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Abstract

Musculoskeletal modeling is a new computational tool to reverse engineer human control systems, 

which require efficient algorithms running in real-time. Human hand pronation-supination 

movement is accomplished by movement of the radius and ulna bones relative to each other via 

the complex proximal and distal radioulnar joints, each with multiple degrees of freedom (DOFs). 

Here, we report two simplified models of this complex kinematic transformation implemented as a 

part of a 20 DOF model of the hand and forearm. The pronation/supination DOF was implemented 

as a single rotation joint either within the forearm segment or separating proximal and distal parts 

of the forearm segment. Torques produced by the inverse dynamic simulations with anatomical 

architecture of the forearm (OpenSim model) were used as the “gold standard” in the comparison 

of two simple models. Joint placement was iteratively optimized to achieve the closest 

representation of torques during realistic hand movements. The model with a split forearm 

segment performed better than the model with a solid forearm segment in simulating pronation/

supination torques. We conclude that simplifying pronation/supination DOF as a single-axis 

rotation between arm segments is a viable strategy to reduce the complexity of multi-DOF 

dynamic simulations.

I. INTRODUCTION

Musculoskeletal models are useful tools in bottom-up descriptions of body mechanics for 

theoretical and engineering applications. A detailed biomechanical dynamic model of the 

human upper extremity was developed in OpenSim by Saul et al. [1], [2]. This and similar 

arm models have been used in human-machine interfaces [3]–[6] and biomimetic control 

systems for prosthetics [7]–[9]. This promising application embeds musculoskeletal models 
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in closed-loop control systems, which can be implemented in Matlab (MathWorks, Inc.) 

with OpenSim application programming interface. Such hybrid control systems have been 

successfully implemented using both forward and inverse dynamic simulations [10]. 

However, each additional mechanical degree of freedom (DOF) in these models requires 

additional differential equations for simulating segmental dynamics. Solving these equations 

in real-time for closed-loop control of complex human anatomy remains challenging [11], 

[12]. For example, the human hand and forearm are comprised of 17 complex joints with at 

least 30 DOFs. Therefore, reducing the number of simulated DOFs is a practical means to 

simplify the implementation of biomimetic algorithms in closed-loop control systems. For 

example, pronation/supination of the wrist results from the rotation of both the ulna and 

radius along their respective longitudinal axes (2 DOFs). However, the resulting motion of 

the hand can be described as a single DOF about the forearm. Thus, it is possible to simulate 

the pronation/supination of the hand as a single-DOF revolute joint, reducing the number of 

differential equations that must be solved in real-time. The questions addressed in this study 

are how to define this hand/forearm simplification relative to the underlying anatomy and 

whether to model the forearm as one segment, as implemented in [13], or as two segments. 

These simplifications, however, still need to reflect accurately the joint moments produced 

by muscles. Body anatomy is embedded in the neural control signals [14], [15] and any 

mismatch between the intended biological and simulated forces will degrade the 

performance of a biomimetic system. Moreover, inverse simulations aimed at estimating 

muscle activity patterns and neural control signals from joint moments would be similarly 

affected by inaccuracies caused by model simplifications. In this study, we quantified the 

errors in predicting joint moments with inverse simulations that are caused by the 

simplification of pronation/supination as a single-DOF joint and developed a solution which 

reduced these errors.

II. METHODOLOGY

A. OpenSim Model

We used a published model of an arm with 3 joints and 7 DOFs that was implemented in 

OpenSim 4.1 [1], [2]. The pronation/supination DOF was defined as a rotation of the radius 

about the ulna and the joint torque was measured about an axis parallel to the ulna segment 

(Fig. 1). To represent the variability of hand forces during naturalistic human movements we 

extended the model to articulate the hand with 16 DOFs, bringing the total number of DOFs 

to 20 as reported in [16]. The kinematic chain of hand segments was organized from 

proximal segment (parent) to distal segment (child), i.e., from metacarpals, proximal 

phalanges, middle phalanges, and to distal phalanges. The segments of the hand that include 

carpal and metacarpal bones were modeled as a single rigid body with the inertia matrix of a 

rectangular prism (Fig. 2). The segments of digits were modeled as cylinders. The center of 

mass was placed in the center of each segment. The dimensions and inertial parameters of 

segments were based on published anthropometric data for humans of varied body sizes 

from 5% to 50% (average) to 95% of normal range [17], [18].

