
AMD Stream

Mike Houston

System Architect

Advanced Technology Development

AMD

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

ATI Radeon™ HD 4800 Series Architecture

2

UVD &

Display

Controllers

GDDR5 Memory Interface

Texture

Units

SIMD

Cores

PCI Express Bus Interface

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

Terascale Graphics Engine

3

• 800 highly optimized stream
processing units

• New SIMD core layout

• Optimized fetch units

• New cache design

• New memory architecture

ATI
Radeon™

HD 3870

ATI
Radeon™

HD 4870
Difference

Die Size 190 mm
2

260 mm
2

1.4x

Memory 72 GB/sec 115 GB/sec 1.6x

Fetch units 16 40 2.5x

Shader 320 800 2.5x

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

Design Efficiency

4

0

1

2

3

4

5

6

7

8

9

10
GigaFlops per Watt GigaFlops per mm^2

ATI RADEON™

HD 4800

ATI RADEON™

HD 3800

ATI RADEON™

HD 2900ATI RADEON™

X1900
ATI RADEON™

X1800

4x Performance/w and
Performance/mm² in less

than a year

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

SIMD Cores

• Each core:

– Includes 80 scalar stream processing units in total + 16KB Local Data Share

– Has its own control logic and runs from a shared set of threads

– Has 4 dedicated texture units + L1 cache

– Communicates with other SIMD cores via 16KB global data share

• New design allows texture fetch capability to scale with shader power,
maintaining 4:1 ALU:TEX ratio

5

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

Stream Processing Units

• 40% increase in performance per
mm2*

• More aggressive clock gating for
improved Performance per Watt *

• Fast double precision processing
(240 GigaFLOPS)

• Integer bit shift operations
for all units

(12.5x improvement *)

6

* Internal AMD test results comparing ATI RadeonTM HD 4800 series and ATI RadeonTM HD 3800 series

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

Texture Units

• New cache design

–L2s aligned with memory
channels

–L1s store unique data per SIMD
2.5x increase aggregate L1*

–Separate vertex cache

– Increased bandwidth
Up to 480 GB/sec of L1 texture fetch
bandwidth

Up to 384 GB/sec between L1 & L2

7

* Comparing ATI RadeonTM HD 4800 series and ATI RadeonTM HD 3800 series

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

Memory Controller Architecture

• New distributed design with hub

• Controllers distributed around
periphery of chip, adjacent to
primary bandwidth consumers

• Memory tiling & 256-bit interface
allows reduced latency, silicon
area, and power consumption

• Hub handles relatively low
bandwidth traffic

– PCI Express, CrossFireX
interconnect, UVD2, display
controllers, intercommunication)

8

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

9

ATI Radeon™ HD 4800 Series Stream Architecture

• Several enhancements done
for stream computing

• Fast compute vector

• Local and Global data
shares

• Fast Integer Processing

• Fast Gather/Scatter

• Significant increases in
performance on many
important stream processing
workloads

Internal AMD testing, CAL SDK version 1.1, Intel QX6800 CPU,
Catalyst version 8.5

0%

100%

200%

300%

400%

500%

600%

700%

800%

Peak Single
Precision

Flops

Peak Double
Precision

Flops

Matrix
Multiplication

(Single)

Matrix
Multiplication

(Double)

FFT AES
Encryption

Radeon HD 3870

Radeon HD 4870

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

10

ATI Radeon™ HD 4870 Computation Highlights

>100 GB/s memory bandwidth

– 256b GDDR5 interface

Targeted for handling thousands of
simultaneous lightweight threads

800 (160x5) stream processors

– 640 (160x4) basic units
(FMAC, ADD/SUB, etc.)

~1.2 TFlops theoretical peak

– 160 enhanced transcendental units
(adds COS, LOG, EXP, RSQ, etc.)

– Support for INT/UINT in all units
(ADD/SUB, AND, XOR, NOT, OR, etc.)

– 64-bit double precision FP support

1/5 single precision rate (~250GFlops
theoretical performance)

4 SIMDs -> 10 SIMDs

–2.5X peak performance increase over
ATI Radeon™ 3870

–~1.2 TFlops FP32 theoretical peak

–~250 GFlops FP64 theoretical peak

Scratch-pad memories

–16KB per SIMD (LDS)

–16KB across SIMDs (GDS)

Synchronization capabilities

Compute Shader

–Launch work without rasterization

–“Linear” scheduling

–Faster thread launch

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

Stream Computing SDK

AMD
Multi-Core

CPUs

AMD Runtime

Compilers Libraries 3rd Party Tools

Brook+
GCC

OpenCLTM

Rapidmind
Other ISVs

ACML
Cobra
RNG

Crypto

Graphics
APIs

Direct X
OpenGL

Compute Abstraction Layer (CAL)

AMD
Stream

Processors

11

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

What is Brook+?

