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Introduction: Physical Chemistry

Physics helps us to understand chemical processes.

Chemical bonding and reactivity Molecular interactions with:

Electric potentials (electrochemistry)
Synthesis of new chemical compounds

Photosystem II

splits water in .. as e

green plants

Light (photochemistry)
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Introduction: Theory and Experiment

Theoretical and computational chemistry can offer
explanations and predictions.

Insight into
atomic scale processes

Predictions of
Experiment experimental results Theory and Computation

Experimental —
Theoretical Collaboration

Observations
needing explanation

Verification of
approximations



Example of an important process

Understanding the mechanism of photosynthesis
requires both experimental and theoretical insights.
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Oxygen evolving
center from
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Nature, 2011.



Introduction: Physical Theories

The main tools of theoretical chemistry are

quantum mechanics and statistical mechanics.

RQUANTUM MECHANICS
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* The electronic structure of a
molecule is completely described
by solving Schrodinger’s equation

 For most systems, exact solution
not available; approximations are
computationally intensive

e Given a potential energy surface,
the partition function provides
probabilities of states

 High-dimensional integral is
evaluated by sampling, requiring
computer power and efficient
algorithms



The Schrodinger equation

All ground-state quantum chemistry is based on the
time-independent Schrédinger’s equation.
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Electron Electron

Kinetic Nuclear
energy repulsion nuclear electron Electron Electronic
operator (just a “number”) attraction repulsion wavefunction energy

Born-Oppenheimer approximation:
when solving for the electronic
wavefunction, treat nuclei as static

external potentials



Approximate solutions to Schrodinger equation

Schrédinger’s equation is nearly impossible to solve,
so approximate methods are used.
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Slater determinant: Use wavefunction of
noninteracting electrons for interacting system
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Density functional theory: The ground-state
electron density contains all information in the
ground-state wavefunction

* Electron repulsion makes this
problem difficult

 Approach 1: Use approximate

wavefunction forms (Quantum chem.)

* Approach 2: Use the electron density

as the main variable

 Approach 3: Approximate the energy

using empirical functions

Molecular mechanics: Use empirical
functions and parameters to describe the
energy (e.g. harmonic oscillator for chemical

bond)



A wide scope of computer simulations
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One calculation for 2-3 atoms

1us-1ms, 100k atoms:
protein dynamics,

drug binding
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1 ms+, 1 million atoms:
folding of large proteins,

virus capsids

Cost of Calculation ——p

e Computer simulations
of molecules span a wide
range of resolutions

* More detailed theories
can describe complex
phenomena and offer
higher accuracy

* Less detailed theories
allow for simulation of
larger systems / longer

timescales

* Empirical force fields
are the method of choice
in the simulation of
biomolecules



Introduction: Molecular dynamics simulation

Molecular dynamics (MD) simulation combines
concepts from quantum and statistical mechanics.

A Markov state model built using data
from several thousand protein folding
simulations.

A reactive ab initio MD simulation of
early Earth atmosphere, with reaction
products identified and highlighted



Introduction: Molecular dynamics simulation

The fundamental equation of classical molecular

dynamics is Newton’s second law.

The force is given by the negative gradient of the
potential energy.

F= —VV(r)

Knowing the force allows us to accelerate the atoms in
the direction of the force.

F=ma

Key approximations:

* Born-Oppenheimer
approximation; no
transitions between
electronic states

 Approximate potential
energy surface, either
from quantum chemistry
or from the force field

e Classical mechanics!
Nuclei are quantum
particles in reality, but
this is ignored.
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Force Fields
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* Force fields are built
from functional forms
and empirical parameters

* Interactions include
bonded pairwise, 3-

body, and 4-body

interactions...

e ... as well as non-
bonded pairwise
interactions

e Simulation accuracy
depends critically on
choice of parameters



Force Field Parameterization

Force fields are parameterized to compensate for
their simplified description of reality.

Most models have incomplete physics:
* Fixed point charges (no electronic polarization)
e Classical mechanics (no isotope effects)
e Fixed bond topology (no chemistry)
However, much can be recovered through parameterization:
e Increase the partial charges to recover polarization effects
* Tune vdW parameters to recover the experimental density

* In many cases, force fields exceed the accuracy of quantum methods!
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Electrostatic functional forms

How detailed does the function need to be
in order to describe reality?