The joints were modeled as ideal joints with zero stiffness and viscosity. The 

carpometacarpal joint was modeled with two DOFs (thumb flexion/extension and abduction/
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adduction), and each of the rest of the 14 finger joints was modelled as hinge joints with one 

DOF (phalangeal flexion/extension). Local coordinate systems of bodies and joints were 

selected so that flexion was positive in all hand DOFs, and thumb abduction was positive.

B. Simulink Model

We developed two equivalent upper extremity models in Simulink (MathWorks, Inc). Both 

Simulink models matched the OpenSim model in all inertial and morphometric parameters 

with the exception of the forearm segment and pronation/supination joint. In the first 

Simulink model, referred to as solid forearm model, the forearm segment was a single 

cylinder with inertial parameters closely matched to the geometric sum of radius and ulna 

bodies of the OpenSim model (Fig. 2A). The center of mass was placed in the center of the 

forearm segment. The pronation/supination torque was measured between the humerus 

segment fixed in the world reference frame and the forearm segment about the Z axis in Fig. 

2A. In the second Simulink model, referred to as segmented forearm model, the forearm 

segment from the first model was split into two cylinders (Fig. 2B). The pronation/

supination torque was measured between the proximal and distal compartments of the 

forearm segment about the Z axis in Fig. 2B. The center of mass was placed in the center of 

each segment.

C. Inverse Dynamics

Movements of the hand were simulated to mimic characteristic point-to-point human 

movement with a bell-shaped velocity profile [19]. A total of 65 movements were simulated 

representing 13 hand movements each repeated at 0°, 45°, or 90° elbow flexion or with 

concurrent flexion or extension of elbow through 0° - 130° range. The simulated hand 

movements were as follows: 1) wrist pronation, 2) wrist supination, 3) wrist flexion and 

adduction, 4) wrist extension and abduction, 5) closing the hand, 6) opening the hand, 7) 

closing the hand and wrist pronation, 8) opening the hand and wrist pronation, 9) closing the 

hand and wrist supination, 10) opening the hand and wrist supination, 11) while in 

supination, closing the hand and flexing the wrist, 12) while in pronation, opening the hand 

and extending the wrist, and 13) hand opening while the thumb is flexing. The angular 

kinematics of each moving DOF for a given movement was approximated as a symmetrical 

sigmoidal trajectory in time lasting 0.5 seconds (Fig 3A). The trajectory was scaled in 

amplitude to the appropriate range for each movement. In most movements, the starting 

posture for all DOFs was a neutral, i.e., the half-way angle between the maximal and 

minimal range of the corresponding DOF. The stopping angle was at 45% of maximal or 

minimal range derived from published ergonomic data [18]. The polynomial coefficients of 

the scaled trajectory were then differentiated to calculate angular velocity and differentiated 

again to calculate angular acceleration. The angular position of the non-moving DOFs were 

set to the required posture (neutral posture, elbow at 0°, 45°, or 90° flexion angle, or full 

pronation or supination) with zero velocity and acceleration.

We computed applied joint torques for all models using inverse dynamics driven by angular 

kinematics of each of the 65 movements. Simulations with the OpenSim model were run 

using the inverse dynamics tool of OpenSim MATLAB API. The torques were low-pass 

filtered at 6 Hz. Simulations with the Simulink models were ran using 4th order Runge-Kutta 
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solver with a fixed 1 ms timestep. Simulations with models of different body sizes were ran 

to test the generality of our conclusions for the analysis of kinematic data from individuals 

of different sizes. The OpenSim and Simulink joint torques were compared by calculating 

root-mean-squared-error (RMSE) for each DOF for all movements. The RMSE values were 

normalized to the torque range of the OpenSim model per DOF per movement.

III. RESULTS

Applied torques calculated with inverse dynamics were on similar scale across all models for 

all movements. The mean RMSEs were below 5% of peak-to-peak torque for most DOFs 

across all movements. This shows that the inverse dynamic calculations in OpenSim API 

and Simulink are similar despite any differences in their respective algorithms. The 

differences between models were, as expected, primarily in pronation-supination torques.

The applied torque about the pronation/supination DOF of the segmented model was the 

most similar to that produced by anatomical joints simulated in OpenSim (Fig. 3B). The 

forearm architecture had a generally small effect on the torque accuracy across all movement 

and DOFs (Fig. 4). As expected, the largest effects of forearm architecture on torque 

accuracy across all movements was at pronation/supination and elbow DOFs (Fig. 4A & B). 

These errors were driven by the differences in offset, as illustrated in Fig. 3B, or in profiles 

that affected the peak values of applied torques and sometimes both. This shows that 

simulations with solid forearm models could be wrong by up to 15% in estimating the 

amplitude of postural and propulsion-related muscle forces.

