Validating OpenMM

Peter Eastman
OpenMM Workshop, Sept. 6, 2012
What is Validation?

• Make sure OpenMM works correctly...
 – Does not crash
 – Produces correct results

• Must validate all features across...
 – Operating systems (Linux/Mac/Windows, 32/64 bit, different OS versions)
 – GPUs (Nvidia/AMD, different generations and models)
 – OpenCL implementations (Nvidia/AMD/Apple)
Unit Tests

• Validate specific features
• Most are very simple
 – Example: Simulate a single harmonic bond with a verlet integrator, compare to the analytical result
• Some use more complicated systems
 – Example: Simulate a box of water at constant temperature and pressure, check the average box volume and kinetic energy
Unit Tests, cont.

• Unit tests are included with the source code

$ make test
Running tests...
Test project /Users/peastman/workspace/openmm/bin
 Start 1: TestReferenceAndersenThermostat
1/160 Test #1: TestReferenceAndersenThermostat Passed 0.28 sec
 Start 2: TestReferenceBrownianIntegrator
2/160 Test #2: TestReferenceBrownianIntegrator Passed 0.15 sec
 Start 3: TestReferenceCMAPTorsionForce
3/160 Test #3: TestReferenceCMAPTorsionForce Passed 0.02 sec
 Start 4: TestReferenceCMMotionRemover
4/160 Test #4: TestReferenceCMMotionRemover Passed 0.01 sec
 Start 5: TestReferenceCustomAngleForce
5/160 Test #5: TestReferenceCustomAngleForce Passed 0.02 sec
...

System Tests

• Test realistic systems
 – Proteins, DNA, RNA
 – Implicit and explicit solvent
 – From 75 to 173,181 atoms

• Three types of tests
 – Consistency across platforms
 – Force/Energy consistency
 – Integrator accuracy
Platform Consistency Tests

- Check that forces computed with Reference/CUDA/OpenCL agree

<table>
<thead>
<tr>
<th>Force</th>
<th>Average Relative Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic Bond</td>
<td>1.982e-05</td>
</tr>
<tr>
<td>Harmonic Angle</td>
<td>1.153e-05</td>
</tr>
<tr>
<td>Periodic Torsion</td>
<td>1.506e-05</td>
</tr>
<tr>
<td>RB Torsion</td>
<td>3.878e-06</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Force/Energy Consistency Tests

• Verify that $F=-\nabla E$
 – Compute force and energy
 – Take a tiny step, evaluate energy again
 – Did it change by the right amount?

<table>
<thead>
<tr>
<th>Force</th>
<th>Max Relative Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic Bond</td>
<td>7.512e-03</td>
</tr>
<tr>
<td>Harmonic Angle</td>
<td>4.170e-03</td>
</tr>
<tr>
<td>Periodic Torsion</td>
<td>1.434e-02</td>
</tr>
<tr>
<td>RB Torsion</td>
<td>3.540e-03</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Integrator Tests

- **Deterministic integrators**
 - Is energy conserved?

- **Stochastic integrators**
 - Is the average kinetic energy correct for the temperature?
Comparison to Other Programs

• Compare forces to Gromacs (conventional force fields) and Tinker (AMOEBA)

<table>
<thead>
<tr>
<th>Force</th>
<th>Average Relative Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic Bond</td>
<td>1.658e-04</td>
</tr>
<tr>
<td>Harmonic Angle</td>
<td>6.347e-05</td>
</tr>
<tr>
<td>Periodic Torsion</td>
<td>3.701e-05</td>
</tr>
<tr>
<td>Nonbonded, no cutoff</td>
<td>6.125e-07</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>