
Creating and customizing force fields in
OpenMM

Lee-Ping Wang
Stanford Department of Chemistry

OpenMM Workshop, Stanford University
March 2013

Introduction: A wide range of simulation domains

• Computer
simulations of atoms
and molecules span a
vast range of detail

• More detailed
theories can describe
complex phenomena
and offer higher
accuracy

• Less detailed
theories allow for
simulation of larger
systems / longer
timescales

• In molecular
mechanics simulation,
the potential energy of
molecules is

10 ps, 100
atoms: chemical
reactions

100 fs, 10
atoms:
photochemistry

10 µs, thousands of
atoms:
protein folding,
drug binding

Single-point, 2-3 atoms

1 ms+, 1 million atoms:
dynamics of large
proteins, cell
membranes, viruses

Introduction: Force Fields

• Force fields are
built from functional
forms and empirical
parameters

• Interactions include
bonded pairwise, 3-
body, and 4-body
interactions…

• … as well as non-
bonded pairwise
interactions

• Simulation accuracy
depends critically on
choice of parameters

Creating a Force Field
Your project may require you to build a force
field or obtain parameters from the literature.

Image sources:
http://en.wikipedia.org/wiki/Villin
http://www.georgian.edu/chemistry/
http://qc.physto.se/~ps/biochem.html

Common:
Biomolecules (e.g. villin)

Ships with OpenMM
and most MD codes

Uncommon:
Organic molecules
(e.g. vancomycin)
General force field

procedures (GAFF, CGenFF)
available

Rare:
Inorganic molecules

(e.g. Photosystem II OEC)
Consult the literature

We will build a force field for formaldehyde and
reproduce a literature result.

Our graph matches the left side
of the literature plot and also
reveals a previously hidden

asymmetry
OpenMM result Original publication

Overview

Ren, Wu and Ponder, J. Chem. Theory Comput. 2011, 7,
3143.

Reporters Reporters

Forces

Diagram of classes in OpenMM 5.0

creates w/ Topology Context System
State

Platform
(e.g. Cuda,

OpenCL)

PDBFile
AmberInpcrdFile AmberPrmtopFile

ForceField

Simulation

Topology

required for

re
qu

ire
d

fo
r

cr
ea

te
s

creates

co
nt

ai
ns

API Layer
Class

App Layer
Class from

File

App Layer
Class

Positions

Energy

Forces

Velocities

Box Vectors

contains
Reporters
(e.g. DCD,
State Data)

XmlSerializer

Forces Forces

co
nt

ai
ns

Time step

Minimize energy

Method

Data

Integrator
(e.g. Verlet,

Langevin)

<ForceField>
<Residues>
 <Residue name="FML">
 <Atom name="C" type="fml-C"/>
 <Atom name="O" type="fml-O"/>
 <Atom name="H1" type="fml-H"/>
 <Atom name="H2" type="fml-H"/>
 <Bond from="0" to="1"/>
 <Bond from="0" to="2"/>
 <Bond from="0" to="3"/>
 </Residue>
 </Residues>
 <AtomTypes>
 <Type name="fml-C" class="C" element="C" mass="12.0"/>
 <Type name="fml-O" class="O" element="O" mass="16.0"/>
 <Type name="fml-H" class="H" element="H" mass="1.0"/>
 </AtomTypes>
 <NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
 <Atom type="fml-C" charge="0.450" sigma="0.375" epsilon="0.439"/>
 <Atom type="fml-O" charge="-0.450" sigma="0.296" epsilon="0.878"/>
 <Atom type="fml-H" charge="0.000" sigma="0.242" epsilon="0.063"/>
 </NonbondedForce>
 <HarmonicBondForce>
 <Bond class1="C" class2="O" length="0.12290" k="476976.0"/>
 <Bond class1="C" class2="H" length="0.10900" k="284512.0"/>
 </HarmonicBondForce>
 <HarmonicAngleForce>
 <Angle class1="H" class2="C" class3="O" angle="2.0943985" k="265.73"/>
 <Angle class1="H" class2="C" class3="H" angle="2.0943985" k="265.73"/>
 </HarmonicAngleForce>
</ForceField>

Contents of a force field XML file:
A Residue section provides a residue template,
consisting of an ordered list of atoms and a list of bonds.
Each atom has a name and a type.
In this file, the residue name and atom names are unused.
Atom types are grouped into atom classes and elements.
Elements are used to recognize molecules from the PDB file.
Atom types and atom classes specify physical interactions.

