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protein language models, and develop a sequences-based variant site prediction
workflow based on the protein residue contact networks: 1. We employ and integrate
various methods of building protein residue networks using state-of-the-art coevolution
analysis tools (RaptorX, DeepMetaPSICOV, and SPOT-Contact) powered by deep
learning. 2. We use machine learning algorithms (Random Forest, Gradient Boosting,
and Extreme Gradient Boosting) to optimally combine 20 network centrality scores to
jointly predict key residues as hot spots for disease mutations. 3. Using a dataset of
107 proteins rich in disease mutations, we rigorously evaluate the network scores
individually and collectively (via machine learning).  This work supports a promising
strategy of combining an ensemble of network scores based on different coevolution
analysis methods (and optionally predictive scores from other methods) via machine
learning to predict candidate sites of disease mutations, which will inform downstream
applications of disease diagnosis and targeted drug design.
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Abstract 17 

            To enable personalized medicine, it is important yet highly challenging to accurately 18 

predict disease-causing mutations in target proteins at high throughput. Previous computational 19 

methods have been developed using evolutionary information in combination with various 20 

biochemical and structural features of protein residues to discriminate neutral vs. deleterious 21 

mutations. However, the power of these methods is often limited because they either assume 22 

known protein structures or treat residues independently without fully considering their global 23 

interactions.  To address the above limitations, we build upon recent progress in machine 24 

learning, network analysis, and protein language models, and develop a sequences-based variant 25 

site prediction workflow based on the protein residue contact networks: 1. We employ and 26 

integrate various methods of building protein residue networks using state-of-the-art coevolution 27 

analysis tools (RaptorX, DeepMetaPSICOV, and SPOT-Contact) powered by deep learning. 2. 28 

We use machine learning algorithms (Random Forest, Gradient Boosting, and Extreme Gradient 29 

Boosting) to optimally combine 20 network centrality scores to jointly predict key residues as 30 

hot spots for disease mutations. 3. Using a dataset of 107 proteins rich in disease mutations, we 31 

rigorously evaluate the network scores individually and collectively (via machine learning).  This 32 

work supports a promising strategy of combining an ensemble of network scores based on 33 

different coevolution analysis methods (and optionally predictive scores from other methods) via 34 

machine learning to predict candidate sites of disease mutations, which will inform downstream 35 

applications of disease diagnosis and targeted drug design. 36 

37 
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Introduction 38 

 The holy grail of structural biology is to solve high-resolution biomolecular structures at 39 

the genomic scale to inform mechanistic studies of their functions. Thanks to recent revolutions 40 

in computational structural biology (accurate protein structure prediction by AlphaFold [1] and 41 

RoseTTAFold [2]), it is now feasible to predict native structures for many proteins given their 42 

sequences (with some caveats, see [3]), thus practically solving the protein folding problem [4]. 43 

However, it remains challenging to predict dynamic structural ensembles [5] and mutation-44 

induced effects [6]  to meet the demand of mechanistic studies of protein functions and 45 

dysfunctions.  While the public databases of protein sequences and variations increase rapidly 46 

owning to genomic/metagenomic sequencing efforts (the MetaClust database contains about 1.6 47 

billion protein sequence fragments [7]), the growth of experimental protein structures [8] and 48 

predicted structures remains to catch up (the AlphaFold database contains over 200 million 49 

predicted structures [9]). Such sequences-structures gap has motivated the development of new 50 

computational tools that make functional sense of protein sequences without directly using 51 

structural information (for example, by using deep learning to train large protein language 52 

models [10] ). Recently, AlphaMissense attained state of the art prediction of missense variant 53 

pathogenicity by adapting AlphaFold fine-tuned on human and primate variant population 54 

frequency databases [11].   55 

 A major interest in personalized medicine is in understanding novel genetic variations 56 

through genotype-phenotype association studies in relation to diseases. Particularly, a rapidly 57 

growing number of non-synonymous single nucleotide variants (nSNVs) have been uncovered in 58 

