
Lab 5: Forces and torques in Simbody
There are a variety of models for forces in nature and the study of forces is a major differentiating factor
in fields such as molecular dynamics, biomechanics, automotive, aerospace, robotics, and machine design.
For example, there are force models for: uniform gravity, universal gravity, springs (elastic and inelastic),
dampers, viscosity, adhesion, surface tension, osmosis, buoyancy, hydrostatics, hydraulics, pneumatics,
tires, aerodynamics (lift, drag, and thrust), muscles, tendons, ligaments, friction (e.g., Coulomb, kinetic,
static, and Dahl), contact (e.g., Hertzian), compression, tension, pressure, traction, shear, electrostatics,
electromagnetism (e.g., Lorentz and Faraday), pizoelectric, motors, nuclear (strong and weak), van der
Waals, etc. It is worth emphasizing that “all models are approximate - some are useful”.1

Forces are a key ingredient in Newton’s law F = ma and accurate models of forces are essential for
physics-based simulation of biological structures. SimTK Simbody simulates a wide range of biological
structures and physical systems with user-specified and built-in forces.

Replacement of forces
It is worth noting that a set of forces acting on a rigid body B can be replaced with a single force F
applied to point Bp of B, together with a couple of torque T. To reiterate, when a biological structure is
rigid, it can be helpful to replace a set of forces with a single force and a torque.

0Last updated May 29, 2007 by Paul Mitiguy.
1In 1950, the statistician John Tukey (who invented the fast-Fourier transform algorithm, coined the terms “software”

and “bit”, and did a statistical critique of the Kinsey report on the sexual behavior of males) provided an insightful comment
about common practices in sciences “The combination of some data and an aching desire for an answer does not ensure that
a reasonable answer can be extracted from a given body of data.”.

1

5.1 Simulating Newton’s apple with air-resistance

The figure to the right shows an apple falling from a tree. The point of
this simulation is to determine the affect of air-resistance on the falling
apple using Simbody’s GeneralForceElement::UserForce class.
The resultant of all air-resistance forces on the apple is modeleda as a
single force F applied to the apple’s mass center, equal to

F = -b v2 v
|v| = -b |v| v

where b is a constant associated with the force (drag) due to the air-
resistance and v is the velocity of the apple’s mass center.

Quantity Symbol Type Value
Earth’s gravity g constant 9.8 m/sec
Mass of apple m constant 0.142 kg (5 ozm)
Air-resistance damping constant b constant 0.005 kg/m
Apple’s vertical position from No y variable varies

aA model is a simplified representation of a complex system.

Modify the file NewtonsAppleForVisualization.cpp from Lab 2.2.2 to add an air-resistance force sub-
system to the multibody system as specified on the next page.

• The apple is dropped from rest from a height of 10 m. Using the values for g and b in the previous
table, attempt to find analytical solutions for ẏ(t) and y(t).

ẏ(t) = y(t) =

• Using the data in NewtonsAppleResults.txt plot the time-history of ẏ and y for 0 ≤ t ≤ 4 sec.
Compare the graph of Simbody’s results for y(t) with the graph of the exact analytical results with
no air-resistance of ẏ(t) = -4.9 t and y(t) = 10 − 4.9 t2.

-40

-35

-30

-25

-20

-15

-10

-5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

V
el

oc
ity

 (
m

/s
ec

)

Time (seconds)

With air-resistance
No air-resistance

-70

-60

-50

-40

-30

-20

-10

0

10

0 0.5 1 1.5 2 2.5 3 3.5 4

H
ei

gh
t

(m
et

er
s)

Time (seconds)

With air-resistance
No air-resistance

• Using free-body diagrams, calculate the terminal velocity of the falling apple to 5 significant digits.

Terminal velocity = m/sec

• In view of the data in NewtonsAppleResults.txt, write down the value for ẏ(t) at t = 4 sec.
Determine the difference (in percent) ẏ(4) is to terminal velocity (to 2 significant digits).

ẏ(4) = m/sec Difference: %

2 Lab 5: Forces and torques in Simbody

To modify NewtonsAppleForVisualization.cpp to add air-resistance:

1. Add the following line of code to near the top of the file:

#include "UserForceAirResistanceVertical.h"

2. Add the following code before realizing the state for the first time, i.e., before mbs.realize(s);

// Add an air-resistance force sub-system to this multi-body system.

