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CONVERGENCE RESULTS FOR A COORDINATE PROJECTION
METHOD APPLIED TO MECHANICAL SYSTEMS WITH
ALGEBRAIC CONSTRAINTS*

EDDA EICH!

Abstract. The equations of motion of mechanical multibody systems with algebraic constraints
are of index 3 and therefore not directly solvable by standard ODE or DAE methods. Reducing the
index by differentiating the constraints results in an ODE or reduced index DAE with invariants.
The presence of discretization errors in the numerical solution leads to violations of the invariants
and eventually yields a drift-off from the manifold given by the invariants. As a consequence one
obtains physically meaningless solutions.

To overcome this difficulty a coordinate projection method is presented, which projects the
discretized solution onto the invariant manifold. Convergence theorems for a combination of the
BDF-method and projection are given. The techniques used in the proof allow insight into the way
the errors are propagated. In particular, it can be shown that only those parts of the errors lying in
the manifold will be propagated. This leads to solutions which not only satisfy the invariant but are
more accurate.
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1. Introduction.

1.1. Equations of motion of mechanical systems and ODEs with in-
variants. Mechanical systems like robots or vehicles are often modeled as multibody
systems consisting of n rigid bodies connected by joints or force elements. Constraints
occur in the presence of joints connecting the bodies. These constraints lead to a re-
duction of the degrees of freedom of the system.

The equations of motions can be written in the following form?:

(L.1) M(p)p = F(p,p) — GT (p),
(1.2) 0=yg(p)
with
e p,p the n, position and velocity variables,
e M(p) the positive definite mass matrix,
e F(p,p) the applied forces,
e G(p) = a‘—%g(p) € IR™ X" the constraint matrix,
e ) the ny) Lagrange multipliers,

GT(p)\ the constraint forces.

Together, (1.1) and (1.2) are a system of differential-algebraic equations of index 3
and therefore not directly solvable by standard ODE or DAE methods. The index
can be reduced by differentiating the algebraic equations (1.2).

* Received by the editors March 11, 1992; accepted for publication (in revised form) September
25, 1992. This work has been supported by the Deutsche Forschungsgemeinschaft, Research Program
“Dynamics of Multibody Systems.”

¥ Institut fiir Mathematik der Universitat Augsburg, Universititsstrasse 2, D-8900 Augsburg,
Germany. Current Address, Kiltrahinger Strasse 7, D 82205 Gilching, Germany.

1 For ease of notation only this simplified case is presented. Nonholonomic constraints as well as
forces f depending on Lagrange multipliers are neglected. Furthermore, we restrict ourselves to the
autonomous case. However, all the analysis extends to more general cases.
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One differentiation of the constraints on position level (1.2) leads to constraints on
velocity level

(1.3) 0=G(p)p,

and one more differentiation leads to the constraint equations on acceleration level

d’9 dG
_ LT . 29 _ o=
(1.4) 0=G(p)p+p Gp(p)p: Gy = dp? ~ dp’

Summarizing (1.1) and (1.4) results in the index-1 DAE

05 (3 ) (2)=( Fen )
G 0 A —pTGp(p)p

Under the above assumptions on M this system is uniquely solvable for (f) if G has

full rank. Explicitly solving this system for A yields

(1.6) A= (GM™IGT) " [GM™IF + pTGyp] .

Substituting this result into (1.1) leads to the ODE system

(1.7) M(p)p = F(p,p),

with

F(p,p,t) i= F(p,)-G(p)" (GO)M(p)'G"(9)) " [G(0)M ™ (0)F(p,5) + 57 Gp(0)5].

The exact solutions of the initial value problems of the four different formulations,
o the index-3 formulation (1.1), (1.2);
o the index-2 formulation (1.1), (1.3);
e the index-1 formulation (1.5); and
e the underlying ODE formulation (1.7)2
are the same, if the initial values (po,po, Ao)T are consistent, i.e., if they satisfy all
constraints (1.2), (1.3), and (1.6).
In the presence of discretization errors, these formulations are no longer equivalent
and have different solutions.
Let 6, (yn) denote the discretization operator of a linear multistep method for

y=f(y)
o 1 k k
(18) bulyn) i= Toyn + 7 D @iwnoi = 3 Bif (wn-s) = F(vn).
i=1 i=1

The subindex w at § denotes which values are taken at past timesteps.
Then the numerical solution of the discretized index-1 system (1.5), written as
first-order system (p = v)

6P(pn) = 'Um
M(pn)av(vn) = F(pnavn) - GT(pn))\na
0 = G(pn)éu(vn) + vrTGp(Pn)vn,

2 Some authors define the underlying ODE including a differential equation for .
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in general does not satisfy the constraints on position level and the constraints on
velocity level:

g(pn) #0,
G(pn)vn # 0.