protein coding regions that can adversely impact protein function and cause diseases [12]. 59 
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Various computational methods were developed using evolutionary conservation and phylogeny 60 

in combination with biochemical and structural properties of amino acids to discriminate neutral 61 

vs. deleterious nSNVs [13-22]. Protein structural dynamics has also proven useful in discovering 62 

functionally important residues [23,24]  which could constitute hot spots for disease-causing 63 

nSNVs [25,26]. However, the requirement of 3D structures has limited the number of nSNVs 64 

that can be analyzed by existing structure-based computational tools, although such constraint 65 

has been significantly alleviated by recent progress in protein structure prediction [27].   66 

 As alternatives to structure-based methods, sequences-based coevolution analysis has 67 

become increasingly powerful in predicting structural couplings between pairs of contacting 68 

residues [28-31] , thanks to the development of direct coupling methods that can overcome the 69 

confounding indirect coupling effects [29,32,33] . In principle, coevolving pairs of residues can 70 

be identified from a sufficiently large multiple sequence alignment, allowing the prediction of 71 

close spatial proximity in the native structures. Boosted by deep learning and other algorithmic 72 

developments, this coevolution analysis has led to accurate prediction of residue contacts which 73 

make de novo protein structure prediction possible [28]  . Furthermore, coevolution analysis 74 

(enhanced by deep learning) has also been used to study various aspects of protein functional 75 

interactions such as allostery [34] . For example, RaptorX uses an ultra-deep neural network 76 

combining coevolution information with sequence conservation information to infer 3D contacts 77 

with higher accuracy than previous methods [35,36]. DeepMetaPSICOV [37] combines the input 78 

feature sets used by earlier methods (MetaPSICOV [38] and DeepCov [39] ) as input to a deep, 79 

fully convolutional residual neural network. SPOT-Contact predicts protein contact maps by 80 

stacking residual convolutional networks with two-dimensional residual bidirectional recurrent 81 

LSTM networks, and using both one-dimensional sequence-based and two-dimensional 82 
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evolutionary coupling based information [40]. These three state-of-the-art coevolution analysis 83 

methods are employed in this study to construct protein residue contact maps for network 84 

analysis (see below).  85 

 Another line of protein research is based on the treatment of a protein as a network where 86 

amino acid residues are nodes and their bonded/non-bonded interactions form edges [41]. Such 87 

models can be readily built upon 3D native structures so that a whole suite of network analysis 88 

tools (see https://networkx.org/) can be applied. For example, Amitai et al [42] used network 89 

analysis of protein structures (using closeness centrality) to identify functional residues. Going 90 

beyond network analysis, deep-learning-based study of protein graph neural networks is an 91 

active area of research [43].   92 

            In a recent paper, Butler et al [44] proposed a sequence-based Gaussian network model 93 

(Seq-GNM) to calculate the dynamic profile of a protein without a 3D structure. They used 94 

coevolution analysis to build a network model which connects residues predicted to be in contact 95 

via evolutionary couplings. Their work built on previous studies that shown crystallographic B-96 

factors are useful in predicting the impact of nSNVs on protein function [45,46] : rigid sites with 97 

low B-factors are more susceptible to destabilizing nSNVs than flexible sites with high B-98 

factors.  Indeed, existing computational tools to diagnose neutral and deleterious nSNVs (such as 99 

PolyPhen-2 [47]) use crystallographic B-factors along with other evolutionary and structural 100 

features. More specifically, Butler et al used Seq-GNM to compute B-factors for protein 101 

residues, and they found that deleterious nSNVs are overabundant at low B-factor sites, while 102 

neutral nSNVs are overabundant at high B-factor sites. Mechanistically, low B-factors may 103 

indicate that a site is crucial for maintaining structural stability and/or modulating functional 104 

motions (as a hinge) and thus susceptible to mutations. In contrast, high B-factors are associated 105 
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with flexible regions with minimal interactions, which are thus more robust to mutations. Based 106 

on these observations, they proposed that the sequences-based predicted B-factors can 107 

discriminate between deleterious and neutral nSNVs without structural information. 108 