Torque profiles obtained for the models of short and tall human body sizes varied in scale, 

but not profiles (Fig. 3C & D). The errors between the corresponding OpenSim and 

segmented models generally increased with body size but remained mostly below 15% of 

peak-to-peak torque (Fig. 5). The scaling of errors with body size was the most prominent in 

torques about the wrist and finger joints in movements with concurrent elbow motion. This 

is likely due to the cumulative effect of numerical errors that propagate from proximal to 

distal joints and have a larger effect on smaller distal torques.

IV. DISCUSSION AND CONCLUSION

Despite known difficulties in obtaining consistent solutions across platforms [20], we have 

achieved very close inverse simulation results between OpenSim and Simulink models. Even 

the model with extremely simplified pronation/supination joint placed in the cylindrical solid 

forearm segment produced joint torques that were closely matched to those of a model with 

separate ulna segment rotating about the radius segment through complex joints (Fig. 4). 

These errors were mostly below 10% of peak-to-peak torques across all simulated joints and 

movements, with pronation/supination being the most adversely affected DOF. Our results 

have shown that when the accuracy of muscle moments about the wrist is not crucial, a 

simplified pronation/supination joint with a single DOF placed in the elbow can provide 

reasonable approximations for biomedical applications.

The segmented forearm model in Simulink performs with high precision across all tested 

movements. The errors were within the range of perceptual errors in joint position measured 
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in psychometric human studies [21]. The uneven split into proximal and distal cylindrical 

segments closely matches the moments of inertia of the radius segment rotating about the 

ulna segment and results in the smallest errors between OpenSim and Simulink models (Fig. 

4). This model still simulates pronation/supination as a single DOF about an axis parallel to 

both compartments of the forearm segment, providing the benefit of a simplified dynamic 

simulation. This result has direct implications for neuroprostheses. The myoelectric control 

of actuated hand prostheses in transradial amputees may be improved by embedding the 

segmented model into the decoding algorithm. Such a model could be more accurate in 

predicting the intended motion from contractions of residual muscles involved in pronation 

and supination, such as pronator teres, supinator, biceps, and extensor and flexor carpi 

radialis and ulnaris muscles.

The accuracy of simulations with movement of the elbow were sensitive to body size. In 

these movements, the errors scaled with model size by less than 1% on average, the worst 

single-movement simulation showing 15% errors about finger joints (Fig. 5E). This cannot 

be explained by the change in body inertia because RMSE values were normalized to the 

peak-to-peak torque, which scaled with body size. This normalization did not remove the 

trend, indicating that the errors in numerical methods for solving differential equations may 

be the culprit. Our results show that the cumulative effect of these numerical errors in 

simulations with movement of proximal joints is the largest at distal joints.

In conclusion, both the solid and segmented forearm models performed well in simulating 

applied joint torques during naturalistic human movements, below 5% errors on average. 

The segmented model is preferred for applications where accuracy in the muscle moments 

driving pronation or supination is important. This performance is good enough for dynamic 

real-time simulations, for example, in biomimetic controllers. Both types of models can be 

scaled for individual body size with minimal reduction in the accuracy of dynamic 

simulations.
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Figure 1. 
OpenSim model illustrating the anatomy of the forearm and hand segments. The pronation/

supination is accomplished by radius rotating around the ulna.
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Figure 2. 
Two simplified models. A. Solid forearm Simulink model. Axes show a local coordinate 

system of the forearm segment. B. Segmented forearm Simulink model. Axes show a local 

coordinate system of the distal forearm segment.
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Figure 3. 
Trajectories for pronation/supination DOF from inverse dynamic simulation of a movement 

1) as described in methods with elbow at 90°. A. Angular kinematics that served as input 

into the simulation (acceleration is not shown). B. Applied torque, the output of the 

simulations with the OpenSim and two Simulink models (solid and segmented) scaled to the 

average body size (50th percentile of normal range). C & D. Same as B for models scaled to 

the small and tall body size respectively (5th and 95th percentiles respectively).
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Figure 4. 
Torque errors between solid and segmented Simulink models and OpenSim model. A-E: 

Errors for torques about individual joints. Black lines connect RMSE values for 

corresponding movements, red lines are averages with shaded rectangles indicating 

interquartile range. Pro-Sup indicated pronation and supination; F-E indicated flexion and 

extension; Ab-Ad indicates abduction and adduction; nu indicated normalized units.
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Figure 5. 
Torque errors between segmented Simulink model and the corresponding OpenSim model 

scaled to short (5%), average (50%), and tall (95%) body sizes. Formatting as in Figure 4.
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