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A major challenge for genomewide disease association studies is the high cost of genotyp-
ing large number of single nucleotide polymorphisms (SNPs). The correlations between
SNPs, however, make it possible to select a parsimonious set of informative SNPs, known
as “tagging” SNPs, able to capture most variation in a population. Considerable research
interest has recently focused on the development of methods for finding such SNPs.
In this paper, we present an efficient method for finding tagging SNPs. The method
does not involve computation-intensive search for SNP subsets but discards redundant
SNPs using a feature selection algorithm. In contrast to most existing methods, the
method presented here does not limit itself to using only correlations between SNPs
in local groups. By using correlations that occur across different chromosomal regions,
the method can reduce the number of globally redundant SNPs. Experimental results
show that the number of tagging SNPs selected by our method is smaller than by using
block-based methods.

Supplementary website: http://htsnp.stanford.edu/FSFS/.

1. Introduction

The abundance of single nucleotide polymorphisms (SNPs) in the human genome
provides powerful tools for studying the association between sequence variation and
the genetic component of common diseases. Although genome-wide SNP scans can
give the most complete information for association studies, it is currently expensive

∗This work was done when the first author was visiting Stanford university.
‡Corresponding author.

241



June 21, 2006 12:9 WSPC/185-JBCB 00194

242 T. M. Phuong, Z. Lin & R. B. Altman

to genotype all available SNPs across the human genome. An alternative strategy
in this situation is to genotype enough SNPs to provide the majority of information
required for association studies, and ignore those that are redundant given typed
SNPs. This strategy is enabled by the correlations between SNPs as manifested as
linkage disequilibrium (LD). A subset of SNPs that are selected to represent the
original information embedded in the full set of SNPs is referred to as the set of
tagging SNPs (tSNPs). The problem of finding this set of tagging SNPs is called
tagging SNP selection problem.

Several algorithms have been proposed for selecting tagging SNPs. A com-
mon approach is to define a measure of goodness for SNP sets and search for
SNP subsets that: (i) are small in size, and (ii) attain high value of the defined
measure.2,25,26 Unfortunately, examining every SNP subset to find good ones is
computationally infeasible for all but smallest data sets. To overcome this difficulty,
investigators have exploited apparent features of haplotypes, which sometimes form
haplotype blocks of limited diversity. Automatic algorithms first partition chromo-
somal regions into haplotype blocks,20,27,28,15 then subsets of tagging SNPs are
searched within each haplotype block. This approach is widely known as the block-
based approach.

A main drawback of block-based methods is that the definition of blocks is not
always straightforward and there is no consensus on how blocks must be formed. In
addition, selecting tagging SNPs based only on the local correlations between mark-
ers of each block ignores inter-block correlations. Recent empirical studies reported
LD distances with upper range extending to hundreds of Kb,8 which are much
longer than maximum block sizes reported in Refs. 11 and 29. Tagging SNP selec-
tion therefore can benefit from using information about these global correlations.
Indeed, a recent study1 shows that using long range LD reduces the number of
tagging SNPs.

Another approach to selecting tagging SNPs uses data reduction techniques such
as principal component analysis (PCA) to find subsets of SNPs capturing majority
of the data variance.18,17 Although not requiring exponential search time, PCA
is still computationally complex, especially for large chromosomal data sets. The
“sliding windows” method proposed by Meng et al.,18 which applies PCA repeatedly
to short chromosomal regions, can make PCA more efficient.

Approaches that look for tagging SNPs globally are known as block-free
approaches.23,2,12 Sebastiani et al.23 represent non-tagging SNPs as boolean func-
tions of tagging SNPs and use set-theoretic techniques to reduce search space.
Bafna, Halldorsson and their colleagues2,12 allow their algorithm to search for sub-
sets of markers that can come from non-consecutive blocks. They reduce the search
space by introducing the notion of neighborhood of markers, which in some sense is
an extension of the block notation. Carlson et al.5 group SNPs into bins such that
in each bin there is at least one SNP (seed) in high LD with all the other SNPs of
the bin, then iteratively remove all SNPs but the seed from current largest bin in
greedy manner. The seed-SNPs then serve as tagging SNPs.
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In this work, we take a block-free approach to make use of all the LD information.
To avoid computational complexity, we do not look for subsets of SNPs but discard
redundant markers using a feature selection method. While this strategy does not
guarantee optimal solutions, it can give better performance on large data sets when
exhaustive search can only be applied locally to short chromosomal regions.

