0, ending at i= angleInDegrees, and incrementing by 1
• Creates a double precision number called angleInRadians equal to the radian measure of i

• Calculates the sine, cosine, and tangent of angleInRadians

• Writes each value of the angle in degrees, angleInRadians, and the sine, cosine, and tangent of
the angle to a file HelloMath2.txt. Write output values in the format specified by precision. Use
fclose to close the file when done writing. The file HelloMath2.txt should look something like:

0.000000000E+000 0.000000000E+000 0.000000000E+000 1.000000000E+000 0.000000000E+000

1.000000000E+000 1.745329252E-002 1.745240644E-002 9.998476952E-001 1.745506493E-002

2.000000000E+000 3.490658504E-002 3.489949670E-002 9.993908270E-001 3.492076949E-002

3.000000000E+000 5.235987756E-002 5.233595624E-002 9.986295348E-001 5.240777928E-002

4.000000000E+000 6.981317008E-002 6.975647374E-002 9.975640503E-001 6.992681194E-002

• Submit a plot of the sine, cosine, and tangent vs. the angle in degrees. (Plot with Matlab, Excel, . . .)

The prototypes for the additional functions that you need to create and use are shown below. The first
function should use the C fprintf function with a format specifier that:4

• Uses the − flag after the % symbol so numbers are left-aligned within their field width.
• Uses a blank space after the − flag to ensure that positive numbers start with a blank space.

(Note: The default format for printing a positive number is without a leading space or + sign, hence positive numbers

are not vertically aligned with negative numbers in subsequent rows.)

• Uses a positive integer (called the field-width) after the blank space that is 8 more than the precision.
This provides sufficient room for printing a double-precision number in the form 0.12345E78 with:

– Leading blank or negative sign (1 character)
– One digit before the decimal point (1 character)
– The decimal point (1 character)
– The specified precision (number of digits in the mantissa after the decimal point) (precision characters)
– The letter E denoting exponential notation (1 character)
– Three digits for the exponent (3 characters)
– One extra spaces after the number (1 character)

• Uses a decimal point after the field-width integer
• Uses a positive integer number (called the precision) after the decimal point
• Uses the letter E to denote exponential notation

FILE* FileOpenWithMessageIfCannotOpen(const char *filename, const char *attribute);

bool WriteDoubleToFile(double x, int precision, FILE *fptr);

const char* ConvertStringToLong(const char *s, long &returnValue, long defaultValue);

4For example, the format specifier %̈- 13.5E¨ prints a double precision number in the form 0.12345E78 and ensures it
starts with an extra space on the left, is left aligned, leads with a blank or a negative sign, is 13 characters wide, and has 5
digits in the mantissa after the decimal point. Hint: See the example in HelloMath.pdf.

3 Lab 1: Getting started with SimTK

1.7 Hello Math Exercise 3

This coding exercise reads an array of numbers from a file, does matrix operations, and writes the results to
another file. Submit a C++ program to your SimTK project called HelloMath3.cpp that does the following:
(Note: This should be a stand-alone program, i.e., no SimTK or other 3rd-party software.)

• Creates a 5×7 matrix M whose elements are read from the file HelloMath3In.txt (given)

• Calculates M + M and writes the results to the file HelloMath3Out.txt

The prototypes for the additional functions that you need to create and use are shown below.

bool GetDoubleRowElementsFromFile(double *array, unsigned int numberOfCols, FILE *fptr);

bool GetDoubleMatrixElementsFromFile(double *array, unsigned int numberOfRows, unsigned int numberOfCols, FILE *fptr);

bool WriteDoubleRowElementsToFile(const double *array, unsigned int numberOfCols, int precision, FILE *fptr);

bool WriteDoubleMatrixElementsToFile(const double *array, unsigned int numberOfRows, unsigned int numberOfCols, int precision, FILE *

void AddMatrices(const double *arrayA, const double *arrayB, double *arraySum, unsigned int numberOfElements);

The contents of the file HelloMath3In.txt are:

