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The dream: simulating molecular dynamics

Basic idea: calculate forces between atoms,
then numerically integrate Newton’s Equations

M. Levitt, Nature Structural Biology 8 392 (2001)
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The dream: simulating molecular dynamics

Basic idea: calculate forces between atoms,
then numerically integrate Newton’s Equations

2013 Nobel Prize in Chemistry Awarded to 
Karplus, Levitt, and Warshel
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The nightmare: long time scales
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OpenMM suite of applications
http://simtk.org/home/openmm

Fast MD

MSM Accelerator: parallelize

∆G calcs
(Chodera Lab)

MSM Builder: analyze
MSM Explorer: visualize

ensemble 
refinement

Odin

(Pande Lab)
ForceBalance

(Pande Lab)
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OpenMM
http://simtk.org/home/openmm

rapid development  + 
rapid execution=

OpenMM is an app, API, and library for rapid 
molecular dynamics.  

Easy to modify and incorporate into any code.
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History of OpenMM 

Buck, Vishal 
(Hanrahan, Darve, Pande)

Elsen, Houston, Vishal 
(Hanrahan, Darve, Pande)

FAH/ATI:  Houston, 
Friedrichs 

(Pande, Simbios, ATI)
FAH/NVIDIA:  LeGrand, 

Friedrichs, Eastman  (Pande, 
Simbios, NVIDIA)

Open MM:  Friedrichs, et al
(Pande, Simbios, ATI)

CUDA (Buck,
NVIDIA)

Brook code

2005

2006

2007/8

2009 2008

2007

OpenMM 4.0:  Eastman, Friedrichs et al (Simbios, Pande)2012
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OpenMM: JAC benchmark
CUDA 

(GTX Titan)
OpenCL 

(GTX Titan)
OpenCL 

(HD 7970)

Implicit hbonds 284 183 120

Implicit hangles 524 324 104

RF 2fs 162 124 83.5

RF 5fs 330 233 90.2

PME 2fs 104 61 49.3

PME 5fs 226 132 63.0

Joint AMBER-CHARMM DHFR Benchmark in ns/day
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OpenMM roadmap

• OpenMM 6
• Normal mode analysis 

script
• AMOEBA OpenCL 

implementation
• Constant pH 

implementation (JDC)
• YANK release soon (JDC)
• test/validate ABSINTH 

implicit solvent
• More modeling tools within 

OpenMM app

• Further development 
Rosetta force field

• Triclinic boxes
• A more accurate SASA 

calculation for use with GB 
models

• Parameterize GB/VI at 
different temperatures

• CHARMM27 force field
• Thermodynamic ensemble 

validation tests
• PME for Lennard-Jones

http://wiki.simtk.org/openmm/RoadmapTimeline
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Licensing and distribution

• API & reference BSD license, GPU kernels are LGPL
• free & open
• we want LGPL to have a community owned set of GPU kernels
• we’re looking for collaborations for new features

• But, please cite us
• P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. 

Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. 
Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M. R. Shirts, and 
V. S. Pande.  OpenMM 4.0: A Reusable, Extensible, Hardware 
Independent Library for High Performance Molecular 
Simulation.  Journal of Computational and Theoretical 
Chemistry 9 461–469 (2013).

Monday, March 24, 14



How can we simulate 
experimentally relevant, 

long timescales?

The power of 
Markov State Models
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Comparing two approaches
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$15M ANTON Specialized 
hardware from D.E. Shaw can 

compute 14µs/day
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$15M ANTON Specialized 
hardware from D.E. Shaw can 

compute 14µs/day

$0.3M GPU cluster + OpenMM
+MSMB can also compute 14µs/

day at ~1/50th the cost

50x more powerful =
50x less expensive

OpenMM: Over 100ns/day on 24,000 atom JAC

MSM Builder:  http://msmbuilder.org
OpenMM:    http://openmm.org

Comparing two approaches
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Our Goals
• Build a model which can predict everything

• kinetics, thermodynamics, structure

• Build a model which can yield powerful 
visualizations
• movies of key phenomena

• Broad applicability
• works on many systems
• easy to use, easily automated
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Comparison to other methods
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Accelerated MD Anton Metadynamics

Milestoning Replica ExchangePath-based methods

MSM
Popular methods
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What are Markov State Models (MSMs)?

dpi
dt

=
X

l

[kl,ipl � ki,lpi]

MSMs automatically build a Master Equation with MD 
simulation, typically with many short (~µs) trajectories
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What are Markov State Models (MSMs)?

with the goals of:
(1) aiding simulators reach long timescales and 
(2) gaining novel insight from their simulations
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MSMs automatically build a Master Equation with MD 
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What are Markov State Models (MSMs)?

see the work of:  Andersen, Best, Bowman, Caflisch, Chodera, Deuflhard, Dill, 
Grubmüller, Huang, Hummer, Levy, Noé, Pande, Pitera, Roux, Schütte, Swope, Weber 

with the goals of:
(1) aiding simulators reach long timescales and 
(2) gaining novel insight from their simulations

dpi
dt

=
X

l

[kl,ipl � ki,lpi]

MSMs automatically build a Master Equation with MD 
simulation, typically with many short (~µs) trajectories
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Short trajectories vs long timescales?
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Short trajectories vs long timescales?
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p ≈ kt for short time

for k = 1/µs, t = 0.01µs, p = 1%
i.e. 1 out of 100 will cross! 

