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Value of Simulation
• Experiments provide projections of the high-dimensional 

protein folding process 

• Determining the microscopic mechanism from these 
projections is difficult

Experimental 
Probe
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Value of Simulation

• Simulation can provide an atomic-level description that most 
experiments cannot 

• By predicting experimental observables, we can validate our 
models 
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Molecular Dynamics (MD)
• Let’s say we’ve taken a lot of 

computer (and human) time to 
generate a large set of MD 
trajectories 

• Now what? 

• We can certainly make a 
pretty cool movie 

• But MD is so much more than 
a YouTube clip! 

• We want to understand our 
results



Quantitative Analysis
• MD datasets are too high-dimensional to simply make sense of 

out of the box 

• A typical molecular dynamics data set has 25,000+ atoms  

• We frequently have datasets that are hundreds of 
microseconds or even milliseconds (millions of frames) 

• So we need to simplify! 

• But we also want to be sure that we don’t simplify in such a 
way that we lose important information



Dimensionality Reduction
(�x, �v) ! (�x,◆S�v)• We need to simplify the 

picture in order to make 
sense of it! 

• We already do this! 

• Throw out velocities 

!

!

• Only consider a subset 
of the atoms
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Projection-Based Analysis
• Even if we just consider a subset of 

all of the atoms, our dataset is 
usually still very high-dimensional! 

• For example, a typical protein 
might have 500 atoms, which 
means we have a vector of 
length 500 x 3 that changes in 
time 

• The solution: turn each high-
dimensional vector into one or two 
projections

Hills, RD Jr. and Brooks, CL III.  J. Molec. Biol. 2008



Common Projections
• In biomolecule simulations, several projections (reaction 

coordinates) are very common: 

• RMSD to a crystal pose, radius of gyration 

• Fraction of “native contacts” formed 

• Important residue - residue distances 

• DSSP assignments (secondary structure) 

• In the protein folding field, many people have their “favorite” 
version of one of the above 

• Other structural characterizations exist for non-protein systems



Common Projections
• Root mean square deviations of atomic position (RMSD) 

!

!

• Radius of gyration 

!

!

• Fraction of native contacts



Statistical Projections

• Another common tool is Principal Components Analysis (PCA), 
which looks for a projection that has maximal variance 

• This is useful for exploratory analysis, but assumes that high 
variance is an indicator of “importance”

kind of dihedral-angle-based PCA therefore may yield incor-
rect results, e.g., for the mean values of the coordinates of
the metastable states of the system.

B. Dimensionality of the free energy landscape

Generally speaking, the goal of any reduced-
dimensionality representation is to appropriately describe a
given problem by using a minimum number of dimensions.
As explained above, we consider ten !sin- and cos-
transformed" dihedral angles !2 ,"2 , . . . ,!6 ,"6 in the dPCA
of Ala7, thus resulting in a 20-dimensional vector space. For
the dPCA representation of the free energy landscape, this
amounts to the question of how many PCs are needed in
order to !at least" reproduce the correct number, energy, and
location of the metastable states and barriers. To address this
question, Fig. 2 presents dPCA probability distributions
P!Vi" along the first PCs of Ala7. While the first five distri-
butions show several peaks corresponding to distinct meta-
stable conformational states, we find beginning with the sixth
PC unimodal distributions reflecting intrastate fluctuations.
This finding is also supported by Fig. 3, which shows 2D
representations of the free energy landscape of Ala7, includ-
ing !A" #G!V1 ,V2", !B" #G!V3 ,V4", and !C" #G!V5 ,V6".
Again, the free energy exhibits several minima along the first
five PCs, while there is only a single minimum found along
V6.

As a further indication of the number of “essential” PCs,
we may consider the percentage of overall fluctuations cov-
ered by the first n PCs !i.e., the sum of the first n eigenvalues
of the PCA". Interestingly, Fig. 4!a" reveals three kinds of
PCs: The first one covers 22% of all fluctuations, each of the
next four contributes about 10%, while the remaining PCs
contribute less than 4% each. A similar behavior is found for
the time scales of the fluctuations, revealed by the normal-
ized fluctuation autocorrelation function !#Vn!t"Vn$
− #Vn$2" / !#Vn

2$− #Vn$2" shown in Fig. 4!b". Judging by their
initial time evolution, the first PC decays within several

nanoseconds, the next four decay on a time scale of 1 ns, and
the decay time of the higher PCs is clearly shorter.