            Inspired by the above study and recent progress in machine learning, network analysis, 109 

and protein language models, we further develop the sequences-based protein residue network 110 

analysis in the following directions: 1. We build protein residue networks using three different 111 

coevolution analysis tools (RaptorX, DeepMetaPSICOV, and SPOT-Contact) as enabled by deep 112 

learning. 2. We exploit three machine learning algorithms (Random Forest, Gradient Boosting, 113 

and Extreme Gradient Boosting) to optimally combine 20 distinct network node centrality scores 114 

as calculated from the contact probability matrices to predict hot spot residues for disease 115 

mutations. 3. Based on a dataset of 107 proteins with known deleterious/neutral mutations, we 116 

evaluate our sequences-based network scores both individually and in combination, and then 117 

compare with alternative structures-based network scores and a physics force field based 118 

method. By optimally combing three coevolution analysis methods and the resulting 20 network 119 

scores by machine learning, we are able to discriminate deleterious and neutral mutation sites 120 

accurately (AUC of ROC ~ 0.84), which is on par with structure-based network scores (AUC ~ 121 

0.83). Furthermore, by combining our method with a state-of-the-art predictor of the functional 122 

effects of sequence variation based on large protein language models (ESM [48]), we have 123 

significantly improved the prediction of disease variant sites (AUC ~ 0.89).  124 

 In the following sections, we first describe the detailed methodology in the order of 125 

the proposed workflow, then we report the results of evaluation of our network-based scores both 126 

individually and collectively (via machine learning), finally we discuss specific case studies of 127 

four proteins to illustrate the usage of our method.  128 
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 Materials and methods 129 

Here is a summary of the workflow of our sequences-based method: 130 

a. Collect datasets of protein sequences and variants (see Section 1) 131 

b. Run co-evolution analysis of a given target protein sequence to build a residue 132 

contact map P (see Section 2) 133 

c. Use NetworkX to calculate node centrality scores based on P (see Section 3) 134 

d. Use sequence-based GNM to calculate additional node scores (see Section 4) 135 

e. (optional) Use protein language model (ESM) to predict variant importance (see 136 

Section 5) 137 

f. (optional) Use AlphaFold and FoldX to predict variant importance (see Section 6 and 138 

7) 139 

g. Use machine learning to optimally combine the above scores for classifying 140 

deleterious vs neutral variant sites (see Section 8) 141 

1. Datasets of protein sequences and variants 142 

 A dataset of 107 protein sequences with ≤500 residues and ≥20 annotated 143 

deleterious/neutral variants were collected from the HumVar database [47] (sources: humvar-144 

2011_12.deleterious.pph.input and humvar-2011_12.neutral.pph.input from 145 

ftp://genetics.bwh.harvard.edu/pph2/training/training-2.2.2.tar.gz). Their UniProt ids and 146 

sequences can be accessed at https://simtk.org/projects/hotspots. This diverse dataset contains 97 147 

proteins with their pairwise sequence identity < 30%. 148 

     149 

https://simtk.org/projects/hotspots
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 The HumVar dataset consists of 13,032 human disease-causing mutations from UniProt 150 

and 8,946 human nonsynonymous single-nucleotide polymorphisms (nsSNPs) without annotated 151 

involvement in disease. This dataset was previously used to train and test PolyPhen-2 [47] for 152 

predicting damaging effects of missense mutations, and was used by Butler et al [44] in 153 

benchmarking their seq-GNM method for predicting deleterious/neutral nSNVs.   154 

 155 

Since this dataset is highly imbalanced (there are 4040 deleterious mutation sites but only 156 