Two state (Single Barrier) Case

A Bk
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Key stages in MSM construction

run multiple trajectories build MSM,
choose new starting points

run new trajectories repeat until convergence
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Key stages in MSM construction

Adaptive sampling pushes in all degrees of 
freedom, not just pre-chosen coordinates.
This is very important in high dim spaces.

run multiple trajectories build MSM,
choose new starting points

run new trajectories repeat until convergence
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MSM vs long trajectory
MSM Adaptive Sampling Single long trajectory

(McGibbon,	
  Kiss,	
  Harrigan,	
  
Lane,	
  VSP)

(movie by Harrigan, McGibbon)
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MSM vs long trajectory
MSM Adaptive Sampling Single long trajectory

(McGibbon,	
  Kiss,	
  Harrigan,	
  
Lane,	
  VSP)

(movie by Harrigan, McGibbon)

efficient ⊥ sampling,

trivial to parallelize
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MSM vs long trajectory
MSM Adaptive Sampling Single long trajectory

(McGibbon,	
  Kiss,	
  Harrigan,	
  
Lane,	
  VSP)

(movie by Harrigan, McGibbon)

cross barriers much slower,

much worse statisticsefficient ⊥ sampling,

trivial to parallelize
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Comparison to other methods
• aMD 

• removes kinetic information
• speeds on certain degrees of freedom 

–– must know which ones are slow

• Metadynamics
• removes kinetic information
• drives on pre-chosen degrees of freedom, misses key 

challenge of how to sample orthogonal dofs

• Replica Exchange
• removes kinetic information
• works best for energy barriers, not ∆G barriers
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Comparison to other methods
• Highly parallel MD

• still requires the kinetic analysis.  
• many short trajectories are MUCH more efficient
• very expensive (50x) given throughput: GPU cluster better 

at many short trajectories
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Making sense of MSMs: lumping
A hierarchical model for testing lumpings

Macrostate chain (yn) Microstate chain (zn)

y1 �⇥ z1

��lag ⇤

y2 �⇥ z2

��lag ⇤

y3 �⇥ z3

S. Bacallado (Stanford University) Priors from partial exchangeability July 6, 2009 6 / 27

(Bacallado, Chodera, VSP)
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Formalization of lumping
A hierarchical model for testing lumpings

• The model in this case is the lumping M : Z ⇤ Y , a mapping
from microstates to macrostates.

• The model is parametrized by the transition probability matrix T ,
and the local equilibrium distributions for the microstates �.

• We can factorize the evidence into two factors:

P (zn|M) =
�

dTd�P (zn|T, �, M)P (T, �|M)

=
�

dTd�P (yn|T, M)P (T |M)P (zn|yn,�, M)P (�|M)

=
�

dTP (yn|T, M)P (T |M)
⌅ ⇤⇥ ⇧

Macrostate Markov chain

�

�
d�P (zn|yn,�, M)P (�|M)

⌅ ⇤⇥ ⇧
Microstates from equilibrium within macrostates

S. Bacallado (Stanford University) Priors from partial exchangeability July 6, 2009 7 / 27

(Bacallado, Chodera, VSP)
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What can MSMs do?
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MSMs reach long timescales 

25
Copernicus: A new paradigm for parallel adaptive molecular dynamics.  Supercomputing 2011 (2011)
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MSMs make quantitative predictions
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MSMs for protein-ligand binding
(Lawrenz,	
  VSP)

flexible loop
ensnares ligand

ribbon + surface 
view

surface view

Movie made with VMD
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The cloud looks a lot like Folding@home

Large-scale, distributed, heterogeneous, 
loosely coupled, no common filesystem
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Recent results using Google cloud

nature
chemistry

JANUARY 2014 VOL 6 NO 1

www.nature.com/naturechemistry

GPCRS in the Cloud
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Recent results using Google cloud

nature
chemistry

JANUARY 2014 VOL 6 NO 1

www.nature.com/naturechemistry

GPCRS in the Cloud

“The unprecedented millisecond simulation timescales presented 
here for GPCR activation require computing architectures capable 

of such extensive sampling. Cloud computing provides a 
promising new avenue to tackle these types of questions ... Our 

work on Google’s Exacycle platform demonstrates that large-
scale exploratory analysis in the cloud can deliver new insight 

into biological problems. ”
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