2. Methods

Assume we are given N haploid sequences consisting of m bi-allellic SNPs. The N

sequences can be represented as a matrix of size m × N where rows are sequences
and columns are SNPs. Each element (i, j) of the matrix is the allele of the ith
sequence at the jth SNP locus and can be 0, 1 or 2 where 1 and 2 are the two
alleles and 0 indicates missing data.

We treat the problem of selecting tagging SNPs as a feature selection problem.
Each haploid chromosomal sequence (row) is a learning instance belonging to a
class. Each class consists of identical rows. SNPs (columns) are attributes or fea-
tures, based on which sequences can be classified into classes. The problem is to
select a subset of SNPs that can be used to classify the haploid sequences with the
accuracy close to that of classification using all the SNPs.

There are a number of feature selection methods in the literature, which obvi-
ously are not equally good for our purposes. A feature selection method which is
suitable for selecting tagging SNPs must have the following characteristics: (1) it
should scale well for large number of SNPs; (2) it should not require explicit class
labeling and should not assume the use of a specific classifier because classification
is not the goal of tagging SNP selection; (3) it should allow the user to select dif-
ferent numbers of tagging SNPs for different amounts of tolerated information loss;
and (4) it should have good performance among the methods satisfying the three
first conditions.

Methods for selecting features fall into two categories: filter methods and wrapper
methods. Filter algorithms are general preprocessing algorithms that do not assume
the use of a specific classification method. Wrapper algorithms, in contrast, “wrap”
the feature selection around a specific classifier and select a subset of features based
on the classifier’s accuracy using cross-validation. While there are strong arguments
in favor of both approaches, wrapper algorithms are generally slower and do not
satisfy condition (2). Therefore, we will consider only filter methods that do not
require explicit class labeling.

Here we adopt the filtering feature selection method described in Ref. 19, which
has all the characteristics mentioned above including good reported performance.
The method uses feature correlation/similarity to remove redundant features and
does not require knowledge about class labels. It has a parameter that can be used
to control the degree of information loss (condition 3). It is fast because it does
not explicitly search for subsets of features. We next describe the method, which is
called Feature Selection using Feature Similarity (FSFS).19
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A feature is a good feature not only is it good differentiating classes by itself or
in combination with the other features in a feature subset, but also not redundant
given the other features. FSFS involves grouping features in clusters so that features
within each cluster are similar. A single feature from each cluster is then selected
to present the other cluster members. The next two subsections describe FSFS in
more details.

2.1. Measures of feature similarity

In order to use FSFS, we need to define a measure of similarity between a pair of
features (SNPs in our case). There are a number of pairwise correlation/similarity
measures between two random variables. These measures can be categorized as
linear or nonlinear as they give the amount of linear or higher dependency between
the two variables. Examples of linear measures are well-known correlation coefficient
ρ, the LD measure r2,8 and the least squared regression error e. The authors of
FSFS also introduced a linear measure of similarity between two numerical random
variables called maximal information compression index λ2. An example of non-
linear similarity measures is symmetrical uncertainty SU.21

It has been proved that if there is a linear dependency between some features,
and if the data are linearly separable in the original representation, then the data
remain linearly separable if all but one feature of the linearly dependent features
are removed.7 It is also easy to demonstrate that haplotype classes are linearly
separable when there are only two alleles at a locus. Linear similarity measures are
therefore more suitable when using FSFS to select tagging SNPs.

In our experiments, we used r2 to measure the similarity/correlation between
two SNPs:

r2 =
(pAB · pab − pAb · paB)2

pA · pB · pa · pb
(1)

where A and a are the two possible alleles at one locus, B and b are the two possible
alleles at the other locus; pxy denotes the frequency of observing x and y together
in the same haplotype; px denotes the frequency of x. A r2 value of 1 indicates the
highest LD or highest similarity while the value of 0 indicates no LD.