As a consequence of error propagation eventually a drift-off from these constraints
can be observed. This leads to physically meaningless solutions as shown below.

1.2. Example: The “flying” wheel set. A model of a wheel set running on
a track [23] is used in order to demonstrate the drift-off from the constraints when
only solving the index-1 system.

e p— p—
left I right
LN .
contact point 3 contact point
Z Z Z 7.

Fi1G. 1.1. Wheel set and track, lateral cross section.

The algebraic equations originate from the following.

e The contact condition between wheel and track: the contact points between
wheel and track must be the same points in space (1 equation for each wheel). This
equation is of the form (1.2) and therefore an index 3 equation.

e The nonintersecting condition: the tangent planes on wheel and track in the
contact points must coincide in order to avoid intersection between wheel and track
(2 equations for each wheel). These equations are an index-1 system.

Both types of equations depend on the profile functions for wheel and track. For
a detailed description and the equations; see [23]. Here we model a wheel set with
two wheels and therefore have to deal with six algebraic equations.

The dynamic behaviour of the wheel set is given by five differential equations of
second order and one equation of first order. The forces take into account gravity
and centrifugal forces, creep forces in the contact points, forces on the car body, and
constraint forces. Note that due to creepages the applied forces depend nonlinearly
on A. In the case considered here a dicone running on a circular track is considered.

The BDF integrator MKS-DAESOL [5] is used to integrate the index-1 system
numerically. This code is designed to exploit the special multibody structure, and
employs variable step, variable order error control strategies.

Integration over 10 seconds with an accuracy of TOL=10"5 leads to residuals on
position and velocity level shown in Figs. 1.2 and 1.3.
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F1G. 1.2. Residuals on position level.
Residuals on position level, TOL=1.E-5
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Time [s]

F1G. 1.3. Residuals on velocity level.

In Fig. 1.4 some pictures from computer animation are given demonstrating that
integrating the index-reduced system leads to a physically totally meaningless solu-
tion: after 10 seconds the wheel set is flying at a height of 1.27 m!

1.3. Overview. To overcome this difficulty, in §2 a coordinate projection method
is presented. Applying this new method to the wheel set example leads to residuals
which can be made arbitrarily small (within roundoff). In the figures above they
therefore cannot be distinguished from the zero axis.

A convergence analysis for the BDF-method combined with this projection tech-
nique is presented in §3. Note that in the case of BDF-methods or, more generally,
multistep methods, this proof requires other techniques than for one-step methods
since the correction by projection enters into the error equation. The proof for one-
step methods was given by Shampine in [22] in the framework of ODEs with invariants.

The techniques used for the proof here allow insight into the way the errors are
propagated: In the linear case only those errors lying in the manifold given by the
constraints are propagated. This leads to an improved accuracy of the solution, which
is demonstrated by the pendulum example. Section 4 briefly gives some aspects of
the numerical computation of the coordinate projection method.
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F1G. 1.4. Animation of wheel set without projection.

Various other regularization and projection methods have been developed. Reg-
ularization methods, e.g., [7], [14], [16], and [17], reduce the index by introducing
additional regularization parameters into the original system. The famous approach
of Baumgarte (2], [20] can be interpreted as a regularization method as shown in [7],
where also convergence results are presented: the solution of the perturbed system
can be written as a power series depending on the regularization parameter.

In contrast to projection methods, regularization methods only achieve an asymp-
totic approximation to the manifold given by the invariants, whereas projection meth-
ods produce a solution lying in the manifold in every timestep.

Most projection methods can be subdivided into two classes, coordinate and
derivative projection methods [6], depending on whether the coordinates itself or
the derivative f is projected onto the manifold. The methods presented, e.g., in [8]-
[13], [19], [21], [25], and [26], are derivative projection methods based on viewing the
DAE as an ODE on a manifold and using local parametrizations of the manifold to
construct the method. The method described here is a coordinate projection method.
It avoids the unneccessary drift-off from the constraints by projecting the solution of
the reduced index system back onto the manifold. Similar methods have been used
in [1], [19], and [22] in the context of one-step methods.

