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Value of Simulation

e Experiments provide projections of the high-dimensional
protein folding process

e Determining the microscopic mechanism from these

projections is difficult
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Value of Simulation

e Simulation can provide an atomic-level description that most
experiments cannot

e By predicting experimental observables, we can validate our
models
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Molecular Dynamics (MD)

e |et's say we've taken a lot of
computer (and human) time to
generate a large set of MD
trajectories

e Now what?

e We can certainly make a
pretty cool movie

e But MD is so much more than
a YouTube clip! I
=

¢ \We want to understand our
results



Quantitative Analysis

e MD datasets are too high-dimensional to simply make sense of
out of the box

e A typical molecular dynamics data set has 25,000+ atoms

e We frequently have datasets that are hundreds of
microseconds or even milliseconds (millions of frames)

e So we need to simplify!

e But we also want to be sure that we don’t simplify in such a
way that we lose important information



Dimensionality Reduction

e We need to simplify the
picture in order to make
sense of it!

e We already do this!

e Throw out velocities
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Dimensionality Reduction

e We need to simplity the (X, V) = (X, X)
picture in order to make
sense of it!

e We already do this!
e Throw out velocities

e Throw out solvent

degrees of freedom

e Only consider a subset
of the atoms



Projection-Based Analysis

e Even if we just consider a subset of
all of the atoms, our dataset is
usually still very high-dimensional!
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e For example, a typical protein
might have 500 atoms, which
means we have a vector of
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e The solution: turn each high— Hills, RD Jr.and Brooks, CL lIl. J. Molec. Biol. 2008
dimensional vector into one or two
projections




Common Projections

e In biomolecule simulations, several projections (reaction
coordinates) are very common:

e RMSD to a crystal pose, radius of gyration
e Fraction of “native contacts” formed

e Important residue - residue distances

e DSSP assignments (secondary structure)

e In the protein folding field, many people have their “favorite”
version of one of the above

e Other structural characterizations exist for non-protein systems



Common Projections

e Root mean square deviations of atomic position (RMSD)

RMSD(X,Y) = mfiln\ = Z 1X; — (RY),|2

s.t. R is a rotation matrix

e Radius of gyration

e Fraction of native contacts 1



Statistical Projections

Altis A, et al. J. Chem. Phys. 2008
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| PCA applied to protein folding
simulations shows many free energy
minima in the PC space
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e Another common tool is Principal Components Analysis (PCA),
which looks for a projection that has maximal variance

e This is useful for exploratory analysis, but assumes that high
variance is an indicator of “importance”



Kinetic Analysis of Projections

If dynamics along the
projection (reaction
coordinate) are slower than
dynamics in the orthogonal
subspace, then dynamics can
be modeled in the projection

e The orthogonal subspace
acts like a heat bath

But the analysis will depend
on how good your reaction
coordinate is
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Why Not Stop There?

e Projections can filter out critical information.

e Say, you're analyzing the potential below and asking how long it
takes to go from A to B

e [fyou just monitor the variable g, then you may think you’ve
transitioned to B when in fact you haven't!
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Motivated Projections
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In protein ligand binding,

a really easy projection
that works well, is the
location of the ligand
relative to the protein

Buch, I. et al. PNAS 2011
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e In order to be confident in a projection-based method you need to
know that you're picking the right thing

e In many systems, you actually already know the answer!
e Conformational changes in kinases or well-studied enzymes

e Protein-ligand distance



(Machine) Learning Projections

e There are other projection
based methods that attempt
to pick the correct degrees of
freedom in an automated way

e |SOMAP / Diffusion Maps
(nonlinear)

o tICA (use time)

e The usefulness of these
techniques will depend on the
properties of your data
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MSMs Move Beyond Projections

e Remember that projections were useful because they simplified

the high-dimensional dataset into something that we could
understand

e Master equations (Markov state models) approach this from a
different perspective.

An MSM is a set of states and
n\ probabilities of transitioning
between these states

It's extendable to any
simulation in which you can

define the states.
Voelz, VA. et al. J. Am. Chem. Soc. 2010, 132, 1526-1528.




MSM Construction

e So how do we build an MSM?

 We start with some
Hamiltonian, for example the
Muller potential on the right

e Sample the system with
standard MD.

e The goal is to describe the
thermodynamics and

kinetics in terms of a set of
states and rates



MSM Construction

e Sampling is not easy, but can

be aided by:

e Enhanced Sampling
techniques

e | ots of cores

e Fast hardware (GPUs,
Anton)




Markov State Models

e From the sampled data, we
then:

e Define a discrete set of states

e (Calculate the rates of
transferring between them

e These states should consist of

points that can interconvert
rapidly

e Poor state decompositions can
lead to poor MSMs




MSM Construction

p(t+71)=p(t) T

e \We now have a model for the
dynamics of our system

e There are many practical issues
that come up in the process:

e How many states should we
use?

e How should the states be
arranged spatially?

e How do we validate an
MSM?



MSM Analysis

Now that we have an MSM, what
can we do with it?

e Characterize long timescale
dynamics (eigenspectum of T).

e Find “macro-states” that are

mutually kinetically separated.

e Calculate the mean first

passage time between sets of
states

e Quantitatively compare to /

predict experimental results

e Probe mechanism

Probability p(x) Energy U(x)
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Prinz, Jan-Hendrik, et al. JCP 134.17 (201 1): 174105.



SIOWeSt Timescales Bowgnan,G.etall. JACS 2011
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e The MSM’s transition probability S 1°6F
matrix can be decomposed into a £ 4&
. AN E—
sum of relaxation timescales: =
£
r_ T R L
p(t + 77/7') T p(t) I Lag time (ns)
— Z A (p(E), ¥i) @i
1=1
> nT
= ZEXP <_t_> (p(1), Vi) P
i=1 ’

* Protein folding simulations
typically have a slowest
timescale corresponding to the
fOldlﬂg transition Prigozhin, M. B. et al. JACS 2011




Lump i1t!
e Typical MSMs contain thousands
of states

 This is simpler than what we
started with, but it's still not
simple...

e There are many schemes for
“lumping” a given MSM such
that the slowest timescales are
preserved

Voelz, V.A. et al. JACS 2010, 132, 1526-1528. . .
et A et d This can be used to build a

smaller model so that you can
understand the qualitative
features



Compare to Experiment

Since we can propagate any
trajectory in the MSM, it's trivial to
calculate experimental observables
along the way!

e We can do this in a quantitative
fashion

e What you'll typically find is that
one or two eigenvectors end up
being prominent features in
certain experiments

e This allows you to provide a
molecular interpretation of an
experiment
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Determine the Mechanism

 For protein folding, at least, many are interested in how a
protein goes from unfolded to folded

e Within the MSM framework, you can calculate the most
probable transition paths (via Transition Path Theory [TPT])
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TPT often reveals many on-
pathway intermediates that
would be difficult to pick out
while watching a movie

Schwantes, C.R. et al. JCTC 2013