GeneralForceElements userForceElements;

mbs.addForceSubsystem(userForceElements);

// Although "new" was used to allocate this UserForce, do not "delete" it.

// This bug will be fixed in the next version of Simbody so it can take an object from the stack or heap.

// For now, addUserForce takes ownership of the allocated item and takes care of deleting it at the end.

UserForceAirResistanceVertical *airResistanceOnApple = new UserForceAirResistanceVertical(appleBodyId, 0.005);

userForceElements.addUserForce(airResistanceOnApple);

3. Ensure that the file UserForceAirResistanceVertical.h (contents shown on the next page) is in
the same folder (directory) as NewtonsAppleForVisualization.cpp.

4. Compile, link, and run your modified NewtonsAppleForVisualization.cpp code and complete the
questions on the previous page. Submit your modified NewtonsAppleForVisualization.cpp code
and your results to your SimTK project.

3 Lab 5: Forces and torques in Simbody

//---
// File: UserForceAirResistanceVertical.h
// Class: UserForceAirResistanceVertical
// Parent: GeneralForceElements
// Children: None
// Purpose: Applies an air-resistance force on an object falling vertically.
// Author: Paul Mitiguy - May 20, 2007
//---
#ifndef __USERFORCEVERTICALAIRRESISTANCE_H__
#define __USERFORCEVERTICALAIRRESISTANCE_H__
//---
#include "StandardCppHeadersAndNamespace.h"
#include "SimTKsimbody.h"
using namespace SimTK;

//--
// User-defined classes for adding forces/torques are constructed as follows:
// 1. Create a constructor with whatever arguments make sense for the force or torque and copy the arguments into class d
// 2. Create a clone method (all clone methods are identical except for the class name appearing after "new")
// 3. Create a calc method (the arguments and return type for all calc methods are identical).
// The code in the calc method is specific to the calculation of force or torque.
// Note: The set of all forces is replaced by an equivalent set, consisting of a torque
// that is equal to the moment of the forces about the body’s origin together
// with the resultant of the forces applied at the body’s origin.
//--
class UserForceAirResistanceVertical : public GeneralForceElements::UserForce
{
public:

// Constructor is explicit
explicit UserForceAirResistanceVertical(BodyId bodyIdA, Real coefficientForAirResistance)
{

myBodyIdForApplyingForce = bodyIdA;
myCoefficientMultiplyingVelocitySquared = coefficientForAirResistance;

}

// The clone method is used internally by Simbody (required by virtual parent class)
UserForce* clone() const { return new UserForceAirResistanceVertical(*this); }

// The calc method is where forces or torques are calculated (required by virtual parent class)
void calc(const MatterSubsystem& matter, // Input information (matter)

const State& state, // Input information (current state)
Vector_<SpatialVec>& bodyForces, // Forces and torques on bodies
Vector_<Vec3>& particleForces, // Forces on particles (currently unused)
Vector& mobilityForces, // Generalized forces
Real& pe) const // For forces with a potential energy

{
// Query the matter subsystem for the body’s origin velocity in ground.
// This vector is expressed in the ground’s "x,y,z" unit vectors.
const Vec3 bodyVelocity = matter.calcBodyOriginVelocityInBody(state, myBodyIdForApplyingForce, GroundId);
Real yVelocity = bodyVelocity[1];

// The force’s magnitude is -b*|v|^2 and its direction is v/|v|, hence the force is -b*|v|*v
Real magVelocity = fabs(yVelocity);
Real yForce = -myCoefficientMultiplyingVelocitySquared * magVelocity * yVelocity;

// Get the proper memory location to increment the force and/or torque.
// bodiesForces is a Vec6 whose elements are two Vec3.
// The elements of the first Vec3 are Tx, Ty, Tz (expressed in the ground’s "x,y,z").
// The elements of the second Vec3 are Fx, Fy, Fz (expressed in the ground’s "x,y,z").
SpatialVec& bodiesForces = bodyForces[myBodyIdForApplyingForce];
Vec3& torqueSum = bodiesForces[0];
Vec3& forceSum = bodiesForces[1];

// Increment the sum of all forces on this body (other force subsystems may also add forces/torque)
// torqueSum[0] += 0; // Increment torque in the ground’s x-direction.
// torqueSum[1] += 0; // Increment torque in the ground’s y-direction.
// torqueSum[2] += 0; // Increment torque in the ground’s z-direction.
// forceSum[0] += 0; // Increment force in the ground’s x-direction.
forceSum[1] += yForce; // Increment force in the ground’s y-direction.
// forceSum[0] += 0; // Increment force in the ground’s z-direction.