Brook is an extension to the C-language for stream
programming originally developed by Stanford University

Brook+ is an implementation by AMD of the Brook GPU
spec on AMD's compute abstraction layer with some
enhancements

12
12

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

Simple example – sum 2 arrays

float a[Y][X];

float b[Y][X];

float c[Y][X];

for(int i=0; i<Y; i++)

{

for(int j=0; j<X; j++)

{

c[i][j] = a[i][j] + b[i][j];

}

}

13

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

kernel void sum(float a<>, float b<>, out float c<>)

{

c = a + b;

}

int main(int argc, char** argv)

{

int i, j;

float a<10, 10>;

float b<10, 10>;

float c<10, 10>;

float input_a[10][10];

float input_b[10][10];

float input_c[10][10];

for(i=0; i<10; i++) {

for(j=0; j<10; j++) {

input_a[i][j] = (float) i;

input_b[i][j] = (float) j;

}

}

streamRead(a, input_a);

streamRead(b, input_b);

sum(a, b, c);

streamWrite(c, input_c);

...

}

Simple example – sum 2 arrays

Streams – collection of data
elements of the same type
which can be operated on in
parallel.

Brook+ memory access
functions

Kernels – Program functions
that operate on streams

14

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

kernel void sum(float a<>, float b<>, out float c<>)

{

c = a + b;

}

int main(int argc, char** argv)

{

int i, j;

float a<10, 10>;

float b<10, 10>;

float c<10, 10>;

float input_a[10][10];

float input_b[10][10];

float input_c[10][10];

for(i=0; i<10; i++) {

for(j=0; j<10; j++) {

input_a[i][j] = (float) i;

input_b[i][j] = (float) j;

}

}

streamRead(a, input_a);

streamRead(b, input_b);

sum(a, b, c);

streamWrite(c, input_c);

...

}

Brook+ kernels

Standard Streams - implicit
and predictable access pattern

kernel void sum(float a[], float b[], out float c<>)

{

int idx = indexof(c);

c = a[idx] + b[idx];

}
Gather Streams - dynamic
read access pattern

kernel void sum(float a<>, float b<>, out float c[])

{

int idx = indexof(c);

c[idx] = a + b;

}
Scatter Stream - dynamic
write access pattern

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

15

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

Converts Brook+ files into C++ code. Kernels, written in
C, are compiled to AMD’s IL code for the GPU or C code for
the CPU.

Brook+ compiler

16

CPU Code
(C)

CPU, Stream
Code Splitter

brcc

brt

Integrated
Stream Kernel
& CPU Program

CPU Backend GPU Backend

CPU Emulation Code
(C++)

AMD Stream Processor
Device Code (IL)

Kernel
Compiler

Stream Runtime

16

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

IL code is executed on the GPU. The backend is written in
CAL.

Brook+ runtime

17

CPU Code
(C)

CPU, Stream
Code Splitter

brcc

brt

Integrated
Stream Kernel
& CPU Program

CPU Backend GPU Backend

CPU Emulation Code
(C++)

AMD Stream Processor
Device Code (IL)

Kernel
Compiler

Stream Runtime

17

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

Brook+ features

Brook+ is an extension to the Brook for GPUs source code.

Features of Brook for GPUs relevant to modern graphics
hardware are maintained.

Kernels are compiled to AMD’s IL

Runtime uses CAL to execute on AMD GPUs

CAL runtime generates ASIC specific ISA dynamically

Double precision

Integer support

Scatter (mem-export)

Asynchronous CPU->GPU transfers (GPU->CPU still
synchronous)

18
18

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

19

OpenCL

CPUs
Multiple cores driving
performance
increases

GPUs
Increasingly general
purpose data-parallel
computing
Improving numerical
precision

Graphics APIs
and Shading
Languages

Multi-processor
programming –
e.g. OpenMP

Emerging
Intersection

OpenCL
Heterogenous
Computing

OpenCL – Open Computing Language
Open, royalty-free standard for portable, parallel programming of heterogeneous

parallel computing CPUs, GPUs, and other processors

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

OpenCL
• Use all computational resources in system

Program GPUs, CPUs, and other processors as peers

Support both data- and task- parallel compute models

• Efficient C-based parallel programming model

Abstract the specifics of underlying hardware

• Abstraction is low-level, high-performance but device-portable

Approachable – but primarily targeted at expert developers

Ecosystem foundation – no middleware or “convenience” functions

• Implementable on a range of embedded, desktop, and server systems

HPC, desktop, and handheld profiles in one specification

• Large industry effort:
3DLABS, Activision Blizzard, AMD, Apple, ARM, Barco, Broadcom,

Codeplay, Electronic Arts, Ericsson, Freescale, HI, IBM, Intel,
Imagination Technologies, Kestrel Institute, Motorola, Movidia, Nokia,

NVIDIA, QNX, RapidMind, Samsung, Seaweed, Takumi,
Texas Instruments and Umeå University

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

For more information

AMD Stream Computing SDK

http://ati.amd.com/technology/streamcomputing/

OpenCL

http://www.khronos.org/opencl/

21

http://ati.amd.com/technology/streamcomputing/

Mike Houston | OpenMM Workshop | February 12, 2009
All slides © 2009 Advanced Micro Devices, Inc. Used with permission.

Disclaimer and Attribution
DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions and typographical errors.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN
THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT,
INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

ATTRIBUTION

© 2008 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ATI, the ATI logo,
CrossFireX, PowerPlay and Radeon and combinations thereof are trademarks of Advanced Micro Devices,
Inc. Other names are for informational purposes only and may be trademarks of their respective owners.