The XML force field format

See Chapter 7 in User’s Guide for more details.

HETATM 1 C FML 0 1.057 -0.271 0.000 1.00 0.00 C
HETATM 2 O FML 0 2.177 0.200 0.000 1.00 0.00 O
HETATM 3 H1 FML 0 0.156 0.355 0.000 1.00 0.00 H
HETATM 4 H2 FML 0 0.893 -1.360 0.000 1.00 0.00 H
HETATM 5 HW1 HOH 1 -2.871 0.841 0.000 1.00 0.00 H
HETATM 6 OW HOH 1 -2.331 0.044 0.000 1.00 0.00 O
HETATM 7 HW2 HOH 1 -2.972 -0.673 0.000 1.00 0.00 H
CONECT 1 2 3 4
CONECT 2 1
CONECT 3 1
CONECT 4 1

The PDB format

See Chapter 7 in User’s Guide for more details.

How OpenMM reads the PDB file:
Each residue should have a distinct name and/or number.
The CONECT records specify which atoms are bonded.
Residues are matched to residue templates in the force field
using only the elements and the bonds between them.
The atom names and residue names don’t need to match
the force field, but it’s preferable that they do (for clarity.)
However, the atom names and residue names are used to
look up standard residues in the OpenMM internal databases.

The PDB contains a list of atoms and bonds
called the Topology – this is needed to make

the System.

Building a topology

> MyPDB = PDBFile(‘input.pdb’) # Create a PDB object.
> Topo = MyPDB.topology # Assign variable name to topology.
> Atoms = list(Topo.atoms()) # Create a list of atom objects.
> Bonds = list(Topo.bonds()) # Create a list of bonded atom pairs.
> for A in Atoms: # Loop through the atoms.
 print A.name, # Print the name of the atom.
C O H1 H2 H1 O H2

> for B in Bonds: # Loop through the bonded atom pairs.
 print B[0].name, B[1].name # Print the names of atoms in each bond.
H1 O
H2 O
C O
C H1
C H2

> FF = ForceField(‘fml.xml’, ‘tip3p.xml’) # Read the force field XML files.
> System = FF.createSystem(Topo) # Create the system using ForceField
 # and Topology objects.

The PDB contains a list of atoms and bonds
called the Topology – this is needed to make

the System.

The XmlSerializer saves System objects to
disk.

Storing a system object on disk

> Serial = XmlSerializer.serializeSystem(System) # Convert System to XML text.
> print Serial # Print the XML text to terminal.
<?xml version="1.0" ?>
<System type="System" version="1"> # This is a System XML file
 <PeriodicBoxVectors> # containing a complete
 # specification of the System.
 <B x="0" y="2" z="0" />
 <C x="0" y="0" z="2" /> # It is comparable to the GROMACS
 </PeriodicBoxVectors> # .tpr or AMBER .prmtop formats.
 <Particles>
 <Particle mass="12" />
 <Particle mass="16" />
...

> XmlOut = open(‘opls-sys’,’w’) # Open file for writing.
> print >> XMLOut, Serial # Write XML text to file.
> XMLOut.close() # Close file.

Once you have written the XML file, it is very easy to load.
> Serial2 = open(‘opls-sys.xml’).read()
Deserialize the XML text to create a System object.
> System2 = XmlSerializer.deserializeSystem(Serial2)

Exercise

• Scenario: You are asked to work on a project that was started by a
senior grad student – but he or she has graduated and is not responding
to email!

1) The Residues section of the force field XML file is incomplete.
Repair it such that it correctly contains a residue template for the
formaldehyde molecule.

2) Execute the EnergyScan.py script and write the results to a file,
e.g., python EnergyScan.py >> results.txt. Plot the resulting
OPLS-AA energy profile (red curve)

3) Modify the force field parameters (charge, sigma, epsilon); can you

Energy Profile Geometries

	Creating and customizing force fields in OpenMM
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