The LD measure r2 is directly related to recombination rate. r2 is equal to 1
if and only if the two SNPs have not been separated by recombination and their
allele frequencies are the same. In this case, only two out of four possible haplo-
types are present in the sample. The value of r2 decreases as the genetic distance
between the pair of markers increases. More details on the biological meaning and
appropriateness of r2 for genetic mapping can be found in Refs. 9 and 22.

2.2. Tagging SNP selection using FSFS

FSFS selects features by first grouping them into homogeneous subsets and then
choosing a representative feature from each subset. In what follows the terms “fea-
ture” and “SNP” are exchangeable.
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Let the original SNP set of N SNPs be S = {Fi : i = 1, . . . , N} . Let D(Fi, Fj)
denote the distance or dissimilarity between SNPs Fi and Fj (the notion of dis-
tance used here should not be confused with chromosomal distance between SNPs).
The higher D(Fi, Fj) the less similarity between the two features. D(Fi, Fj) may
be computed using one of similarity measures mentioned above, e.g. D(Fi, Fj) =
1 − r2(Fi, Fj). Let R denote the reduced tagging SNP subset to be selected. The
FSFS algorithm is given in Fig. 1.

FSFS takes as input a set S of SNPs, a parameter k, where k is an integer
less than the number of SNPs in S and returns a reduced set R of tagging SNPs.
In the first step, the algorithm initializes R to S. It then discards SNPs from R

through a number of iterations (steps 2–7). During an iteration, for each feature Fi

of R, FSFS calculates the distance dk
i between Fi and its kth nearest neighbor SNP

(step 2). The neighborhood is defined in terms of dissimilarity between SNPs and
should not be confused with the subset of SNPs located nearby in the chromosome.
The algorithm then finds SNP F0 for which dk

0 is minimum, retains this SNP (seed
SNP) in R and discards its k nearest SNPs from R (step 3). By doing that, the
algorithm always discards SNPs from the most compact cluster and F0 is the SNP
for which removing k nearest neighbors causes minimum information lost (Fig. 2).

Fig. 1. The FSFS algorithm.
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Fig. 2. Feature clusters for different k.

For the first iteration, a constant error threshold θ is set θ = dk
0 . Step 4 compares

the cardinality of R after step 3 with k and adjusts k if necessary. In step 6, FSFS
gradually decreases k and recomputes dk

0 until dk
0 is not greater than threshold θ.

This ensures that no SNP which is more θ-dissimilar to a seed will be discarded.
The algorithm ends when no SNP in R can be discarded with error less than or
equal to θ.

FSFS has one parameter k — the number of the nearest neighbors of each
feature. As noted by Mitra et al.,19 the choice of k controls the representation of
data at different degrees of details and provides a direct way to control the maximum
information loss when choosing features. In general, different values of k result in
different reduction degrees of the feature set. The bigger k, the more features are
discarded and vice versa.

In the context of choosing tSNPs, there are two possible ways to select k.
(1) Select k so that the distance between a seed SNP to its k-nearest neighbor
is less than some threshold, which implies that for any non-tagging SNP there exist
a tSNP such that the r2 between them is greater than some threshold. For example,
in Ref. 4, a r2 threshold of 0.8 was used for choosing tSNPs. (2) Select k to achieve
desired prediction accuracy via cross-validation. The accuracy evaluation will be
given in more detail in Sec. 3.

The computational complexity of FSFS with respect to the number of features
N is O(N2). If the data set contains m rows (m sequences in the current problem),
the complexity of computing the similarity of a pair of features depends on the
chosen similarity measure. In particular, the complexity of computing r2 is O(m).
Thus, the overall complexity of the method is O(N2mk) taking into account the
iteration number.

