//----------------------------------------------------------------------------- // File: UserForceStokesDrag.h // Class: UserForceStokesDrag // Parent: GeneralForceElements // Children: None // Purpose: Applies stokes drag force (drag proportional to velocity) // Author: Mary Elting - June 11, 2007 //----------------------------------------------------------------------------- #ifndef __USERFORCESTOKESDRAG_H__ #define __USERFORCESTOKESDRAG_H__ //----------------------------------------------------------------------------- #include "StandardCppHeadersAndNamespace.h" #include "SimTKsimbody.h" using namespace SimTK; //-------------------------------------------------------------------------- // User-defined classes for adding forces/torques are constructed as follows: // 1. Create a constructor with whatever arguments make sense for the force or torque and copy the arguments into class data. // 2. Create a clone method (all clone methods are identical except for the class name appearing after "new") // 3. Create a calc method (the arguments and return type for all calc methods are identical). // The code in the calc method is specific to the calculation of force or torque. // Note: The set of all forces is replaced by an equivalent set, consisting of a torque // that is equal to the moment of the forces about the body's origin together // with the resultant of the forces applied at the body's origin. //-------------------------------------------------------------------------- class UserForceStokesDrag : public GeneralForceElements::UserForce { public: // Constructor is explicit explicit UserForceStokesDrag( BodyId bodyIdA, Real dragCoeff, Vec3 vectorInAToDragPosition) { myBodyIdForApplyingForce = bodyIdA; myDragCoeff = dragCoeff; myDragLocation = vectorInAToDragPosition; } // The clone method is used internally by Simbody (required by virtual parent class) UserForce* clone() const { return new UserForceStokesDrag(*this); } // The calc method is where forces or torques are calculated (required by virtual parent class) void calc( const MatterSubsystem& matter, // Input information (matter) const State& state, // Input information (current state) Vector_& bodyForces, // Forces and torques on bodies Vector_& particleForces, // Forces on particles (currently unused) Vector& mobilityForces, // Generalized forces Real& pe ) const // For forces with a potential energy { //calculate velocity of a point in body Vec3 velocityAtDragPoint = matter.calcBodyFixedPointVelocityInGround(state, myBodyIdForApplyingForce, myDragLocation); //drag is proportional to velocity Vec3 myForce = -myDragCoeff*velocityAtDragPoint; // Get the proper memory location to increment the force and/or torque. // bodiesForces is a Vec6 whose elements are two Vec3. // The elements of the first Vec3 are Tx, Ty, Tz (expressed in the ground's "x,y,z"). // The elements of the second Vec3 are Fx, Fy, Fz (expressed in the ground's "x,y,z"). SpatialVec& bodiesForces = bodyForces[ myBodyIdForApplyingForce ]; Vec3& torqueSum = bodiesForces[0]; Vec3& forceSum = bodiesForces[1]; // Increment the sum of all forces on this body (other force subsystems may also add forces/torque) forceSum += myForce; //torqueSum += myTorque; } private: BodyId myBodyIdForApplyingForce; Real myDragCoeff; Vec3 myDragLocation; }; //----------------------------------------------------------------------------- #endif /* __USERFORCESTOKESDRAG_H__ */ //-----------------------------------------------------------------------------