2. A coordinate projection method. For the numerical integration of ODEs
with invariants:

(2.1) v=1F(), y(to)= 1o,
(2.2) 0 = é(y) — (%),
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a coordinate projection method is presented. Equation (2.2) is called an (integral)
invariant of the ODE (2.1) if and only if for all initial values yo (2.2) holds. Necessary
and sufficient for ¢ to be an integral invariant is

(23) H(y)f () = j—jﬂy) ~ 0.

The equations of motion of multibody systems easily fit into this context: Taking
the underlying ODE (1.7), the position and velocity constraints (1.2),(1.3) can be
regarded as invariants of the solution

o= & )

For consistent initial values we have

o) = (29 ) =0

Therefore, we assume ¢(yo) = 0 for ease of notation.

In this section we restrict ourselves to ODEs with invariants. However, in the
implementation of MKS-DAESOL the underlying ODE is not computed explicitly
since this requires the computation and decomposition of GM~GT for every function
evaluation. Instead, the discretized version of the index-1 system (1.5) is solved
iteratively. This has no influence on the error analysis presented in the sequel because
semi-explicit index-1 DAEs behave under discretization like ODEs for most integration
methods, especially for the BDF method [4]. The index-1 variable A needs not to be
recomputed after the projection has been carried out, because this would only affect
the predictor values but not the corrector in the next step since the algebraic variable
A enters linearly.

Note, that principally this method can be used to solve DAEs of arbitrary high
index by differentiating the equations until an index-1 system is obtained. The system
is then stabilized by projection onto the higher-index equations.

Other examples for invariants are conservation laws, e.g., for energy or momen-
tum.

The coordinate projection method mainly consists of two steps for each timestep.

1. The numerical solution ¢, of the ODE (2.1) is computed by a discretization
method:

(2.4) by(Gn) = f(Gn)-

This is done using projected values obtained at past timesteps.
2. The solution ¢y, is then projected orthogonally back onto the manifold given
by the invariants, i.e., the projected solution is computed as the solution of

(2.5) g = Gnll2 = min,
(2.6) $(yn) = 0.

These projected values are used to advance the solution.

Remark 2.1. In [22] the projection 2. was discussed for one-step methods. There
this projection was viewed as an arbitrary perturbation of the solution, which may
not be applicable to multistep methods. Here it will be shown that the projection
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Fic. 2.1. Illustration of projection.

has a well defined influence on the discretization error of multistep methods so that
convergence can be shown also for this case. Figure 2.1 illustrates this projection for
the BDF method.

In case of linear invariants of the form
0= Hy(t) + 2(t)

the solution can be expressed using the Moore-Penrose pseudo-inverse H* of H. Let
V be a matrix whose columns span the null-space of H, i.e., HV = 0. Then we get

(2.7) Yn = —H' 2, + Pin
with
P:=vvt=v(VTv)-lyT,
P is an orthogonal projector onto ker(H). T:=1 - P = H*H = H'(HHT)™'H is

an orthogonal projector onto im(HT) = ker(H)*.
Remark 2.2. Gear [12] has shown that for linear invariants of the form

é(y) = Hy+b

one-step methods of the form

Yn = Yn—-1 + hq)(yn—ly h)

with H®(y,h) = 0 keep the invariant. A similar result holds for consistent linear
multistep methods of the form (1.8) as can be seen from

k

1 k k k : ’
Hyn = a_()‘H (_;aiyn——i + h;ﬂzf(yn—z)) = _; Z_OHyn—i = Z Z_Ob = -b.

=1

=-1
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Herein the k starting values must satisfy the invariant. This result no longer holds
for linear time variant invariants like

Hy(t)+2(t) =0

with z # const., which are considered here.
In the general nonlinear case a solution y, of the projection step 2. must satisfy
the Euler equations

(2-8) Yn = Gn — HT(yn)nna

with H := %5' This relation will be used in the sequel.

3. Convergence results. In this section convergence results for the coordinate
projection method in the framework of BDF methods are given. The main result is
that the projection does not disturb the convergence properties of the BDF method.
This is proven by relating the error equations for the projected method to those of
the original method and using the known stability results for these methods (see, e.g.,
[11)).

In the first part of this section we give a convergence proof for linear constant
coefficient ODEs with linear time variant invariants. This is done in order to get
further insight into the nature of errors and their propagation. It will be shown

e that only those parts of the discretization errors are propagated, which lie in
the manifold given by the invariants;

e that the local error of the projected method is smaller than the local error
of the original method.