120 neutral mutation sites) [49], we have added 3403 additional neutral sites with very low 157 

conservation scores (i.e. grade ≤2 as assessed by the ConSurf program [50]). Our objective is to 158 

train and test a binary classifier of residues in these proteins as deleterious or neutral. To this 159 

end, we split 107 proteins into training and testing sets (with 79 and 28 proteins, respectively), 160 

and perform evaluations based on the testing set. The main metric of evaluation is the ROC 161 

curves and associated area under the curve (AUC). AUC is a standard metric for evaluating 162 

binary classifiers based on the ROC curve of sensitivity and specificity. The ROC curves are also 163 

used in other computational papers for variant prediction (see [47]). 164 

 165 

2. Sequences-based coevolution analysis and protein contact map 166 

construction 167 

 We perform coevolution analysis using three state-of-the-art methods: the RaptorX server 168 

(http://raptorx.uchicago.edu), the DeepMetaPSICOV server (http://bioinf.cs.ucl.ac.uk/psipred/), 169 

and the SPOT-Contact server (https://sparks-lab.org/server/spot-contact/). A sequence length limit 170 

(500) is imposed by the capacity of coevolution analysis servers, and may be circumvented if 171 

installing and running coevolution analysis locally. 172 



9 
 

 These methods use multiple sequence alignments to compute the probability Pij of residue 173 

pair (i, j) forming spatial contact.  Based on the matrix of predicted Pij, a protein residue contact 174 

map can be built with residues as nodes and pairwise contacts as edges weighted by Pij. By default, 175 

we do not apply any threshold cutoff to Pij for defining contacts (unless networks with unweighted 176 

edges are required by some node centrality algorithms in NetworkX, where we remove edges with 177 

Pij<0.1, and set weight to 1 for the remaining edges).  178 

 179 

3. Network analysis of protein contact map 180 

 By treating a protein contact map as a network of nodes and edges, we calculate various 181 

node centrality scores to predict key residues as hotspots for disease mutations.  182 

 A simple score to measure node centrality is a weighted node degree that accounts for the 183 

nearest neighbor interactions (denoted W1): 184 

1,i ik

k i

W P



      (1) 185 

 To include indirect couplings beyond the nearest neighbors, we calculate the node degree 186 

based on the n’th power of the contact probability matrix (denoted Wn):  187 

, 1,

n

n i ik n k ik

k i k i

W P W P

 

  
   (2) 188 

 As n goes to infinity, Wn converges to the eigenvector of P matrix with the highest 189 

eigenvalue 
max  (denoted W

): 190 
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maxPW W       (3) 191 

 Among various Wn, W2 can be interpreted as the node degrees of a new network based on 192 

a neighborhood similarity matrix S as follows (denoted Ws): 193 

,

,

,  ij ik jk s i ik

k i j k i

S P P W S
 

  
  (4) 194 

 In this study we use five network scores (W1, W2, W3, W∞ and Ws) as predictive features 195 

for node importance. Additionally, we exploit 13 network centrality metrics as calculated by the 196 

NetworkX package (see Table 1). To allow meaningful comparison of scores between proteins, 197 

the scores of each protein are sorted and their ranking percentiles are linearly transformed to 198 

values between 0 and 1.  199 

 Table 1. Network centrality scores as implemented in the NetworkX package 200 

(see https://networkx.org/documentation/stable/reference/algorithms/centrality.html ) 201 

Symbol Centrality name Definition  

C1 

C2 

C3 

 

 

C4 

 

C5 

 

 

C6 

 

C7 

 

C8 

 

C9 

 

C10 

 

 

degree_centrality 

eigenvector_centrality 

closeness_centrality 

 

 

betweenness_centrality 

 

current_flow_closeness_centrality 

 

 

current_flow_betweenness_centrality 

 

communicability_betweenness_centrality 

 

load_centrality 

 

subgraph_centrality 

 

harmonic_centrality 

 

 

Corresponding to W1 

Corresponding to W∞ 

Closeness centrality of a node u is the reciprocal of the 

average shortest path distance to u over all n-1 reachable 

nodes. 

Betweenness centrality of a node u is the sum of the 

fraction of all-pairs shortest paths that pass through u. 

Current-flow closeness centrality is a variant of closeness 

centrality based on effective resistance between nodes in a 

network. 

Current-flow betweenness centrality is based on an 

electrical current model for information spreading. 