From the above results we expect that a 5D dPCA rep-
resentation of the free energy surface of Ala7 suffices to cor-
rectly describe its main features. This is because higher PCs
with unimodal probability distribution account for fluctua-
tions rather than for conformational transitions. Appendix B
shows that this is strictly true for Gaussian-distributed de-
grees of freedom. For other apparently unimodal distribu-
tions, where insufficient statistics might obscure smaller sub-
structures, the situation is less clear-cut and introduces a

FIG. 3. !Color online" 2D representa-
tions of the free energy landscape of
Ala7 as obtained by dPCA: !a"
#G!V1 ,V2", !b" #G!V3 ,V4", and !c"
#G!V5 ,V6". The color coding in pan-
els !d"–!f" illustrates some prominent
conformational states which are de-
scribed in Table I, visualized on the
upper landscape.

FIG. 4. !Color online" The PCs of Ala7 as obtained by the dPCA, charac-
terized by !a" their cumulative fluctuations and !b" their normalized fluctua-
tion autocorrelation functions. The latter is shown for the PCs V1 !full line",
V2 !dashed line", and V6 !dotted line". The size of the statistical error is
similar to the line width of the plots.

245102-5 J. Chem. Phys. 128, 245102 !2008"

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
171.67.216.21 On: Fri, 21 Mar 2014 06:20:34

Altis A, et al. J. Chem. Phys. 2008

PCA applied to protein folding 
simulations shows many free energy 

minima in the PC space



Kinetic Analysis of Projections

• If dynamics along the 
projection (reaction 
coordinate) are slower than 
dynamics in the orthogonal 
subspace, then dynamics can 
be modeled in the projection 

• The orthogonal subspace 
acts like a heat bath 

• But the analysis will depend 
on how good your reaction 
coordinate is

Krivov S. V. J. Phys. Chem. B 2011



Why Not Stop There?
• Projections can filter out critical information. 

• Say, you’re analyzing the potential below and asking how long it 
takes to go from A to B 

• If you just monitor the variable q, then you may think you’ve 
transitioned to B when in fact you haven’t!

Boolhuis, P.G. et al. Annu. Rev. Phys. Chem. 2002, 53, 291-318.



Motivated Projections

• In order to be confident in a projection-based method you need to 
know that you’re picking the right thing 

• In many systems, you actually already know the answer! 

• Conformational changes in kinases or well-studied enzymes 

• Protein-ligand distance

Figure 2. Raw data and binding events. (a) Visualization showing snapshots of the benzamidine C7 atom position during multiple trajectories. Some clusterings
of benzamidine can already be seen on trypsin’s surface. The kinetic relationship between these clusters is analyzed with the construction of a Markov State Model. (b) Time
evolution of RMSD for benzamidine C3, C6 and C7 atoms. The plot shows only a fraction (5%) of the total runs for simplicity. Binding trajectories are considered as those 2
Å RMSD from the crystallographic pose, also calculated for reference (red line). While some trajectories are seen to bind as soon as 10 ns after the start of the simulation,
others do it beyond the 90 ns or did not bind.

Figure 3. Identification of metastable states. (a) Potential of mean force (PMF) in the xz plane. 5 different metastable states can be identified from the
different free energy minima (S0 to S4). The relative free energy between the unbound state S0 and the bound state S4 is −6 kcal/mol. Most probable transition to the
bound state S4, may be from S3 from the fact that the barrier between the two states is of just 1.5 kcal/mol. (b) Structural characterization of metastable states. In states S1
and S2, benzamidine is stabilized by π-π stacking interactions with Y151 and Y39 sidechains. In S3, an hydrogen bond may be formed between NH2 groups of benzamidine
(only heavy atoms shown for clarity) and Q175 sidechain, or by a cation-π interaction between Q175 sidechain again, and benzamidine’s benzene ring.

