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The dream: simulating molecular dynamics

Basic idea: calculate forces between atoms,
then numerically integrate Newton'’s Equations
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M. Levitt, Nature Structural Biology 8 392 (2001)
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The dream: simulating molecular dynamics

Basic idea: calculate forces between atoms,
then numerically integrate Newton'’s Equations

2013 Nobel Prize in Chemistry Awarded to
Karplus, Levitt, and Warshel
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The nightmare: long time scales

Bond Bond Water Helix Fast conformational Slow conformational
vibration Isomeration dynamics forms change change
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The nightmare: long time scales

Water Helix Fast conformational Slow conformational
dynamics forms change change
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The nightmare: long time scales

Water Helix Fast conformational Slow conformational
dynamics forms change change
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The nightmare: long time scales

Water Helix Fast conformational Slow conformational
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The nightmare: long time scales

Water Fast conformational Slow conformational
dynamics change change
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http://simtk.org/home/openmm

OpenMM suite of applications
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Fast MD

MSM Accelerator: parallelize

M S M MSM Builder: analyze

BUILDER MSM Explorer: visualize
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http://wiki.simtk.org/openmm/RoadmapTimeline
http://wiki.simtk.org/openmm/RoadmapTimeline

http://simtk.org/home/openmm

rapid development +
rapid execution

OpenMM is an app, API, and library for rapid
molecular dynamics.
Easy to modify and incorporate into any code.
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History of OpenMM

Buck, Vishal | i
2005 (Hanrahan, Darve, Pande)
Elsen, Houston, Vishal ¢
2006 (Hanrahan, Darve, Pande)""‘é’" CUDA (Buck
* NVIDlA) Ilfll)l\
FAH/ATI: Houston,.. Brook code 2007
2007/8 Friedrichs &)
(Pande, Simbios, ATI) £ U )
FAH/NVIDIA: LeGrand, (4)
Friedrichs, Eastman (Pandeg

Simbios, NVIDIA) AVIDIA

2009 Open MM: Friedrichs, et aI 2008
(Pande, Simbios, ATI) | _’

2012 OpenMM 4.0:" Eastman, Friedrichs et al (Simbios, Pande) i
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OpenMM: JAC benchmark

CUDA OpenCL OpenCL

(GTX Titan) (GTX Titan) (HD 7970)
Implicit hbonds 284 183 120
Implicit hangles 524 324 104
RF 2fs 162 124 83.5
RF 5fs 330 233 90.2
PME 2fs 104 61 49.3
PME 5fs 226 132 63.0

Joint AMBER-CHARMM DHFR Benchmark in ns/day

Monday, March 24, 14



OpenMM roadmap

* OpenMM 6 e Further development
e Normal mode analysis Rosetta force field
script * Triclinic boxes
e AMOEBA OpenCL * A more accurate SASA
implementation calculation for use with GB
e Constant pH models
implementation (JDC) * Parameterize GB/VI at
e YANK release soon (JDC) different temperatures
e test/validate ABSINTH * CHARMM27 force field
implicit solvent ¢ Thermodynamic ensemble
e More modeling tools within validation tests
OpenMM app e PME for Lennard-Jones

http://wiki.simtk.org/openmm/Roadmap Timeline
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Licensing and distribution

e APl & reference BSD license, GPU kernels are LGPL
e free & open
e we want LGPL to have a community owned set of GPU kernels
e we're looking for collaborations for new features

e But, please cite us
e P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M.
Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang, D.
Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M. R. Shirts, and
V. S. Pande. OpenMM 4.0: A Reusable, Extensible, Hardware
Independent Library for High Performance Molecular
Simulation. Journal of Computational and Theoretical

Chemistry 9 461-469 (2013).
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How can we simulate
experimentally relevant,
long timescales?

The power of
Markov State Models
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Comparing two approaches
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$15M ANTON Specialized
hardware from D.E. Shaw can
compute 14ps/day
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$15M ANTON Specialized $0.3M GPU cluster + OpenMM
hardware from D.E. Shaw can ~ +MSMB can also compute 14us/

compute 14ps/day day at ~1/50th the cost
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50x less expensive
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Comparing two approaches
OpenMM: Over 100ns/day on 24,000 atom JAC

\
———-

50x less expensive
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$15M ANTON Specialized $0.3M GPU cluster + OpenMM
hardware from D.E. Shaw can ~ +MSMB can also compute 14us/

compute 14ps/day day at ~1/50th the cost
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Comparing two approaches
OpenMM: Over 100ns/day on 24,000 atom JAC