In the second part a convergence proof for nonlinear systems will be given.

3.1. Convergence results for linear systems. Let us consider the linear con-
stant coeflicient system

(3.1) y(t) = Ay(t) + u(t),
(3.2) 0= Hy(t) + 2(t).
THEOREM 3.1. Let H be of full rank. If the starting values satisfy
e; = O(h¥)
Pe¢=e,-, i=0,...,k—1,

e; = y; — y(ti) denoting the global error, then the projected k-step BDF method (1 <
k < 6) converges with the same order as the corresponding original method, i.e.,

en = (’)(hk) for nh < const.

if h is sufficiently small.
Proof. Let p be the BDF discretization operator based on projected values y,—_;
from past timesteps (using the same notation as for 6):

k
py(?jn) = ag¥n + Zaiyn—i~

=1
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Let g, be the solution of the discretization scheme applied to (3.1),

‘}I;Py(gn) = Afn + u(tn)~

Let y, be obtained from projecting this solution onto the manifold given by (3.2),
thus by (2.7),

yn = —H 2(t,) + Piy.

Let 7, be the local discretization error

k
(33) = i) — 3 D 0aytn—s)
=0

and e, the global error of the projected solution e, := y, — y(t,). With these
definitions we get

€n = Yn — y(tn)
= P(gn - y(tn))

k
= P(aol —hA)™! [— > ouen—i + th]

i=1

- [(—gﬁ + O(h)) en1+ (—z—z + (’)(h)) en_zt o+ (Z—z +(’)(h)> et

+ (i +0 (h2)> Tn]
Qo
if h is sufficiently small.
Rewriting this in the form of a one-step method, we obtain

én -ap —-2p ... -3kP en—1
€n—1 I 0 0 n—2
= ) +0O(h)
0 "
€n—k+1 I 0 €n—k

+ .
0
(3.4)
gy _2r5 ... _%gJ Pen—-l
(o 7)) ag @0
I 0 e 0 Pe,_»
- ‘ +O(R)
0 . .
I 0 Pe,_,
2 + 0 (h?))Pr,
0
+
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Since
€n—i = Yn—i — y(tn—i)
= _H+zn—z' + Pyn—i — (_H+Zn—i + Py(tn——i))

= P(yn—i - y(tn—i))
= Pen_;,

(3.5)

the same difference equation as for the BDF-method applied to ODEs is obtained and
hence follows convergence. 0
We now can conclude the following from the proof.
e Only the error lying in the manifold enters the error equation; see (3.5);
e Only the projected part of the local error is propagated; see (3.4).
P is an orthogonal projector and therefore || P|| < 1 and the errors of the projected
method are actually reduced. This can also be seen from the example in §3.3.

3.2. Convergence results for nonlinear systems. Next, consider the au-
tonomous nonlinear system

0= ¢(y).

In this section it will be shown that the errors of the projected BDF methods of order
k are O(h*) as in the nonprojected case.

THEOREM 3.2. Let ¢, f be sufficiently differentiable, at least twice. Assume that
(HHT)™! ezists and is bounded for all t € [to,te] in a neighbourhood of the solution
and that the starting values satisfy

ei=(9(hk)
P6i=6i, l=0,,k—1

Then the projected k-step BDF method (1 < k < 6) has the same order of convergence
as the corresponding unprojected method, i.e.,

en = O(R*)  for nh < const.

if h is sufficiently small.

Proof. The proof is based on relating the error equation for the projected method
to the one for the original BDF method.

The techniques used in the proof are similar to those used, e.g., in [3] and [18]
to prove convergence for semi-explicit index-2 systems. However, in contrast to the
stabilization method proposed by Gear in [12],

Y= f(y) + HT“a
0= ¢(y)’

this coordinate projection method cannot be written as a (discretized) index-2 system,
such that these convergence results cannot be applied directly.
Let 7, be the local discretization error

k
(3.6) Tn 1= gY(t) — ,—ll Z a:y(tn-i) = f(y(tn)) — %Py(t) (y(tn))-
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Using the Euler equations (2.8) and (2.9) we can rewrite

%Py(gn) = f(@n),
”yn - ﬂnnz = Ir;in,

¢(yn) =0

by introducing the Lagrange multipliers 7,

%py(yn + HT(:‘/n)"In) = f(yn + HT(yn)nn),
¢(yn) =0.