Footline Author PNAS Issue Date Volume Issue Number 7

In protein ligand binding,  
a really easy projection 
that works well, is the 
location of the ligand 
relative to the protein 

!
Buch, I. et al. PNAS 2011



(Machine) Learning Projections
• There are other projection 

based methods that attempt 
to pick the correct degrees of 
freedom in an automated way 

• ISOMAP / Diffusion Maps 
(nonlinear) 

• tICA (use time) 

• The usefulness of these 
techniques will depend on the 
properties of your data

machine  
learning

3D

2D



MSMs Move Beyond Projections
• Remember that projections were useful because they simplified 

the high-dimensional dataset into something that we could 
understand 

• Master equations (Markov state models) approach this from a 
different perspective.

An MSM is a set of states and 
probabilities of transitioning 
between these states 

It’s extendable to any 
simulation in which you can 
define the states.

Voelz, V.A. et al. J. Am. Chem. Soc. 2010, 132, 1526-1528.



MSM Construction
• So how do we build an MSM? 

• We start with some 
Hamiltonian, for example the 
Muller potential on the right 

• Sample the system with 
standard MD. 

• The goal is to describe the 
thermodynamics and 
kinetics in terms of a set of 
states and rates



MSM Construction

• Sampling is not easy, but can 
be aided by: 

• Enhanced Sampling 
techniques 

• Lots of cores 

• Fast hardware (GPUs, 
Anton)



Markov State Models
• From the sampled data, we 

then: 

• Define a discrete set of states 

• Calculate the rates of 
transferring between them 

• These states should consist of 
points that can interconvert 
rapidly 

• Poor state decompositions can 
lead to poor MSMs



MSM Construction
• We now have a model for the 

dynamics of our system 

• There are many practical issues 
that come up in the process: 

• How many states should we 
use? 

• How should the states be 
arranged spatially? 

• How do we validate an 
MSM?



MSM Analysis
• Now that we have an MSM, what 

can we do with it? 

• Characterize long timescale 
dynamics (eigenspectum of T). 

• Find “macro-states” that are 
mutually kinetically separated. 

• Calculate the mean first 
passage time between sets of 
states 

• Quantitatively compare to / 
predict experimental results 

• Probe mechanism
Prinz, Jan-Hendrik, et al. JCP 134.17 (2011): 174105.



Slowest Timescales
• The MSM’s transition probability 

matrix can be decomposed into a 
sum of relaxation timescales:  
 
 
 
 
 

• Protein folding simulations 
typically have a slowest 
timescale corresponding to the 
folding transition

 S5 

 
Figure S2. Implied timescales for the full 370 K dataset. 
 

Bowman, G. et al. JACS 2011

Prigozhin, M. B. et al. JACS 2011
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Lump it!
• Typical MSMs contain thousands 

of states 

• This is simpler than what we 
started with, but it’s still not 
simple... 

• There are many schemes for 
“lumping” a given MSM such 
that the slowest timescales are 
preserved 

• This can be used to build a 
smaller model so that you can 
understand the qualitative 
features

Voelz, V.A. et al. JACS 2010, 132, 1526-1528.



Compare to Experiment
• Since we can propagate any 

trajectory in the MSM, it’s trivial to 
calculate experimental observables 
along the way! 

• We can do this in a quantitative 
fashion 

• What you’ll typically find is that 
one or two eigenvectors end up 
being prominent features in 
certain experiments 

• This allows you to provide a 
molecular interpretation of an 
experiment

Voelz, et al. JACS 2012



Determine the Mechanism
• For protein folding, at least, many are interested in how a 

protein goes from unfolded to folded 

• Within the MSM framework, you can calculate the most 
probable transition paths (via Transition Path Theory [TPT])

Pfold 0.0 1.0
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S1-3

S1-2

R3

R1

R1,3 F

I

TPT often reveals many on-
pathway intermediates that 

would be difficult to pick out 
while watching a movie 

!
Schwantes, C.R. et al. JCTC 2013