For large data sets with N achieving tens of thousands, the complexity O(N2) is
still high. In our implementation for such large data sets we added a preprocessing
step. In this step all SNPs that are in perfect LD with each other (r2 = 1) are
considered identical and only one of them is retained. The algorithm is then run on
the reduced SNP set where there are no SNP pairs with r2 = 1. For shorter-sequence
data sets (N < 5000) the preprocessing step is not necessary.
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2.3. Evaluation methods

There are several ways to assess the accuracy of a tagging SNP selection method.
Stram et al.23 introduced a quality measure R2, which is the measure of association
between the true numbers of haplotype copies defined over the full set of SNPs
and the predicted number of haplotype copies where the prediction is based on the
subset of tagging SNPs. This measure assumes diploid data and explicit inference
of haplotypes from genotypes and thus is not suitable for our purpose.

Another assessment method due to Clayton (http://www-gene.cimr.cam.ac.uk/
clayton/software/stata/htSNP/htsnp.pdf) is based on a measure of the diversity of
haplotypes. The diversity is defined as the total number of differences in all pairwise
comparison between haplotypes. The difference between a pair of haplotypes is the
sum of differences over all the SNPs. The Clayton’s diversity measure can be used
to define how well a set of tagging SNPs differentiate different haplotypes. This
measure is suitable only for haplotype blocks with limited haplotype diversity and
it is not clear how to use it for large data set consisting of multiple haplotype blocks.

Some recent works17,12 evaluate tagging SNPs selection algorithms based on how
well the tagging SNPs can be used to predict non-tagging SNPs. The prediction
accuracy is determined using cross-validation such as leave-one-out or hold out. In
leave-one-out cross-validation, for each sequence in a data set, the algorithm is run
on the rest of the data set to select a minimum set of tagging SNPs. The alleles of
the left out haplotype are then predicted from “typed” SNPs (tagging SNPs). The
prediction precision is calculated as

number of correctly predicted alleles
all predicted alleles

.

The precision is then averaged over all sequences to give the measure of accuracy
for a tagging SNP algorithm on the data set.

Depending on how tagging SNPs are selected, different prediction methods have
been used during cross-validation process. Halldorsson et al.,12 who select tagging
SNPs based on their ability to differentiate haplotypes, use a modification of the
kNN machine learning method to predict the left-out haplotype. First, the training
haplotypes that are most similar to the left-out haplotype are determined. The
similarity is defined as the Hamming distance over tagging SNP. Then, the alleles
are predicted by a majority vote of the respective alleles from the most similar
training haplotypes.

In contrast, Lin and Altman17 predict the alleles of a non-tagging SNP n from
the tagging SNPs that have the highest correlation coefficient with n. If a single
highly correlated tagging SNP t is found, the alleles are assigned so that their
frequencies agree with the allele frequencies of t. When multiple tagging SNPs
have the same (high) correlation coefficient with n, the common allele of n has
advantage. It is easy to see that in this case the prediction method agrees well with
the selection method, which uses principal component analysis on the matrix of
correlation coefficients between SNPs.
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Since the method of selecting tagging SNPs described here is based on the
pairwise similarity of SNPs, we take the prediction method similar to that of Ref. 17.
In particular, for each non-tagging SNP n we look for the most similar tagging SNP
t, which is the seed of the corresponding cluster (see algorithm above). The allele
An of n is then chosen so that it agrees well with the corresponding allele At of t.
In other words, An is chosen so that P (An|At) is maximum, where P (An|At) is the
conditional probability that An appears in a haplotype at locus n when At appears
in the haplotype at locus t.

2.4. Dealing with diploid data

Up to this point we assumed the input sequences are haploid. In practice, exper-
imental determination of haploid data is much more difficult than that of diploid
data. The use of LD measure r2 can overcome this problem by computationally
inferring haplotype frequencies, e.g. using the EM algorithm of Ref. 10, over each
pair of SNPs, for which r2 needs to be computed. Specifically, to compute r2 by
formula (1) one needs to know only the probabilities of the four possible haplotypes
but not the haplotypes themselves. This approach was used to compute r2 from
diploid data in Ref. 8.

