

Validating OpenMM

Peter Eastman OpenMM Workshop, Sept. 6, 2012

What is Validation?

- Make sure OpenMM works correctly...
 - Does not crash
 - Produces correct results
- Must validate *all* features across...
 - Operating systems (Linux/Mac/Windows, 32/64 bit, different OS versions)
 - GPUs (Nvidia/AMD, different generations and models)
 - OpenCL implementations (Nvidia/AMD/Apple)

Unit Tests

- Validate specific features
- Most are very simple
 - Example: Simulate a single harmonic bond with a verlet integrator, compare to the analytical result
- Some use more complicated systems
 - Example: Simulate a box of water at constant temperature and pressure, check the average box volume and kinetic energy

Unit Tests, cont.

• Unit tests are included with the source code

\$ make test

Running tests...

Test proje	ct /User:	s/peastman/workspace/openmm/bin		
St	art 1:	TestReferenceAndersenThermostat		
1/160 Te	st #1:	TestReferenceAndersenThermostat	Passed	0.28 sec
St	art 2:	TestReferenceBrownianIntegrator		
2/160 Te	st #2:	TestReferenceBrownianIntegrator	Passed	0.15 sec
St	art 3:	TestReferenceCMAPTorsionForce		
3/160 Te	st #3:	TestReferenceCMAPTorsionForce	Passed	0.02 sec
St	art 4:	TestReferenceCMMotionRemover		
4/160 Te	st #4:	TestReferenceCMMotionRemover	Passed	0.01 sec
St	art 5:	TestReferenceCustomAngleForce		
5/160 Te	st #5:	TestReferenceCustomAngleForce	Passed	0.02 sec

. . .

System Tests

- Test realistic systems
 - Proteins, DNA, RNA
 - Implicit and explicit solvent
 - From 75 to 173,181 atoms
- Three types of tests
 - Consistency across platforms
 - Force/Energy consistency
 - Integrator accuracy

Platform Consistency Tests

 Check that forces computed with Reference/CUDA/OpenCL agree

Force	Average Relative Difference
Harmonic Bond	1.982e-05
Harmonic Angle	1.153e-05
Periodic Torsion	1.506e-05
RB Torsion	3.878e-06

Force/Energy Consistency Tests

- Verify that $F=-\nabla E$
 - Compute force and energy
 - Take a tiny step, evaluate energy again
 - Did it change by the right amount?

Force	Max Relative Difference
Harmonic Bond	7.512e-03
Harmonic Angle	4.170e-03
Periodic Torsion	1.434e-02
RB Torsion	3.540e-03

Integrator Tests

- Deterministic integrators
 - Is energy conserved?
- Stochastic integrators
 - Is the average kinetic energy correct for the temperature?

Comparison to Other Programs

Compare forces to Gromacs (conventional force fields) and Tinker (AMOEBA)

Force	Average Relative Difference
Harmonic Bond	1.658e-04
Harmonic Angle	6.347e-05
Periodic Torsion	3.701e-05
Nonbonded, no cutoff	6.125e-07