AMBER fixed-charge force field:
e Point charge on each atom

AMOEBA polarizable force field: ij Vi

e Point charge, dipole, and quadrupole on each atom

e Polarizable point dipole on each atom with short-range damping

Ay=1— exp(—au’)

2 xp(—au’)

xp(—au’)

o e i 7 ind ‘ H BﬁRnauV',j_ R"}Rndaﬁ) . p

- (J; K_ 7 )

]







A careful balance of solute and solvent

The interactions in a force field must be carefully
balanced to ensure correct behavior.

One must be careful to avoid force field bias in the simulation results...

Solvent-protein interactions strong Solvent-protein interactions weak

Protein-protein interactions weak Protein-protein interactions strong

& .

Tendency to unfold / Intermediate Tendency to
form random coil structure fold or collapse



Solvent models

Solvent models span many levels of detail.

Choose a compatible solvent model for your solute force field.

Less physical detail, accuracy More physical detail, accuracy

Lower compurtational cost Higher computational cost

< | | y

Ow

" e
Implicit solvent; Coarse grained All-atom Multipoles and
no solvent particles water model water model polarization

(GBSA) (MARTINT) (TIP3P, SPC/E) (AMOEBA)



Integrating the equations of motion

MD simulation requires accurate numerical
integration of Newton’s equations.

* Integrators are algorithms
that accelerate the atoms in the
direction of the force.

Euler method (unstable)
x(t+Af)=x(1) +v(t)At+O(At2)

v(t+AL)=v(t)+a(t) At +O(At2) * More sophisticated algorithms
include higher order terms for
VClOCity Verlet method better accuracy
x(t+Ar)=x(t)+v(r)Ar+ laz(t)At2 +0(Ar*) e Time step is limited by fast
2 degrees of freedom (bond
V(A1) =v(0)+(a(t)+a(i+ A A-+O(A?)  vibrations)

e MD simulations are chaotic;

Beeman predictor-corrector method : . .
small differences in the initial

x(1+A1) :x(z)+v(t)m+l(4a(z)_ a(t—At)) A +O(Ar*) - conditions quickly lead to very
6 different trajectories

V(1 A1) =v(1)-+ (2a(t-+Ar) + Sa(r) - a(1— M) At +O(Ar)



A brief distraction...

Example of collisional trajectory
for Mars and the Earth.
& . : : . e Numerical algorithms for

integrating Newton’s equations
are applied across many fields,
including gravitational

Eccentricity

1 simulations in astrophysics

* Chaos exists for simple systems

o e T — with only a few interacting
® _; ' ' ' ' bodies
§ —of 1 * A small change in the initial
& <10p | conditions (0.15 mm) results in
j; o . | L Venus and/or Mars eventually
¢ colliding with the Earth in 3

. billion years

logyolde)

1 1 (] 1 |
0 500 1,000 1500 2,000 2500 3,000 3,500
Time (Myr) J Laskar and M Gastineau, Nature 2009



Boundary conditions

Boundary conditions allow us to simulate condensed

phase systems with a finite number of particles.

e van der Waals interactions are typically
treated using finite distance cutofts.

e Ewald summation treats long range
electrostatics accurately and efficiently
using real space and reciprocal space
summations

Important considerations!

* Choose large enough simulation cell to
avoid close contact between periodic
images

e Make sure the simulation cell is
neutralized using counter-ions (otherwise

Ewald is unphysical)



Statistical mechanical ensembles

Statistical mechanical ensembles allow our simulation

to exchange energy with an external environment.

Ensemble menu:
Choose one from each row

EIEENTnlCIMNEN Chemical potential u

Volume V Pressure P

Energy E Temperature T

Py (1) e

Probability of a microstate

in the canonical (NVT) ensemble.

 An ensemble represents all of
the microstates (i.e. geometries)
that are accessible to the
simulation, and provides the
probability of each microstate.

* An ideal MD simulation
conserves the total energy and
entropy, and samples the
microcanonical (NVE) ensemble.

* More realistic systems may
exchange energy, volume or
particles with external reservoirs

* However, this could make the
algorithms more difficult



Temperature and pressure control

Thermostats and barostats allow MD simulations to

sample different thermodynamic ensembles.