1.0 2.0 3.0 4.0 5.0 6.0 7.0
2.1 2.2 2.3 2.4 2.5 2.6 2.7
3.7 3.6 3.5 3.4 3.3 3.2 3.1
4.2 4.4 4.6 4.8 4.3 4.5 4.7
5.0 5.2 5.4 5.6 5.8 5.9 5.7

4 Lab 1: Getting started with SimTK

1.8 Compiling and linking C++ programs with Microsoft Visual C++

1.8.1 Creating an empty Win32 Console Application in the SimTK folder

• Ensure Microsoft Visual C++ Express Edition is installed on your computer

• Click on the Windows menu, select Programs, then slide-the-mouse to the Visual C++

2005 Express Edition folder, then slide-right-and-down to the Microsoft Visual C++ 2005
Express Edition executable

• From within the Visual C++ 2005 Express Edition, click on the File menu, click on the New
menu item, and the slide-right to click on the Project. . . menu item.

– Under Project types:, select Win32
– Give the project a sensible name, e.g., HelloMath
– Make the project’s location C:\Program Files\SimTK (If necessary, create the folder SimTK)

– Click the button, then click the button (not the Finish button)
– Ensure the Application Settings are set to create a Console Application, an Empty

Project, with NO precompiled header.
– Click the button

• This process creates a file HelloMath.sln in the folder C:\Program Files\SimTk\HelloMath

• From within Visual C++, click on the File menu and then click on the Exit menu item.

1.8.2 Adding files to the “HelloMath” Win32 Console Application

• Double-click on the file HelloMath.sln in the folder C:\Program Files\SimTk\HelloMath
(This should invoke Microsoft Visual C++ and open the “HelloMath” project.)

• Click on the Project menu and slide-down and click on Add Existing Item. . . .

• Browse to the directory containing the files to add, select the files, and click .
(For example, to add the file C:\Program Files\SimTK\HelloMath\HelloMath.cpp, browse to the directory

C:\Program Files\SimTK\HelloMath, select the file HelloMath.cpp, then click .
Note: A commented sample HelloMath.cpp file is available by visiting www.simtk.org/home/training, click-

ing on the link on the left-hand side, downloading LabGettingStartedWithSimTK.zip,
and extracting the file HelloMath.cpp. Alternately, type the file in Section 1.9.

•

To ensure the file was properly added, click on the Solu-
tion Explorer tab on the left panel in Visual C++ (if nec-

essary, click on the + sign in front of HelloMath and click on the

+ sign in front of Source files), then double-click on the file
HelloMath.cpp

• From within Visual C++, click on the File menu and then click on the Save all menu item.
• Click on the File menu and then click on the Exit menu item.

5 Lab 1: Getting started with SimTK

1.8.3 Building and running the “HelloMath” Win32 Console Application

• If the HelloMath project is not already open, double-click on the file HelloMath.sln

• Click on the Build menu and then slide-down and click on Build Solution

• The compiler will attempt to compile the relevant C++ source files.
For example, the source file HelloMath.cpp will compile to the object file named HelloMath.obj

• You must fix all compiler errors (bugs in your program) before you can link.
It is highly advisable to also fix all your warnings as many of them will show up later as run-time errors.

Note: To turn off the Microsoft Visual C++ warning about sprintf being deprecated (it prefers a safer, non-ANSI,

non-portable, function), add the line #pragma warning(disable:4996) to the top of your code.

• If compiling all the source files is successful, Visual C++ will attempt to link your object files to each
other and to the standard C++ libraries.5

• If all goes well, you may see a message such as

------ Build started: Project: HelloMath, Configuration: Debug Win32 ------
Compiling...
HelloMath.cpp
Compiling manifest to resources...
Linking...
Embedding manifest...
Build log was saved at "file://c:\Program Files\SimTK\HelloMath\Debug\BuildLog.htm"
HelloMath - 0 error(s), 0 warning(s)
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

• To run the program from within the Visual C++ environment, click on the Build menu (or Debug

menu) and select Start Debugging

• If you encounter a run-time debug error (the program runs but it produces incorrect results), try the
Visual C++ debugger. To start the debug process, do the following:

– Get help (preferably human) to understand the debugging process
– Ensure that the build is set to Win32 Debug (not Win32 Release)
– Insert a breakpoint in your code by right-mouse clicking on a suspect line in your code.