MSM Builder: http://msmbuilder.org
OpenMM: http://openmm.org

50x less expensive

T —— T

— R

$15M ANTON Specialized $0.3M GPU cluster + OpenMM
hardware from D.E. Shaw can ~ +MSMB can also compute 14us/

compute 14ps/day day at ~1/50th the cost
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http://simtk.org/home/msmbuilder
http://simtk.org/home/msmbuilder

e Build a model which can predict everything
e Lkinetics, thermodynamics, structure

e Build a model which can yield powerful

visualizations
* movies of key phenomena

* Broad applicability
e works on many systems
® easy to use, easily automated
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Comparison to other methods
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Comparison to other methods

Popular methods
Accelerated MD Anton MSM Metadynamics

Milestoning Path-based methods Replica Exchange
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Comparison to other methods

Popular methods

Accelerated MD  Anton MSM MMS
M PathMods Replica Exchange

Our goals
(1) Fast sampling, including orthogonal degrees
of freedom

(2) Can discover end points
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Comparison to other methods

Popular methods

Accelerated MD  Anton MSM MMS
M PathMods Replica Exchange

Our goals
(1) Fast sampling, including orthogonal degrees
of freedom
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structure)
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Comparison to other methods

Popular methods
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Comparison to other methods

Popular methods

AM Anton MSM )@s
)Bt( PathMods ReMge

Our goals
(1) Fast sampling, including orthogonal degrees
of freedom

(2) Can discover end points
(3) Can predict kinetics (& thermodynamics, &

structure)
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What are Markov State Models (MSMs)?

MSMs automatically build a Master Equation with MD
simulation, typically with many short (~ps) trajectories

dp;
i Z ki i1 — ki ipi]
l
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What are Markov State Models (MSMs)?

MSMs automatically build a Master Equation with MD
simulation, typically with many short (~ps) trajectories

dp;
= > |kiipi — Kiipil
A = Tl — ki

probability of
being in state
I
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What are Markov State Models (MSMs)?

MSMs automatically build a Master Equation with MD
simulation, typically with many short (~ps) trajectories

dp;
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probability of [ \

being in state
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What are Markov State Models (MSMs)?

MSMs automatically build a Master Equation with MD
simulation, typically with many short (~ps) trajectories

dp;
/YE — Z ki ipr — ki ipi]
probability of [ \

being in state
I

rate of change
between states

with the goals of:
(1) aiding simulators reach long timescales and
(2) gaining novel insight from their simulations
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What are Markov State Models (MSMs)?

MSMs automatically build a Master Equation with MD
simulation, typically with many short (~ps) trajectories

f Z kl zpl — kz lpz]

probability of
being in state
I

rate of change
between states

with the goals of:
(1) aiding simulators reach long timescales and
(2) gaining novel insight from their simulations

see the work of: Andersen, Best, Bowman, Caflisch, Chodera, Deuflhard, Dill,
Grubmdller, Huang, Hummer, Levy, Noé, Pande, Pitera, Roux, Schutte, Swope, Weber
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Short trajectories vs long timescales?

Two state (Single Barrier) Case

A —> B

o
N
o

probability

0.25

0
01 2 3 45 6 7 8 91011 121314151617 18 19 20
time
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Short trajectories vs long timescales?

Two state (Single Barrier) Case

A —> B

o
N
o

p =~ kt for short time

probability

0.25

0
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Short trajectories vs long timescales?

Two state (Single Barrier) Case

A —> B

o
N
o

p =~ kt for short time

probability

for k= 1/us, t=0.01ps, p = 1%
i.e. 1 out of 100 will cross!

0.25

0
01 2 3 45 6 7 8 91011 121314151617 18 19 20
time
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Key stages in MSM construction
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Key stages in MSM construction

MSMAccelera tor
Round 2. Beta = 0.00

1.5F

2 1.0}

coordinate

05F

0.0F

-1.5
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Key stages in MSM construction

MSMAccelera tor MSMAccelera tor
Round 2. Beta = 0.00 Starting states for round 3

1.5F
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Key stages in MSM construction

MSMAccelerator MSMAccelerator
Round 2. Beta = 0.00 Starting states for round 3
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Key stages in MSM construction

MSMAccelerator MSMAccelerator
Round 2. Beta = 0.00

Starting states for round 3
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Key stages in MSM construction

MSMAccelerater . MSMAccelerator
Round 2. Beta = 0.00 Starting states for round 3

F F9

Adaptive sampling pushes in all degrees of
freedom, not just pre-chosen coordinates.