From this and from (3.6) we get by linearization

(37) %pe(en) = fy(y(t'n))(en + HT(y(tn))nn) - gﬁqHT(y(tn))nn
+Tn + Rl (en’ nn)
(3.8) 0= H(y(tn))en + Ra(en),

where R;, Ry summarize higher order terms in e, n,:

Rin(ens i) = 5 (en+ HT @(tn)1a) Fy(en + BT (tn) )

~ Q ~
1y @(tn)) (en Hy 1) — S en Hy o,

1 o~
R2,n(e'n,77n) = EeZHyen'
The tilde indicates that the term is not evaluated on the exact solution but in a
neighbourhood of it, maybe at different locations for each component.

. . . T
Now, we rewrite this as a linear system® for (e 77)":

aol —hfy (aol —hfy)HT en
(3.9) ( - i e
— ( - Zf=1 aien_; + hRLn + h1, )
"'R2,n )

Solving this for e, results in

k
en = (I — HY (H,HEY) ' H,)(aol — hf,)™* (- > aien—i+hRyq+ h‘rn)

3.10 =1
G100 _pr@,mr) Ry

with H,, := H(y(t,)). Premultiplying this by the projector P, := (I-HI (H,HI)"'H,)
yields
k
(3.11) P,e, = P,(apl — hfy)‘1 (— Zaien_i + hRypn + h‘rn) .
i=1

3 Note that R; ,, still depend on e, Nn.
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For h sufficiently small,
-1 1 h
(ol —hfy) =—|(I+—A], A=0(1)
(6 7)) (7))

holds where A summarizes the remainder from Neumann series.
Inserting this into (3.11) gives

k k
h
P, ( E aien_i> = P,(hR1n + h1) + a_OP"A <— E oien—i +hRipn + th) ,

i=0 i=1
and we get
k k
P,_; — P, 1

Zaipn—ien—i = hzai (n—ﬂ - _PnA> en—i

., N h (o))

=0 =1
(3.12) +hP, (I + aiA) (Rin + Tn)-

0

From the assumptions it follows that H, H' are differentiable and therefore P is, too.
This leads to

P, —th_i <iK
and we get from (3.12)
(Pe),, = zkj (-91 + O(h)) (Pe)n_s + 1P, (1 + iA) (Rin+7),
= [T} (7)) Qg ’

with (Pe); := P;e;. The matrix on the right-hand side is the same as in the case of
the unprojected BDF method except for the O(h) term. In [15] and [24] it has been
shown that this perturbation does not destroy stability. Therefore, we get

| Prenll = O(Rl,n) + O(7a) + O(lleoll),
with

Ri,n = I;lsaff “Ri,j”a 1=1,2, Tn = I;?r)f “Tn”

Premultiplying (3.10) by HI (H,HI)~1H,, results in
Tnen = —Hy (HaHy) 7' Royn
with T, = HY (H,HY)"'H, = I — P, and we get
[Tnenll = O(l|Rz,nll)-
From e, = Tpe, + P,e, follows

(3.13) lenll = O(R1,n) + O(Ran) + O(Tn) + O(|leoll)-
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This is an implicit equation for e,, because R; ,,i = 1,2 are still dependent on e,.
Since R; n, R2,n depend, besides on ey, also on n,, we first have to estimate 7, before
we can estimate e, from the implicit system (3.13) with the help of a fixed-point
argument.

Solving (3.9) for 7, results in

k
Mo = (H HY) ' Hy (oI + hf,) ! (— > aien_i+htn+hRipn+h fyen> .
=0

Together with (3.13) we get
(3.14) 7l = O(R1,n) + O(R2,n) + O(Fa) + O(leol)-

Now, we have to show that R;, Ry are small.
For this reason we use a fixed-point argument which has been used in [18] and [4]
for a similar purpose. Assume that for Ry ,, Rz, we have the inequalities

R’i,nseia 1=1,2

and that for the errors in the starting values we have ||eg|| = O(h*). Then we must
show that ¢; are small.
From the definition of R; we get using (3.13),(3.14)

— 1
Ron < Ku ((lenll+ LI + el

1
< K, ((hk +e1+ 62)2 + z(hk +e1+ 62)2)
Rz,n < Kg(hk +ée1+ 62)2.

€1, €2 can be determined as solutions of

er ) _ [ Ka((h* +e1+e2)® + 1 (h* +e1+€2)?)
€9 Ks(hk-l-el +82)2

J

—

F(e)

by functional iteration e(t1) = F(e®) (F : Uyx(0) — Upx(0)) and a starting value
ago) = 0. F is for small h a contractive mapping with the contraction coefficient
|F'|| < r = O(R*~1), if k > 2. Thus, from the contractive mapping theorem we get

llell = fle = el <

Lo _ o) < 1 e qip2e-t

e — O] < T2 KA.

