//----------------------------------------------------------------------------- // File: UserForceControlHorizontal.h // Class: UserForceControlHorizontal // Parent: GeneralForceElements // Children: None // Purpose: Applies an air-resistance force on an object falling vertically. // Author: Paul Mitiguy - May 20, 2007 // Modified: MDF 5/30/07 //----------------------------------------------------------------------------- #ifndef __USERFORCECONTROLHORIZONTAL_H__ #define __USERFORCECONTROLHORIZONTAL_H__ //----------------------------------------------------------------------------- #include "StandardCppHeadersAndNamespace.h" #include "SimTKsimbody.h" using namespace SimTK; //-------------------------------------------------------------------------- // User-defined classes for adding forces/torques are constructed as follows: // 1. Create a constructor with whatever arguments make sense for the force or torque and copy the arguments into class data. // 2. Create a clone method (all clone methods are identical except for the class name appearing after "new") // 3. Create a calc method (the arguments and return type for all calc methods are identical). // The code in the calc method is specific to the calculation of force or torque. // Note: The set of all forces is replaced by an equivalent set, consisting of a torque // that is equal to the moment of the forces about the body's origin together // with the resultant of the forces applied at the body's origin. //-------------------------------------------------------------------------- class UserForceControlHorizontal : public GeneralForceElements::UserForce { public: // Constructor is explicit explicit UserForceControlHorizontal( BodyId bodyIdA, Real massOfObject, Real dampingRatio, Real naturalFrequency ) { myBodyIdForApplyingForce = bodyIdA; myMassOfObject = massOfObject; myDampingRatio = dampingRatio; myNaturalFrequency = naturalFrequency; } // The clone method is used internally by Simbody (required by virtual parent class) UserForce* clone() const { return new UserForceControlHorizontal(*this); } // The calc method is where forces or torques are calculated (required by virtual parent class) void calc( const MatterSubsystem& matter, // Input information (matter) const State& state, // Input information (current state) Vector_& bodyForces, // Forces and torques on bodies Vector_& particleForces, // Forces on particles (currently unused) Vector& mobilityForces, // Generalized forces Real& pe ) const // For forces with a potential energy { // Query the matter subsystem for the body's origin velocity in ground. // This vector is expressed in the ground's "x,y,z" unit vectors. const Vec3 bodyVelocity = matter.calcBodyOriginVelocityInBody( state, myBodyIdForApplyingForce, GroundId ); Real xVelocity = bodyVelocity[0]; // Query the matter subsystem for the body's origin location in ground. // This vector is expressed in the ground's "x,y,z" unit vectors. const Vec3 bodyLocation = matter.calcBodyOriginLocationInBody( state, myBodyIdForApplyingForce, GroundId ); Real xLocation = bodyLocation[0]; // Get time of current state. const Real& myTime = state.getTime(); // Calculate desired location, velocity, and acceleration. Real xLocationDesired = 2 + sin(myTime); Real xVelocityDesired = cos(myTime); Real xAccelerationDesired = -sin(myTime); // Calculate constant gains kd and kp. Real kd = 2 * myNaturalFrequency; Real kp = pow(myNaturalFrequency, 2); // Calculate magnitude of force to be applied. Real xForce = myMassOfObject * ( xAccelerationDesired + kd*(xVelocityDesired-xVelocity) + kp*(xLocationDesired-xLocation) ); // Get the proper memory location to increment the force and/or torque. // bodiesForces is a Vec6 whose elements are two Vec3. // The elements of the first Vec3 are Tx, Ty, Tz (expressed in the ground's "x,y,z"). // The elements of the second Vec3 are Fx, Fy, Fz (expressed in the ground's "x,y,z"). SpatialVec& bodiesForces = bodyForces[ myBodyIdForApplyingForce ]; Vec3& torqueSum = bodiesForces[0]; Vec3& forceSum = bodiesForces[1]; // Increment the sum of all forces on this body (other force subsystems may also add forces/torque) // torqueSum[0] += 0; // Increment torque in the ground's x-direction. // torqueSum[1] += 0; // Increment torque in the ground's y-direction. // torqueSum[2] += 0; // Increment torque in the ground's z-direction. forceSum[0] += xForce; // Increment force in the ground's x-direction. // forceSum[1] += yForce; // Increment force in the ground's y-direction. // forceSum[2] += 0; // Increment force in the ground's z-direction. } private: BodyId myBodyIdForApplyingForce; Real myMassOfObject; Real myDampingRatio; Real myNaturalFrequency; }; //----------------------------------------------------------------------------- #endif /* __USERFORCECONTROLHORIZONTAL_H__ */ //-----------------------------------------------------------------------------