}

private:
BodyId myBodyIdForApplyingForce;
Real myCoefficientMultiplyingVelocitySquared;

};
//---
#endif /* __USERFORCEVERTICALAIRRESISTANCE_H__ */
//---

4 Lab 5: Forces and torques in Simbody

5.2 Simulating projectile motion with air-resistance

The figure to the right shows a baseball being hit out of
AT&T park. The point of this simulation is to write a
C++ class that causes Simbody to apply a single air-
resistance force F to the baseball’s mass center with:

F = -b v2 v
|v| = -b |v| v

where b is an air-resistance damping constant and v is
the velocity of the baseball’s mass center.

Quantity Symbol Type Value
Earth’s gravity g constant 9.8 m/sec
Mass of baseball m constant 0.142 kg (5 ozm)
Radius of gyration of baseball (sphere) r constant 2.3114 cm (0.91 in)
Air-resistance damping constant b constant 0.002 kg/m
Baseball’s horizontal position from No x variable Initially x= 0
Baseball’s vertical position from No y variable Initially y = 0

• Modify the Simbody program ProjectileMotion.cpp to simulate the baseball and visualize the
affect of air-resistance on 2D projectile motion. Submit your modified and fully commented C++

program ProjectileMotion.cpp to your SimTK project at www.simtk.org. Use a baseball that is
launched at 35◦ from the horizontal with an initial speed of 44.7 m/sec (100 mph).
Hint: Press the ‘r’ key on your keyboard to resize the VTK window while running the animation.

Slow the animation by “sleeping” (suspend program execution) or using a smaller integration step (e.g., 0.005).

• Plot the Simbody results for y(x) for 5.23 sec with an integration step of 0.01 sec. Compare the graph
of Simbody’s results for y(x) with the graph of the exact analytical results with no air-resistance
of y(x) = tan(35◦)x − 4.9

[44.7 cos(35◦)]2
x2 .

Result:

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180

y
 (

m
et

er
s)

x (meters)

With air-resistance
No Air-resistance

• In view of these simulation results, it seems that accurate models of forces are critical to determining
how an object moves. True/False .

• Accurate models of air-resistance forces on baseball exist. True/False .

• Optional∗∗: Use the Simbody numerical integrator root finder to find the value of x at which the ball
hits the ground.

5 Lab 5: Forces and torques in Simbody

To modify ProjectileMotion.cpp to add air-resistance:
1. Add the following line of code to near the top of the file:

#include "UserForceAirResistanceProjectile.h"

2. Add the following code before realizing the state for the first time, i.e., before mbs.realize(s);

// Add an air-resistance force sub-system to this multi-body system.

GeneralForceElements userForceElements;

mbs.addForceSubsystem(userForceElements);

UserForceAirResistanceProjectile *airResistanceOnBaseball = new UserForceAirResistanceProjectile(baseballBodyId, 0.002);

userForceElements.addUserForce(airResistanceOnBaseball);

3. Create the file UserForceAirResistanceProjectile.h and place it in the same folder (directory)
as ProjectileMotion.cpp.

4. Compile, link, and run your modified ProjectileMotion.cpp and complete the previous questions.
Submit your modified ProjectileMotion.cpp code and your results to your SimTK project.

6 Lab 5: Forces and torques in Simbody

5.3 Harmonic forcing of a simple system

The point of this problem is to use physical intuition to guess at the time-response of a harmonically
forced system and then validate your physical intuition against mathematical reality.

Consider a 1 kg particle on a frictionless horizontal surface N .
The particle may slide right or left, depending on an applied
horizontal force F .