Communicability betweenness centrality is based on the 

number of walks connecting every pair of nodes.   

Load centrality of a node u is the fraction of all shortest 

paths that pass through u. 

Subgraph centrality of a node u is the sum of weighted 

closed walks of all lengths starting and ending at u. 

Harmonic centrality of a node u is the sum of the reciprocal 

of the shortest path distances from all other nodes to u. 



11 
 

C11 

 

 

C12 

 

C13 

second_order_centrality 

 

 

laplacian_centrality 

 

katz_centrality_numpy 

Second order centrality of a node u is the standard 

deviation of the return times to u of a perpetual random 

walk on G. 

Laplacian Centrality of a node u is measured by the drop in 

the Laplacian Energy after deleting u from the graph. 

Katz centrality computes the centrality for a node u based 

on the centrality of its neighbors. It is a generalization of 

the eigenvector centrality. 

 202 

4. Sequences-based GNM 203 

 For comparison, we implemented Bulter et al’s sequence-based GNM [44]. The original 204 

structure-based Gaussian network model (GNM) represents a protein structure as an elastically 205 

connected network of residues to obtain the equilibrium fluctuations of residues. In the absence 206 

of a structure, the sequence-based GNM (Seq-GNM) treats coevolving residue pairs as 207 

contacting pairs.   208 

 To construct the Kirchhoff matrix (denoted K), each non-bonded residue pair is assigned 209 

a value of -1 times its contact probability.  The bonded residue pairs (i, i+1) are assigned -1 to 210 

enforce local chain connectivity. The diagonal elements of K are assigned so that the sum of each 211 

row and column is zero:  212 

ij

ij

ik

k i

P i j

K
P i j



 


 





     (5) 213 

 The vibrational thermal fluctuations of residues are evaluated by inverting the Kirchhoff 214 

matrix (or summing over the modes as weighted by 1/m). The per-residue mean-square 215 

fluctuations (MSF), which are proportional to the crystallographic B factors, are given as 216 

follows: 217 
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2
1

0

mi
i ii

m m

V
MSF K







 
    (6) 218 

where the eigen-decomposition of K gives eigenvectors 
mV  and eigenvalues m that satisfy: 219 

m m mKV V       (7) 220 

Low-MSF residues correspond to rigid cores or hinges of dynamical importance [44]. 221 

 As an alternative way to evaluate node importance using GNM, we perform a 222 

perturbation-based hotspot analysis as follows: For mode m, calculate how much its eigenvalue 223 

changes (
,m i ) in response to a perturbation at a chosen residue position i [23,24,51] (i.e., by 224 

uniformly weakening the contacts with residue i). Then compute ,i m i

m

   to assess the 225 

dynamic importance of this residue position [52]. High- i residues correspond to sites highly 226 

sensitive to local perturbations that mimic mutations.    227 

 The above two GNM-based scores are combined with the other network scores for 228 

machine learning. 229 

 230 

5. ESM based variant prediction 231 

 For comparison with our method, we use a deep-learning variant predictor based on a 232 

large protein language model (ESM). We downloaded and installed the ESM package and 233 

pretrained models from https://github.com/facebookresearch/esm. Since our dataset consists of 234 

known variants (from HumVar) and added non-conserved sites (with specific mutations 235 

unknown), we simulate the mutational effects on each site by introducing Alanine substitution if 236 
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the wildtype residue is not an Alanine and Glycine substitution otherwise. Then we process the 237 

mutated sequence with 5 pretrained ESM models (esm1v_t33_650M_UR90S_1, 238 

esm1v_t33_650M_UR90S_2, esm1v_t33_650M_UR90S_3, esm1v_t33_650M_UR90S_4, and 239 

esm1v_t33_650M_UR90S_5), which predict the difference in the probability of observing the 240 

widetype residue and the mutant residue at a given site [48]. We record the predictions of five 241 

ESM models as separate features to be optimally integrated via machine learning. 242 