3. Experiments and Results

3.1. Data sets

To assess the method on haploid data, we used two data sets of different sizes.
First, to see the performance of the method in large scale data sets, we use the data
set of human chromosome 21 described in Ref. 20. The data set consists of 24 047
SNPs typed on 20 haploid copies of chromosome 21. Despite the small number of
sampled chromosomes and the high rate of missing data, the data set was used as
a test set in a number of studies.27,28,12 In our experiments we ignored alleles with
missing data. The cross-validation procedure was done on full data set as well as
on the first 1000 SNPs of the set.

The second data set is the IBD 5q31 data set from an inflammatory bowel disease
study of father-mother-child trios.6 Here we used the haploid version of the data set
described in Ref. 17 in which the haplotype phase was solved by applying PHASE
2.0.2.24 The haploid data set after phasing contains 103 biallelic non-singletons
from 774 phased chromosomes. This data set contains no missing data.

These two data sets present different experimental conditions to evaluate tagging
SNP selection methods. While the former contains genome-wide sequences of a
small number of samples, the latter contains relatively shorter sequences of a large
number of samples.

To assess how the method can deal with diploid data, we used the data set
of human chromosome 22 described in Ref. 14. The data set consists of 20 360
SNPs genotyped in 71 individuals from three populations: 23 African Americans,
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24 European Americans, and 24 Han Chinese. The data set has low rate of missing
data (about 2%). We used the unphased version of the data set and ran experiments
on the three subsets of three populations separately. Here we report the results for
the first two populations only due to the similarity of the results.

For all the data sets, we did not consider SNPs with minor allele frequencies
(MAF) of less than 10%.

3.2. Comparison

We compared the method using FSFS with the block-based method of Ref. 28.
This method was chosen because it can deal with large data sets. Another method
that can be used for large data set is the block-free method by Halldorsson et al.12

Unfortunately, we could not obtain the code that implements this method for our
experiments.

The method presented in Ref. 28 uses dynamic programming algorithms to
partition chromosomes into blocks of limited haplotype diversity and searches for
tagging SNP within each block. In our experiments we used the program Haploblock
version 3.0 which is the implementation of the algorithms. To select tagging SNP
subsets of different sizes we ran Haploblock in “Block partition with a fixed number
of tag SNPs” mode with the chromosome coverage for each tagged SNP set to 1. We
also ran FSFS with different values of k to select tagging SNP subsets of different
sizes.

To evaluate the performance of FSFS on diploid data, we compared tagging
SNP sets chosen by the method with those chosen randomly.

3.3. Results

To limit the amount of computation, we followed Ref. 12 and performed leave-one-
out cross-validation of FSFS and the block-based dynamic programming method
on the first 1000 SNPs of the chromosome 21 data set. As noted by those authors,
this subset is highly representative for the overall data set. Figure 3 shows the
cross-validation accuracy plotted against the number of tagging SNPs selected by
each method. As mentioned above, different numbers of tagging SNPs selected by
FSFS resulted from different values of k.

The fraction of correctly predicted non-tagging SNPs is higher for FSFS than
for the block-based method for most selected SNP numbers. The accuracy of the
two methods increases rapidly until reaching about 85%, after that a more grad-
ual improvement is observed, which may be explained by the presence of rare
haplotypes.

Due to relatively large number of sequences of the IBD1 data set, we performed
10-fold cross-validation on it. The results are plotted in Fig. 4. The FSFS-based
method results in smaller tagging SNP sets to achieve a slightly better accuracy than
that of the block-based method. A possible explanation for the better performance
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Fig. 3. Results of leave-one-out experiments on the first 1000 SNPs of the chromosome 21 data
set. The solid and doted curves present the results when using the FSFS, and the block-based
method of Zhang et al.28 respectively. The x-axis shows the number of selected tagging SNPs; the
y-axis shows the fraction of correctly predicted non-tagging SNPs. The results are plotted with
1-std error bars.
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Fig. 4. Results of tenfold cross-validation experiments on IBD1 data set. The solid and doted
curves present the results when using the FSFS, and the block-based method of Zhang et al.28

respectively. The x-axis shows the number of selected tagging SNPs; the y-axis shows the fraction
of correctly predicted non-tagging SNPs. The results are plotted with 1-std error bars.

of FSFS on the IBD1 data set is that despite the relatively small number of SNPs
considered, the data set consists of several small haplotype blocks. The block-based
method does not remove SNPs that are correlated with SNPs from other blocks and
therefore are redundant. A closer look at the output of the block-based algorithm
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verifies this hypothesis. The algorithm partitions the chromosome region into from
5 to 11 blocks depending on the input parameters.