If in doubt, set the breakpoint at the first line of code in main (the line that appears after the first { in main).

– Click on the Debug menu and then slide-down and click on Start Debugging.
– Press function key F10 to step over a function/method
– Press function key F11 to step into a function/method
– Press function key F5 to go to the next breakpoint

5The standard C++ libraries include the standard math library that calculates cos(0.2), the standard input/output library
that prints characters to the screen, and the standard time library that gets time and date information from your computer.

6 Lab 1: Getting started with SimTK

1.9 Sample HelloMath.cpp

//---
// File: HelloMath.cpp
// Class: None
// Parent: None
// Children: None
// Purpose: Tests out various mathematical functions
//---
// The following are standard C/C++ header files.
// If a filename is enclosed inside < > it means the header file is in the Include directory.
// If a filename is enclosed inside " " it means the header file is in the current directory.
#include <ctype.h> // Character Types
#include <math.h> // Mathematical Constants
#include <stdarg.h> // Variable Argument Lists
#include <stdio.h> // Standard Input/Output Functions
#include <stdlib.h> // Utility Functions
#include <string.h> // String Operations
#include <signal.h> // Signals (Contol-C + Unix System Calls)
#include <setjmp.h> // Nonlocal Goto (For Control-C)
#include <time.h> // Time and Date information
#include <assert.h> // Verify Program Assertion
#include <errno.h> // Error Codes (Used in Unix system())
#include <float.h> // Floating Point Constants
#include <limits.h> // Implementation Constants
#include <stddef.h> // Standard Definitions
#include <exception> // Exception handling (e.g., try, catch throw)
//---

//---
// Prototypes for local functions (functions not called by code in other files)
//---
bool WriteDoubleToFile(double x, int precision, FILE *fptr);

//---
int main(int numberOfCommandLineArguments, char *arrayOfCommandLineArguments[])
{

// Write " Hello math!" to the screen and then put a newline
printf(" Hello math!\n");

// Write the number of command line arguments to the screen.
// Write each of the command line arguments on a separate line.
// Note: The first command line argument may be the name of the program
// In Microsoft Windows, dragging and dropping files onto the executable
// usually results in multiple command line arguments (the names of the files)
printf("\n The number of command line arguments is %d\n", numberOfCommandLineArguments);
for(int i = 0; i < numberOfCommandLineArguments; i++)

printf("\n Command line argument %d is:\n %s", i, arrayOfCommandLineArguments[i]);

// Calculate the sine of 1.0 radian (1 radians is approximately 57.3 degrees) plus other stuff
double x = sin(1.0) + cos(1.0) + tan(1.0) + asin(0.7) + sqrt(4.2) + pow(3.3,0.8)

+ log(1.5) + log10(4.2) + exp(1.4) + sinh(0.3) + 2*3.2 + rand();

// Writes the result to the screen (stdout)
printf("\n\n The computed number is: ");
WriteDoubleToFile(x, 7, stdout);

// Keep the screen displayed until the user presses the Enter key
printf("\n\n Press Enter to terminate the program: ");
int key = getchar();

// A normal program exit returns 0 (other return values usually signal an error)
return 0;

}

//---
bool WriteDoubleToFile(double x, int precision, FILE *fptr)
{

// Ensure the precision (number of digits in the mantissa after the decimal point) makes sense.
// Next, calculate the field width so it includes one extra space to the right of the number.
if(precision < 0 || precision > 17) precision = 15;
int fieldWidth = precision + 8;

// Create the format specifier and print the number
char format[20];
sprintf(format, " %%- %d.%dE", fieldWidth, precision);
return fprintf(fptr, format, x) > 0;

}

7 Lab 1: Getting started with SimTK