1 kg
x
F

N

1. Using Newton’s law, form the equation of motion that governs x(t) when F = sin(t).
Write it in standard form (with all the inhomogeneous terms on the right-hand side).
Result:

d2x

dt2
= sin(t)

2. Knowing x(0) = 0 and ẋ(0) = 0, use your physical intuition to sketch the solution for x(t) for
0 ≤ t ≤ 20 on the left plot below.
Result:

0 5 10 15 20

x(
t)

 (
m

et
er

s)

Time (seconds)

Physical intuition

0 5 10 15 20

x(
t)

 (
m

et
er

s)

Time (seconds)

Mathematical solution

3. An easy way to solve the governing ODE is by separating variables and integrating twice. Calculate
the solution for x(t) corresponding to x(0)=0 and ẋ(0)=0 and sketch it for 0 ≤ t ≤ 20 on the plot
to the right of the one you created with physical intuition. x(t) =
Does your physical intuition match your mathematical solution Yes/No (circle one).

4.

Copy the file NewtonsAppleForVisualization.cpp
to AppleWithHorizontalForce.cpp and simulate
the block’s horizontal motion when:

x(0) = 0 ẋ(0) = 0 f(t)= cos(t)

Plot the solution for x(t) for 0 ≤ t ≤ 20 .
Use an integration time step of 0.01 sec.

0 5 10 15 20

x(
t)

 (
m

et
er

s)

Time (seconds)

(a) Create the file (class) UserForceSintHorizontal.h
(b) Add #include "UserForceSintHorizontal.h" near the top of the file
(c) Add the following code before mbs.realize(s);

GeneralForceElements userForceElements;

mbs.addForceSubsystem(userForceElements);

UserForceSintHorizontal *sinusoidalForceOnApple = new UserForceSintHorizontal(appleBodyId);

userForceElements.addUserForce(sinusoidalForceOnApple);

7 Lab 5: Forces and torques in Simbody

5.4 Computed torque control of a simple system

The figure to the right shows a particle of mass m that slides on a
frictionless horizontal surface. The particle may slide right or left,
depending on an applied horizontal force F .
The point of this example is to use a computed torque control
for F so x has a desired behavior (denoted xdes). In other words,
a proper choice for F moves the block in a desired way, e.g., with
xdes = 0 or xdes = 5 or xdes = t sin(3 t) or . . .

F = m ẍ

x
F

m

The computed torque control law for F that causes x(t) to follow the desired trajectory xdes(t) is

F = m [ẍdes + kd (ẋdes − ẋ) + kp (xdes − x)]

A good choice for kd and kp that causes the error to damp out quickly is2

kd = 2ωn kp = ω2
n

where ωn is chosen to be as large as possible to provide appropriate response.3

Generate the figure to the right with:

• A desired trajectory of xdes = 2 + sin(t)
• A value of ωn = 0.4 (control constants of kd = 0.8 and kp = 1.6)

• The block starting from rest (ẋ=0) at x=0
• Repeat with ωn = 0.2 and ωn = 1.0

-3

-2

-1

0

1

2

3

0 5 10 15 20
Time

2 + sin(t)
wn = 1.0
wn = 0.4
wn = 0.2

1. Create the file UserForceControlHorizontal.h

2. Add #include "UserForceControlHorizontal.h" near the top of AppleWithHorizontalForce.cpp

3. In AppleWithHorizontalForce.cpp, comment out the following code before mbs.realize(s);

// UserForceSintHorizontal *sinusoidalForceOnApple = new UserForceSintHorizontal(appleBodyId);

// userForceElements.addUserForce(sinusoidalForceOnApple);

4. In AppleWithHorizontalForce.cpp, insert the lines:
UserForceControlHorizontal *computedTorque = new UserForceControlHorizontal(appleBodyId, massOfApple, 1.0, 0.4);

userForceElements.addUserForce(computedTorque);

Note: the 3rd argument of the UserForceControlHorizontal constructor is ζ and the 4th argument is ωn.

5. Plot the Simbody solution for x(t) for 0 ≤ t ≤ 20 .
Use an integration time step of 0.01 sec. Repeat with ωn = 0.2 and again with ωn = 1.0.

6. Submit your modified and fully commented AppleWithHorizontalForce.cpp file and your results
to your SimTK project.

2This choice for kd and kp is based on error that is critically damped, i.e., ζ = 1.
3Large values of ωn correspond to large values of F - which may not be physically possible.

8 Lab 5: Forces and torques in Simbody