Monday, March 24, 14



(McGibbon, Kiss, Harrigan,

MSM vs long trajectory Lane, VSP)

vie by Harrigan, McGibbon)

MSM Adaptive Sampling Single long trajectory
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(McGibbon, Kiss, Harrigan,

MSM vs long trajectory Lane, VSP)

vie by Harrigan, McGibbon)

MSM Adaptive Sampling Single long trajectory

MSMAccelerator One trajectory

Round 1. Beta = 0.00 Round 1
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(McGibbon, Kiss, Harrigan,

MSM vs long trajectory Lane, VSP)

vie by Harrigan, McGibbon)

MSM Adaptive Sampling Single long trajectory

MSMAccelerator One trajectory

Round 1. Beta = 0.00 Round 1
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Comparison to other methods

e aMD
® removes kinetic information
* speeds on certain degrees of freedom. .
— must know which ones are slow

e Metadynamics
e removes kinetic information

e drives on pre-chosen degrees of freedom, misses key
challenge of how to sample orthogonal dofs

e Replica Exchange
®* removes kinetic information
e works best for energy barriers, not AG barriers
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Comparison to other methods

e Highly parallel MD
e still requires the kinetic analysis.
®* many short trajectories are MUCH more efficient

e very expensive (50x) given throughput: GPU cluster better
at many short trajectories

MSMAccelerator One trajectory
Round 1. Beta = 0.00 Round 1

15F

0.0

-15 -1.0
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(Bacallado, Chgdera, VSP)

Making sense of MSMs: lumping

Macrostate chain (y,,) Microstate chain (z,,)

Y1

4

ATlag l

Y2

<

ATlag |

Y3

v
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(Bacallado, Chodera, VSP)

Formalization of lumping

e The model in this case is the lumping M : 7 — Y, a mapping
from microstates to macrostates.

e The model is parametrized by the transition probability matrix T,
and the local equilibrium distributions for the microstates ©.

e We can factorize the evidence into two factors:

Pzn|M) = / dTdOP(z,|T, O, M)P(T,0|M)
= /de@P(yn\T,M)P(T\M)P(zn|yn,@,M)P(@|M)

_ / dT P(y,|T, M)P(T|M) x

\

-~
Macrostate Markov chain

/d@P(zn|yn, O, M)P(B|M)

A\ 4
-~

Microstates from equilibrium within macrostates
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What can MSMs do?




MSMs reach long timescales

Copernicus: A new paradigm for parallel adaptive molecular dynamics. Supercomputing 2011 (2011)
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MD simulation has come a long way
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MD simulation has come a long way
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MSMs make quantitative predictions
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(Lawrenz, VSP)

MSMs for protein-ligand binding

ribbon + surface
view

\

)
e € cnsnares ligand

.?"\' flexible loop
surface view’

-

-

Movie made with VMD
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The cloud looks a lot like Folding@home

Large-scale, distributed, heterogeneous,
loosely coupled, no common filesystem
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The cloud looks a lot like Folding@home

Large-scale, distributed, heterogeneous,
loosely coupled, no common filesystem

Amazon EC2

Region: eu-west-1
izom

Other Region...

Avallability Zone Availability Zone

Region: us-east-1

Availabili ty Zone
Availability Zone
Avallablllty Zone
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results using Google cloud
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Cloud-based simulations on Google Exacycle
reveal ligand modulation of GPCR
activation pathways
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Recent results using Google cloud
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chemistry PUED AN DX 100 B OBAED

Cloud-based simulations on Google Exacycle
reveal ligand modulation of GPCR
activation pathways

Kal J, Kohihotf' 4+ Diwakar Shukls'™, Morgan Lawrenz™, Gregory R, Bowmar’, David €. Konerding*,
Dan Belov*, Russ B. ARman''* and Vijay S. Pande’

o provide hwm”mdﬁhdwmhﬂ“hﬂmﬂ
dan are oy ondy (=] el owd computing I » vishie
and drimes bone *n-ad m—-nnm-u«-v Lamcptie dowd

‘ ”The unprecedented millisecond simulation timescales presented ==
here for GPCR activation require computing architectures capable
of such extensive sampling. Cloud computing provides a
oromising new avenue to tackle these types of questions ... Our [

. work on Google’s Exacycle platform demonstrates that large-
scale exploratory analysis in the cloud can deliver new insight
into biological problems. ”
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