For k = 1 the result can be obtained by scaling the variables as in [18]. 0
Remark 3.1. Errors resulting from not exactly solving the nonlinear equations

(e.g., because of truncation errors or not iterating until convergence), can also be

subsummed in R;, Rp. Assuming that these errors are O(h**+1), we obtain, with the

same fixed-point argument as above,

& = O(hk+1)a

and the method converges.

Remark 3.2. The corresponding results for variable order and stepsize can be
obtained, because in no part of the proof has the constancy of stepsize and order been
used. One only has to assume that the nonprojected method is stable.
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3.3. Example. In order to demonstrate the error reduction the example of a
simple pendulum is considered, because its solution is known in the turning points.
The equations of motion are

(3.15) mi = Az,

(3.16) miy = —mg + Ay,

(3.17) 0=2%4¢y2 -1,
(3.18) 0=zt + yy,

(3.19) 0 = zi + yj + 2° + >

The gravitational acceleration g is chosen as g = 13.7503716373294544 in order to get
a period of 2 seconds. The starting values are

2(0)=1, y(0)=0, #(0)=0, g(0)=0.

The results obtained with MKS-DAESOL by integrating the index-1 system (3.15),
(3.16), (3.19) over 100 seconds, i.e., 50 periods, and projecting back after each timestep
in order to satisfy (3.17), (3.18) are summarized in the following table.

TABLE 3.1

absolute error

TOL |Proj.| Az [ Ay [As [ Ay [ Ax RES ERR

1075 | no | 56102 | 4110~ | 1.3 10° 2.9 10° 1.4 101 6.1 10~2 1.3 107!

105 | yes | 24108 | 22104 | 3610-5 | 1.610~! | 2.410~2 | 7.210-1° || 5.4 10-3

10=% | no | 9.7 103 2.1105 [ 2.910°8 871072 | 79103 | 1.910¢ 2.9 10—8

1079 | yes | 9.710° | 1.410~* | 39106 | 281072 | 1.1103 | 5.910~1! || 9.3 104

107 | no | 2.410~* 3.710~% | 3.910°¢ 831073 | 5.010-3 | 4910 2.8 10~4

107 | yes | 9.110712 | 451076 | 2910~% | 5.710"% | 6.2107% | 2.110"12 || 1.9 107°

1078 | no | 1.510~% | 20104 | 5410°% | 14102 | 3.010°3 | 29104 471074

1078 | yes | 1.310713 | 5310°7 | 721071 | 1.110~% | 73107 | 2.1 10714 || 3.5 10~

1079 | no | 1.710°% | 231075 | 33107 | 161073 | 31104 | 3.310°% 5.2 1075

1079 | yes | 5.01071% | 981078 | 1.410712 | 1.610~% | 1.310-¢ | 3.310716 || 5.4 10~7

The error ERR is computed in the same norm as used for the error computation
in the integration routine, where each component is scaled by the value of the corre-
sponding variable. RES =x2 +y% — 1 denotes the residual on position level. From this
table we can conclude that the projection method reduces the errors significantly.

4. Aspects of numerical computation.

4.1. Error estimation. The reduced error of the projection method allows the
error formulas to be changed.

In the case of linear systems (3.1),(3.2) it follows from the definition of the local
discretization error 7, that the local error d,, of the unprojected method satisfies

dn = (aol — hA)" h7,,.
The local error d,, of the projected method is given as
dn = P(aol — hA) ‘hr, = Pd,,.

Thus the local error of the projected method can be obtained by projection of the
local error of the original method.
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4.2. Computation of projection step. Only a brief summary of the compu-
tation of the projection step is given. Details can be found in [5] and will be published
in a forthcoming report.

The numerical solution of the projection step (2) can be computed iteratively by a
Gauss—Newton method which avoids the explicit computation of 7,,. It can be shown
that this method converges with a rate r = O(h¥). Thus, by reducing the stepsize
convergence can always be obtained. The effort due to decomposition and solution
of the corresponding linearized system can be significantly reduced by relaxing the
orthogonality requirement of the projection slightly. Further gains in effectiveness
can be obtained by taking into consideration the special multibody structure in both
steps, the discretization of the index-1 system (1.5) and the Gauss—Newton iteration.
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