Kinetic energy / temperature relationship

2
3Nk,
Berendsen thermostat (uses velocity scaling)
dI T-T,
d T

Andersen thermostat (velocity randomization)
3 2
LY S

P _  2mkyT
(P) 2wmk,T °

1= x KE

* Thermostat algorithms ensure
that the temperature of our
system (derived from kinetic
energy) fluctuates around a
target temperature that we set.

* The Berendsen thermostat
achieves the target temperature
but does not produce the
correct canonical ensemble

* The Andersen thermostat
produces the canonical
ensemble by randomly resetting
the momenta of particles
(imitating random collisions)



Other integrators and algorithms

Langevin dynamics represents a different physical
process; Monte Carlo is a pure sampling stategy.

Langevin equation

F=ma=-VV(r)—ymv+,2yMk,TR(t)

Metropolis criterion for canonical ensemble

exp [E"k_ f’”‘ ] when £,
B

1

I
P(r,>r,}=1 7 b

otherwise.

2

e Langevin dynamics (a.k.a.
stochastic dynamics): Particles
experience a friction force as
well as a random force from

. << . »
particles “outside” the
simulation

* Metropolis Monte Carlo
method (a.k.a. Metropolis-
Hastings): Generate any trial
move you like, and accept /
reject the move with a
probability given by the

Metropolis criterion.



Methodological challenges

The main challenges in molecular dynamics methods
are simulation timescale and accuracy.

Bond Bond Water Helix Fast conformational Slow conformational
vibration Isomerization dynamics forms change change

1015 1012 10° 106 103 100
femto pico nano micro milli seconds

MD long where we where we’'d
step MD run need to be love to be

Statistical Mechanics: Efficiently sample the correct thermodynamic ensemble

Algorithms and Computer Science: Make our simulations run faster by
designing faster algorithms and taking maximum advantage of current hardware

Force Fields: Achieve higher accuracy without unduly increasing the
complexity of the calculation, using better parameterization methods (my work!)

Data Analysis: Draw scientific conclusions from huge volumes of data

Image courtesy V. S. Pande
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Protein Folding: Structure Prediction

A collection of fast-folding proteins

'  Can we accurately reproduce /
predict the structures of
experimentally crystallized

Chignolin 106 ys  Trp-cage 208pus BBA 325 us  Villin 125 us
cin025 1.0A 0.6 ps 2JOF 1.4A 14 pus 1FME 1.6 A 18 us 2F4K 1.3A 28pus

proteins?

* In many cases, protein folding

simulations work amazingly well

WW domain 1137 ys  NTL9 293 us BBL 429 ProteinB 104 ps . .
2F21 1.2A 21ps 2HBA 05A 29pus 2WXC 48A 29pus 1PRB 3.3A 39yus L4 FOldlng StUdleS help us

understand intrinsically
disordered proteins, which may
be relevant in neurodegenerative

1 - - 2 . . b
2P) S6A 31ps MO 12A G4 AID 31A 2745 TLMD TOA 40ue disease (e.g. Alzheimers,
. b] ) b
Parkinson’s, Huntington’s)

Amyloid beta peptide (intrinsically disordered)
_/,‘-\
0.17%  0.16%  0.16% 0.13% 0.13%

Lindorff-Larsen et al., Science 2011
Y-S. Linand V. S. Pande, Biophys. J. 2012



Protein Folding Mechanism and Kinetics

What are the pathways of
protein folding? Is there a
single preferrred pathway, or
are there many pathways?

2°-structure I»

Contacts

Topology
sl g
sl z

| \'.-__; -
0 0.1 0.2 0.3 \8
Transition path time (us)

e DE Shaw approach (above): Very long 7

simulation trajectories (> 10 ms) using o (I
. . N"“v
special Anton supercomputer 5@

e Pande Group approach (right):
Synthesize many short simulations (e.g. from F@H)

. . . Lindorff-Larsen et al., Science 2011
into a model with discrete states and rates (MSM) Beauchamp et al,, PNAS 2012



G-Protein Coupled Receptor (GPCR)
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1. Signaling molecule

> (green) binds GPCR on
¥ extracellular side (blue),
GPCR changes geometry

G-protein coupled receptors
(GPCRys) are targeted by
roughly 50% of all drugs

2. G protein
currently on the market

( ) binds to
GPCR on intracellular side

5 3. Nucleotide (USA color)

is released and initiates

signaling cascade...