We performed 10-fold cross-validation on the diploid data sets of chromosome
22. To predict non-tagging SNPs in test sets we used a procedure similar to the one
described in Sec. 2.3. The only difference is that instead of predicting individual
alleles, the procedure predicts the two possible alleles for each non-tagging SNPs.
A prediction is counted as correct if both predicted alleles agree with the reference.

To compare tagging SNP sets chosen by FSFS with tagging SNP sets chosen
randomly, for each training subset we used FSFS to select a tagging set TFSFS , then
randomly selected ten tagging sets TR of the same size as TFSFS. The tagging sets
were then used to predict non-tagging SNPs using the same procedure described
above. The accuracy of random selection is averaged over ten generated sets TR for
each cross-validation fold.

The results for the African and European populations are plotted in Figs. 5
and 6 respectively. Tagging sets chosen by FSFS lead to higher prediction accuracy
than that of random tagging sets of same sizes. The results also show that to achieve
the same prediction accuracy fewer tagging SNPs are required on the data set of
European population than those of African population.

It is of question if different populations share the same tSNPs when using the
FSFS based method. To partially answer this, we ran the preprocessing step of the
algorithm (Sec. 2.2) on the pooled data set from all the three populations to see how
many SNPs are in perfect LD with at least one other SNP. In total 5276 such SNPs
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Fig. 5. Results of tenfold cross-validation experiments on chromosome 22 diploid data set, African
population. The solid and doted curves present the results when using the FSFS, and randomly
selected tagging SNPs respectively. The x-axis shows the number of selected tagging SNPs; the
y-axis shows the fraction of correctly predicted non-tagging SNPs. The results are plotted with
1-std error bars.
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Fig. 6. Results of tenfold cross-validation experiments on chromosome 22 diploid data set, Euro-
pean population. The solid and doted curves present the results when using the FSFS, and ran-
domly selected tagging SNPs respectively. The x-axis shows the number of selected tagging SNPs;
the y-axis shows the fraction of correctly predicted non-tagging SNPs. The results are plotted
with 1-std error bars.

are found for the pooled data set. For African, European, and Chinese populations,
the numbers of SNPs defined in this way are 7034, 8364 and 8249 respectively.
These results show that, for the most restrictive threshold of LD measure r2, the
three populations share a considerable fraction of tagging SNPs.

3.4. Cluster organization

The method presented in this works uses the correlations between SNPs that are
located across the chromosome region considered and thus the performance of the
method depends largely on how correlated SNPs are distributed. To understand the
behavior of the method, we analyze the clusters created when running the algorithm.
The algorithm was run on the full chromosome 21 data set and k was chosen to
achieve 80% cross-validation accuracy. These settings resulted in 3009 tagging SNPs
in average. The size and content of clusters created during selection process were
saved and visualized graphically. In all, 1993 clusters were chosen by the algorithm
when discarding SNPs. The maximum size of the neighborhood/cluster created (in
the first iteration) is 481. In Fig. 7, the locations of SNPs from the six largest
clusters are presented.

In Fig. 7, each triangle corresponds to one cluster. The interpretation of triangles
is as follows. The whole chromosome consisting of 24 047SNPs is divided into 81
regions; each contains 300 consecutive SNPs (the last region has only 47 SNPs).
Each row/column corresponds to one such region. Each cell contains the number
of the cluster’s members from the respective row multiplied by the number of the
cluster’s members from the respective column. For example, if a cluster has 5 SNPs
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Fig. 7. The largest six clusters created by FSFS from the chromosome 21 data set. Each triangle
corresponds to one cluster. Rows and columns are regions in the chromosome. Each cell presents
the product of the numbers of clusters members from the respective row and column. Black denotes
low numbers and white denotes high numbers. Thus, the first cluster (upper left) has members
from all along the chromosomal segment.

coming from region x and 10 SNPs coming from region y, then cell (x, y) of the
respective triangle contains value 5 ∗ 10 = 50. Gray-scale levels are used to present
digital values. Black denotes 0, and white denotes maximum number. Other gray
levels denote values between 0 and maximum.