 243 

6. AlphaFold for structural prediction 244 

 We downloaded predicted structures for the 107 proteins from AlphaFold DB 245 

(https://alphafold.ebi.ac.uk/). A residue contact probability matrix is constructed based on the 246 

predicted structures as follows:   247 

10

1

1 ij
ij d

P
e






     (8) 248 

where 
ij

d  is the distance between residues i and j, and 10 Å is used as a soft cutoff distance. We 249 

then use this contact probability matrix to perform the same network analysis as in the 250 

sequences-based method and for optimization with machine learning. 251 

 252 

7. Foldx for structural refinement and Alanine scanning analysis 253 

 FoldX program [53] was downloaded from https://foldxsuite.crg.eu/. We use the 254 

RepairPDB command to refine the AlphaFold-predicted models (by fixing bad torsion angles 255 

https://alphafold.ebi.ac.uk/
https://foldxsuite.crg.eu/
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and Van der Waals clashes). Then we use the AlaScan command to mutate each residue to Ala 256 

and calculate the resulting changes in Gibbs free energies which are then used as a feature to 257 

predict hotspots of disease mutations.  258 

  259 

8. Machine learning algorithms 260 

 We use the following machine learning methods of the scikit-learn package 261 

(https://scikit-learn.org/stable/) to learn optimal combinations of all features to predict if a given 262 

site is deleterious or neutral mutation site: 263 

 Random Forest Classifier (RF) (sklearn.ensemble.RandomForestClassifier): A random 264 

forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of 265 

the dataset and uses averaging to improve the predictive accuracy and control over-fitting. We 266 

tune the following hyper-parameters: max_depth,  n_estimators, max_features.  267 

  Gradient Boosting Classifier (GB) (sklearn.ensemble.GradientBoostingClassifier): This 268 

algorithm builds an additive model in a forward stage-wise fashion. In each stage a regression 269 

tree is fit on the negative gradient of the loss function, e.g. binary log loss. We tune the following 270 

hyper-parameters: n_estimators, max_depth, max_features.  271 

 Extreme Gradient Boosting Classifier (XGB) (xgboost.XGBClassifier): This algorithm is 272 

an optimized distributed version of gradient boosting designed to be highly efficient, flexible and 273 

portable. We tune the following hyper-parameters: n_estimators, max_depth, reg_alpha, 274 

reg_lambda. 275 
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 These three methods were chosen because they have performed successfully in machine 276 

learning contests in Kaggle (see https://www.packtpub.com/product/the-kaggle-277 

book/9781801817479). They are also relatively cheap to train and optimize compared with the 278 

deep learning methods.  279 

 We use Optuna (https://optuna.org/) for hyper-parameter tuning of the above algorithms. 280 

We have run Optuna multiple times to ensure the resulting best metric is reproducible. 281 

282 
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Results and discussion  283 

 284 

This study explores how to systematically utilize the coevolution information from multiple 285 

sequence alignments to model and analyze a protein as a residue contact network beyond the 286 

scope of GNM. To this end, we first use coevolution analysis to construct a protein residue 287 

contact map with edges weighted by the predicted contact probability; then we exploit an array 288 

of 20 network-based scores to assess the node importance as predictors for disease mutation 289 

sites; finally we evaluate the predictive power of these scores individually and collectively (using 290 

machine learning) based on a subset of 107 protein sequences and their variants from the 291 

HumVar database. For comparison, we also evaluate alternative methods based on predicted 292 

protein structures, a physics-based force field, and protein language models. 293 

1. Evaluation of individual network scores  294 

Based on the protein residue contact maps built from three coevolution analysis tools 295 

(DeepMetaPSICOV, RaptorX, and SPOT-Contact), we applied network analysis to calculate 20 296 

network scores (see Table 2), measuring node centrality using various different algorithms (see 297 

Methods). These scores include simple weighted node degrees for n-hop nearest neighbors (see 298 

Methods) and more sophisticated centrality metrics (see Table 1), along with 2 seq-GNM based 299 

scores (MSF and , see Methods). We evaluate the performance of each score using the AUC 300 

of ROC for the testing set, which provides a balanced evaluation of sensitivity and specificity 301 

