Coding Standards for C*™

Abstract

Coding standards are intended to increase the efficiency and enjoyment of team-based C™* de-
velopment. These coding standards reflect the significant value of uniform coding styles and practices.

1 Naming conventions

The names of all methods/functions, classes, data, variables, etc. follow the hump convention. Hence,
all names (other than macros) consist of only alphanumeric characters (no underscores!). Names should
be as descriptive as possible, with only minor regard for the length of the name. All characters are
lowercase except at word breaks, where uppercase letters are used. The first letter in a name may be
upper or lower case depending on its type. For example:

e Functions and class methods begin with an uppercase letter, e.g., GetCenter0fMass ()
e Local data (in methods) begin with a lowercase letter (and do not begin with my), e.g., otherBody.

e Pre-processor macros do not follow the hump convention and may use underscores.
Conventionally, macros use all upper-case letters and underscores, e.g.,
#define __USINGSOCKETS__ 0

2 Comments

Names of classes, functions and data should be as descriptive as possible. More verbose information is
contained in comments which must be maintained as code evolves. The preferred style of comments is:!

1. Name functions and data as descriptively as possible to minimize comments.
It is difficult to keep code updated - and even more difficult to keep comments updated.

2. Brief comments describing functions (or methods) appear before prototypes.
This comment style is also preferred for documenting lines/blocks of code inside functions
// Converts from one set of units to another and returns the conversion factor
double CalculateUnitConversionFactor(const char *unitsA, const char *unitsB);

3. Short comments may appear at the end of the same line as the instruction they describe, e.g.,
int numberOfDogs = 0; // Counts the number of dogs in the kennel

4. Longer comments describing complicated methods appear immediately proceeding their respective
method in .cpp files, with each long comment beginning and ending with a dashed line, e.g.,

// This method uses NIST standards for calculating the conversion factor between units.

// The number 0.0 is returned if the conversion is nonsensical, e.g., converting kg to meter.

// Otherwise, the conversion factor from unitsA to unitsB is returned.

// For example, if unitsA is "inch" and unitsB is "cm", the number 2.54 is returned.
// This method returns conversion factors involving time, length, mass, angle, charge,

// velocity, angular velocity, frequency, acceleration, angular acceleration, force,

// pressure/stress, work, energy, power, area, volume, current, and dimensionless units with

// prefixes of femto, pico, nano, micro, milli, m, centi, c, kilo, k, mega, giga, tera, peta.

double CalculateUnitConversionFactor(const char *unitsA, const char *unitsB)

9Last updated April 13, 2007 by Paul Mitiguy.
! Avoid using comments of the form /* hello */ instead use // hello.

3 Horizontal and vertical whitespace

Code should be properly formatted for viewing by text editors and for printing. Ideally, each line is
less than 80 characters wide. Use spaces for horizontal whitespace, not tabs. There are no hori-
zontal spaces between the end of a method and its left parenthesis. Hence SomeMethod () is preferable
to SomeMethod (). This is also true with if (), for(), while(), etc. Statements inside of braces are
indented three spaces. A matching pair of braces should be aligned in the same column. The first
set of braces is in column 0 and align with the definition of a method. Subsequent sets of braces align
with the first letter of the statement that created them (e.g., braces are aligned with the first letter in
if, for, while, do, and switch statements). For example,

const charx ConvertStringToDouble(const char *s, double &returnValue, double defaultValue)

// Default return value (in case the string is not a valid number)
returnValue = defaultValue;

// Check if s is a NULL string or "abc" or "123huh" or "(&junk#" or
if(s != NULL)

{
// Use the standard math function strtod to parse the number
char *pointerToCharacterAfterNumber = NULL;
double x = strtod(s, &pointerToCharacterAfterNumber);
// Ensure the number was not too large (overflow), such as 1.0E+999 or -1.0E-999
if (errno==ERANGE && x'=0.0) return NULL;
// Ensure the character after the number is a space or ’\0’, not ’a’ or ’z’ or ...
char characterAfterNumber = pointerToCharacterAfterNumber 7 *pointerToCharacterAfterNumber :
if (characterAfterNumber == ’\0’ || isspace(characterAfterNumber))
{
returnValue = x;
return pointerToCharacterAfterNumber;
b

return NULL;
}

Single-statement if, for, while, and do logic may appear without braces, e.g.,
if (myBody == myWorldBody) position = Vect3(0,0,0);

Use a single blank line to separate logical blocks of code.
Use two blank lines proceeding and following functions or methods.
Proceeding each method should be the following 80 character-wide line:

)z);