The figure shows that large clusters consist of SNPs from different regions of the
chromosome. Since the algorithm groups SNPs into clusters based on within cluster
LD distances, these figures shows that SNPs, which are in high LD can be located
distantly but not only within haplotype blocks. This observation is consistent with
the findings reported in Ref. 7, which show high LD between distantly located
SNPs.

In comparing FSFS with the block-based method, there are two questions of
interest: (1) what is the fraction of redundant SNPs that can be removed by the
block-based method due to within-block correlations but cannot be removed by
FSFS; (2) what is the fraction of redundant SNPs that can be removed by FSFS
due to remote correlations but cannot be removed by the block-based method. To
answer the first question we ran the block-based method on the IBD1 data set
with parameters chosen to achieve about 90% cross-validation accuracy. We then
ran FSFS on each block generated by the block-based method to achieve the same
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90% accuracy. Because FSFS was run on individual blocks it was limited to use
only within-block correlations. The numbers of tSNPs from the blocks were then
sum up and compared with those selected by the block-based method. The IBD1
data set was chosen for this experiment to reduce computational complexity. These
settings resulted in 86 SNPs discarded by the block-based method and 78 SNPs
discarded by FSFS.

The answer to the second question is not so straightforward because a redundant
SNP can be removed by FSFS due to either local or remote correlations. Thus we
tried to answer this question indirectly. Both methods were run on the IBD1 data set
to achieve about 90% cross-validation accuracy. We then mapped the SNPs removed
by FSFS to the blocks formed by the block-based method. If a FSFS-removed SNP
and its tagging SNP are within the same block, the correlation between the two
SNPs is considered local, otherwise it is considered global. The experiment shows
that among redundant SNPs removed by FSFS, 58% have local correlations with
their tSNPs and 42% have global correlations with their tSNPs.

4. Conclusion

We investigated an efficient block-free SNP-tagging method and compared it to
an existing block-based method. The new block-free method showed good perfor-
mances in finding smaller tagging SNP set to achieve the same cross-validation
prediction accuracy in two experimental datasets.

The method has two major characteristics. First, it does not involve subset
search. Instead, SNPs are removed individually to form tagging sets based on pair-
wise similarity. Second, global similarity/correlations between SNPs across chro-
mosomes are used to find redundant markers. While the first characteristic does
not allow finding tagging SNPs that in combination with other tagging SNPs can
predict non-tagging ones,26 it makes computation less complex. This enables the
realization of the second characteristic. The overall effect is that while being not
optimal, the method presented here can have performance comparable or better
than methods based on block-partitioning when applied to chromosome regions
with high haplotype diversity.

The method presented in this paper is similar to the one suggested by Carlson
et al.5 in that: (1) both methods use pairwise LD as measure of similarity; (2) both
methods group SNPs in clusters and find a representative SNP for the best clus-
ter. The difference is in the way FSFS forms clusters and selects the best cluster.
While the method by Carlson et al.5 forms clusters based on a LD threshold, FSFS
groups SNPs in clusters of the same size and selects the most compact one. We also
explicitly evaluated the goodness of tagging SNPs in predicting non-tagging SNPs
using cross-validation. Cross-validation is also a natural way to choose the main
parameter of the algorithm — the start size of clusters.

The main reason our method is able to find smaller sets of tagging SNPs than
block-based methods is that it takes advantage of using both local and long range
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LD across chromosomes. This is demonstrated from the analysis of SNP clusters
formed during FSFS’s iterations. The presence of such long-range LD and the ben-
efits of using them to select tagging SNPs have also been reported in a recent
paper.1 These results together give more support to block-free approaches to find-
ing tagging SNPs. With more block-free tagging methods become accessible, we
can further analyze them and compare them to FSFS.
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