(see Table 2). More specifically, we sort all testing-set variants by a particular score and predict a 302 
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variant deleterious/neutral if its score is above/below a cutoff value. This results in an ROC curve 303 

from which we have calculated AUC (see Table 2). 304 

Overall, DeepMetaPSICOV (max AUC=0.80) and SPOT-Contact (max AUC=0.81) 305 

perform slightly better than RaptorX (max AUC=0.78). Interestingly, simple weighted node 306 

degrees (W1, W2, and W3) perform better than those more complex centrality scores (see Table 307 

2). When computing node degrees, going beyond the nearest neighbors seems to improve the 308 

prediction slightly (see Table 2). Two GNM-based scores perform similarly but slightly worse 309 

than the weighted node degrees (see Table 2).  Among those NetworkX-based scores (see Table 310 

1), C5, C11 and C12 outperform the others, while those betweenness-based scores (C4, C6, and 311 

C8) underperform (see Table 2). Therefore, the functional importance of a node/residue pertains 312 

more to its role as a highly-connected hub than as an information bottleneck of the shortest paths.  313 

Table 2. Evaluation of 20 network scores based on protein residue contact maps 314 

constructed from 3 coevolution analysis tools (DeepMetaPSICOV, RaptorX, and SPOT-315 

Contact) and AlphaFold-predicted structures 316 

Score  AUC* of 

DeepMetaPSICOV 

AUC* of 

RaptorX  

AUC* of 

SPOT-Contact 

AUC* of 

AlphaFold 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

C12 

C13 


MSF 

0.74 

0.73 

0.76 

0.64 

0.78 

0.63 

0.75 

0.64 

0.77 

0.75 

0.79 

0.77 

0.73 

0.79 

0.79 

0.76 

0.74 

0.73 

0.54 

0.76 

0.58 

0.61 

0.54 

0.76 

0.73 

0.76 

0.77 

0.73 

0.76 

0.76 

0.73 

0.76 

0.69 

0.60 

0.79 

0.67 

0.72 

0.60 

0.74 

0.68 

0.77 

0.79 

0.76 

0.78 

0.78 

0.82 

0.77 

0.73 

0.58 

0.80 

0.60 

0.74 

0.58 

0.78 

0.75 

0.80 

0.83 

0.76 

0.83 

0.80 
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W1 

W2 

W3 

W∞ 

Ws  

FoldX 

0.79 

0.80 

0.80 

0.80 

0.80 

0.77 

0.78 

0.78 

0.74 

0.78 

0.78 

0.80 

0.81 

0.79 

0.80 

0.83 

0.83 

0.82 

0.77 

0.83 

0.68  

* The AUC is calculated based on the ROC for all variants of the 28 testing set proteins. 317 

Alternatively, we also calculated AUCs based on the ROCs of individual proteins and their 318 

summary statistics (see Table S1).  319 

For comparison with alternative methods, we evaluated the performance of variant 320 

prediction by five pre-trained protein language models (ESM, see Methods), and the resulting 321 

AUC varies between 0.79 and 0.81, which are comparable to the network scores (see Table 2). 322 

For further comparison with structures-based methods, we also performed network analysis 323 

based on protein structures as predicted by AlphaFold (see Methods). Overall, the structures-324 

based scores (max AUC=0.83) perform slightly better than the sequences-based scores. This may 325 

be partly due to the structure-based contact maps (see Eq. 8) being more sharply defined than the 326 

fuzzier contact-probability-based contact maps. Notably, when structural information is used, our 327 

network analysis performs significantly better than a physics-based force field (FoldX) with 328 

AUC=0.68. Taken together, these findings support the usefulness of individual sequences-based 329 

network centrality scores in predicting important residues on par with alternative more 330 

sophisticated methods.  331 

To further understand the different accuracies of the above scores, we explore the 332 

relationships between them by evaluating the pairwise Pearson correlations (PC) (see Table 3). 333 

W1, W2, W3, W∞, Ws , MSF and  are highly correlated (with PC≥0.93 for DeepMetaPSICOV, 334 

