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MD simulation has come a long way
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What do these methods teach
us about protein folding?




(Voelz, Bowman, Beauchamp, VSP)

(1) We see non-native interactions

snapshots from a NTL? folding trajectory:
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(Voelz, Bowman, Beauchamp, VSP)

(1) We see non-native interactions

snapshots from a NTL? folding trajectory:

starts in helix
unfolded forms
state early

Monday, March 24, 14



(Voelz, Bowman, Beauchamp, VSP)

(1) We see non-native interactions

snapshots from a NTL? folding trajectory:
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starts in helix collapse,
unfolded forms then beta
state early sheet forms
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snapshots from a NTL? folding trajectory:

V?(

starts in helix collapse, final part of

unfolded forms then beta beta ready
state early sheet forms to align

Monday, March 24, 14



(Voelz, Bowman, Beauchamp, VSP)
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snapshots from a NTL? folding trajectory:
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(1) We see non-native interactions
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(Voelz, Bowman, Beauchamp, VSP)

(1) We see non-native interactions

snapshots from a NTL? folding trajectory:

e '.-‘7
starts in helix collapse, final part of folded
unfolded forms then beta beta ready structure

state early sheet forms to align forms

correspond to states from our Markov State Model:
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(Voelz, Bowman, Beauchamp, VSP)

(2) We find many paths & states

f ﬁ% area of each state is proportional to
macrostate free energy

a—*l-n and a—-m—n
comprise 10% of the
total flux

width of each arrow is
proportional to

transition flux
2

Flux calculation method: TPT: Vanden-Eijnden, et al (2006); Berezhkovskii, Hummer, Szabo (2009) 35
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(Baiz, Lin, Tokmakoff, VSP)

NTL9: Detailed connections to experiment
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Collaboration with Andrei Tokmakoff's lab
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(Bowman, VSP)

(3) Native state is a kinetic hub

O @ hub = highly
. O, ?"R (o connected state
N ' ’-@ See the work from
(n)

O ‘@"g @@ the labs of Brooks,
‘ O Catlisch, and
© - () @ Pande.
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Simulating kinase
activation dynamics

In collaboration with Benoit Roux’s lab

Monday, March 24, 14



Kinase drugs are not selective
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Ghoreschi et al, Nature Immunology 10, 356 - 360 (2009)
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- _ (Shukla, Meng, Roux, VSP)
Conformational change in src kinase

C-helix
moves
inwards

A-loop

unfolds

Inactive Activa
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- _ (Shukla, Meng, Roux, VSP)
Conformational change in src kinase
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. . (Shukla, Meng, Roux, VSP)
Conformational change in src kinase
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(Shukla, Meng, Roux, VSP)

Mechanism of activation dynamics

Chelix ¢ helix

spine

C-helix

A-loop

A-loop
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(Shukla, Meng, Roux, VSP)

Mechanism of activation dynamics
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(Shukla, Meng, Roux, VSP)

Characterizing intermediate 2
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~ in inactive
*\ Conformation
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» A-loop
£ A unfolded

Intermediate 2 of c-src Kinase
(Simulation)
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(Shukla, Meng, Roux, VSP)

Characterizing intermediate 2
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(Shukla, Meng, Roux, VSP)

ANS binding disrupts the hydrophobic spine
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Seeing correlated motion is useful
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Seeing correlated motion is useful

Can you tell what this is?
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Seeing correlated motion is useful

)
Hi

Can you tell what this is?

How about now?
Seeing the correlated motion helps.
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Seeing correlated motion is useful
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Mututal information finds coupled dynamics
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(Shukla, Meng, Roux, VSP)
Mututal information: non-local correlation

Monday, March 24, 14



Do crystal structures tell the
whole story in ligand binding?

MSMs improve protein-ligand
predictions in GPCRs

Kohlhoft, et al, Nature Chemistry (2014)

Collaboration with Google Exacycle
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Are GPCRs just simple switches?

S
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Igand concentration

activity level
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Are GPCRs just simple switches?
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(Kohlhoff, Shukla, Lawreng, ..., VSP)

Simulating B2AR GPCR function
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(Kohlhoff, Shukla, Lawreng, ..., VSP)

Simulating B2AR GPCR function
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(Kohlhoff, Shukla, Lawreng, ..., VSP)

Key steps in activation
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Kohlhoff*, Shukla*, Lawrenz*, ..., Altman, Pande, Nature Chemistry (2014)
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(Kohlhoff, Shukla, Lawreng, ..., VSP)

Key steps in activation
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Kohlhoff, Shukla, Lawreng, ..., VSP)

MSM finds intermecjiate state

3000 State MSM

Kohlhoff*, Shukla*, Lawrenz*, ..., Altman, Pande, Nature Chemistry (2014)
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Kohlhoff, Shukla, Lawreng, ..., VSP)

MSM finds intermecjiate state

. R*(active)
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Kohlhoff*, Shukla*, Lawrenz*, ..., Altman, Pande, Nature Chemistry (2014)
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(Kohlhoff, Shukla, Lawreng, ..., VSP)

Protein flexibility important in binding
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Kohlhoff*, Shukla*, Lawrenz*, ..., Altman, Pande, Nature Chemistry (2014)
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(Kohlhoff, Shukla, Lawreng, ..., VSP)

Protein flexibility important in binding

MSM states improves Docking accuracy (AUC) '
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Kohlhoff*, Shukla*, Lawrenz*, ..., Altman, Pande, Nature Chemistry (2014)
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% of Chemotype in Population at !

(Kohlhoff, Shukla, Lawreng, ..., VSP)

Intermediates are functionally relevant
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(Kohlhoff, Shukla, Lawreng, ..., VSP)

Intermediates are functionally relevant

Some chemotypes only dock to intermediates |
A
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Concluding remarks

Many of the teatures of

pathways in fo

ding also appear

in the functional dynamics of

cell-signaling proteins
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Common elements in protein dynamics
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Common elements in protein dynamics

Parallel pathways \

(intgfmediate)

GPCR:
parallel paths,

~ R
——(nactive) ~__* intermediates

N
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Common elements in protein dynamics
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Parallel pathways %
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Common elements in protein dynamics
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(Shukla, Meng, Roux, VSP)

MSMs of simple pathway

Autophosphorylation y
kinase + ATP "% kinase-P + ADP
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(Shukla, Meng, Roux, VSP)

MSMs of simple pathway

Autophosphorylation y
kinase + ATP "% kinase-P + ADP
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(Shukla, Meng, Roux, VSP)

MSMs of simple pathway

Autophosphorylation y
kinase + ATP "% kinase-P + ADP
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Due to the atomic MSM at its heart, this
model can respond to mutations, drugs,
etc (while systems biology models cannot)
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P53 is a hub in protein-protein networks
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Summary

e OpenMM is very flexible as both an
application and a library

e OpenMM + MSM Builder allows one to
efficiently use many GPUs to simulate
long timescale dynamics

* These methods have already been used
to study many challenging systems

Monday, March 24, 14



Monday, March 24, 14