Nature special issue cover image, 2012.



G-Protein Coupled Receptor (GPCR)
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Robert J. Lefkowitz

2012 Nobel Prize in Chemistry
First Crystal Structure of a

GPCR
* For some GPCRs (e.g. B,AR)

both the agonist-bound active
and inactive structures have been
crystallized

* The conformational change of
the receptor is very subtle!

C terminus

B,AR-Cz

N terminus

Kobilka and coworkers, Nature, 2011.



GPCR Conformational change
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e What is the activation
mechanism of GPCRs?

* Investigate using large-scale
MD simulations and Markov
state models for analysis

Gs Binding Site

Kohlhoff K., et al. Nature Chemistry 6, 15-21 (2014).



Protein-Ligand Binding Free Energies

Trypsin with benzamidine

187/495 100 ns simulations achieved
binding pose within 2 A of the crystal pose

Compute binding free energy
within 1 kcal/mol of experiment

e How important is the role of
dynamics in the process of protein /

ligand binding?

e Can MD simulations improve the
drug discovery process?

e Simulations involve the ligand
molecule repeatedly visiting the

binding pocket

* Lots of sampling required! Much
lower throughput than “docking”
but incorporates many more

physical effects

Buch, Giorgino, and De Fabritiis. PNAS 2011



Force field development for water

Simulated density of water vs. temperature.
Our model is shown in light green

Density of Water
1030 | : | | |
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Zz*zzg Experiment
1010 |-
"’E 1000
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=< 990
P
-
8 980

970 |

960 |-

950

260 280 320

300
Temperature (K)

Right: Comparison of our model to
high-level QM (MP2/aug-cc-pVTZ)

energy and force calculations.

* An inexpensive polarizable water force
field for biomolecular simulations,

largely based on AMOEBA (2003)

* Model is fitted to combined
experimental data and QM calculations

e Simpler and faster to calculate than

AMOEBA, and much more accurate.
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o Oxygen
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mE=> QM Reference P o 100
— > MM Force Field ab initio Reference (kJ/mol)

MM Force Field (kJ/mol)
Relative Density of Points

n
o

Wang L-P,, et al. J. Phys. Chem. B 117, 9956 (2013).



Force field development for water

Our model was validated by calculating the phase
diagram and comparing to experiment.

%i_ﬁnu ation Conditipns: . .
* Highepgesspipg phase diagram is

PNl qualitatively correct
= H eﬂlmelting point of
‘ ordinary ice: 262 K (expt: 273 K)
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Time Evolution

Order
Parameters
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Some classical molecular dynamics programs

Program “Best feature” License
Large community, GPU
AMBER acceleration Not free
Great modeling tools
Force fields for nucleic acids,
CHARMM L Not free
carbohydrates and lipids
Free, Open
GROMACS |Fast, also humorous Source
TINKER Easy to edit, AMOEBA force field |Free
Multi-platform compatibility Free, Open
OpenMM | including GPUS), highly flexible | Source
Scales to 100,000+ cores, interface
NAMD 0 VMD Free
Force fields for condensed matter |Free, Open
LAMMPS physics / materials science Source




Recommended reading

S. Adcock and A. McCammon. “Molecular Dynamics: Survey of Methods for
Simulating the Activity of Proteins.” Chem. Rev. 2006, 106, 1589.

S. Rasmussen and B. Kobilka. “Crystal structure of the human 2 adrenergic G-protein-
coupled receptor.” Nature 2007, 454, 383.

B. Cooke and S. Schmidler. “Preserving the Boltzmann ensemble in replica-exchange
molecular dynamics.” J. Chem. Phys. 2008, 129, 164112. (Contains good introductions
to integrators, thermostats etc.)

C. Vega and J. L. E Abascal. “Simulating water with rigid non-polarizable models: a
general perspective.” Phys. Chem. Chem. Phys. 2011, 13, 19663. (All about water

models.)

Two classic texts:

D. Frenkel and B. Smit, Understanding Molecular Simulation.

M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids.

For the ambitious:

L. D. Landau and E. M. Lifshitz, Classical Mechanics 3rd ed.
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