PC≥0.84 for SPOT-Contact, PC≥0.86 for AlphaFold), although their correlations are somewhat 335 

weaker for RaptorX. Among the NetworkX-based scores (see Table 1), C5, C11 and C12 are 336 
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also highly correlated with the above scores. Such strong correlations support the attribution of 337 

higher AUC of these scores (see Table 2) to their capturing the same essential features (i.e. high 338 

node degrees) of those important nodes. In contrast, the betweenness-based scores (C4, C6, and 339 

C8) do not correlate well with the above scores, which is consistent with their lower AUC (see 340 

Table 2).  341 

Table 3. Pearson correlations between network scores (row 1, 2, 3 and 4 correspond to 342 

results of DeepMetaPSICOV, SPOT-Contact, RaptorX and AlphaFold, respectively) 343 

 C1    C2    C3   C4    C5   C6   C7   C8    C9  C10  C11 C12 C13  W1  W2  W3  W∞   Ws   MSF 
C1    

C2    

C3   

C4    

C5   

C6   

C7   

C8    

C9  

C10  

C11 

C12 

C13  

W1  

W2  

W3  

W∞   

Ws   

MSF 

1.00 0.57 0.74 0.63 0.72 0.40 0.82 0.63 0.84 0.79 0.88 0.84 0.54 0.87 0.85 0.83 0.80 0.85 0.87 0.87 

0.57 1.00 0.43 0.21 0.75 0.18 0.47 0.21 0.66 0.42 0.67 0.76 0.98 0.65 0.72 0.75 0.80 0.71 0.65 0.65 

0.74 0.43 1.00 0.64 0.63 0.36 0.72 0.64 0.73 0.96 0.81 0.57 0.43 0.63 0.63 0.63 0.61 0.64 0.64 0.63 

0.63 0.21 0.64 1.00 0.34 0.42 0.64 1.00 0.40 0.65 0.53 0.37 0.21 0.46 0.42 0.40 0.38 0.43 0.47 0.46 

0.72 0.75 0.63 0.34 1.00 0.46 0.67 0.34 0.74 0.58 0.91 0.86 0.76 0.80 0.83 0.84 0.84 0.83 0.80 0.80 

0.40 0.18 0.36 0.42 0.46 1.00 0.63 0.42 0.21 0.29 0.45 0.33 0.20 0.45 0.41 0.38 0.34 0.42 0.46 0.45 

0.82 0.47 0.72 0.64 0.67 0.63 1.00 0.64 0.73 0.71 0.80 0.68 0.46 0.76 0.75 0.74 0.71 0.76 0.77 0.76 

0.63 0.21 0.64 1.00 0.34 0.42 0.64 1.00 0.40 0.65 0.53 0.37 0.21 0.46 0.42 0.40 0.37 0.43 0.47 0.46 

0.84 0.66 0.73 0.40 0.74 0.21 0.73 0.40 1.00 0.79 0.85 0.79 0.63 0.77 0.81 0.82 0.82 0.81 0.78 0.77 

0.79 0.42 0.96 0.65 0.58 0.29 0.71 0.65 0.79 1.00 0.79 0.59 0.41 0.65 0.65 0.64 0.63 0.66 0.66 0.65 

0.88 0.67 0.81 0.53 0.91 0.45 0.80 0.53 0.85 0.79 1.00 0.85 0.68 0.84 0.85 0.85 0.84 0.86 0.85 0.84 

0.84 0.76 0.57 0.37 0.86 0.33 0.68 0.37 0.79 0.59 0.85 1.00 0.74 0.91 0.94 0.94 0.92 0.92 0.90 0.91 

0.54 0.98 0.43 0.21 0.76 0.20 0.46 0.21 0.63 0.41 0.68 0.74 1.00 0.63 0.69 0.73 0.78 0.69 0.63 0.63 

0.87 0.65 0.63 0.46 0.80 0.45 0.76 0.46 0.77 0.65 0.84 0.91 0.63 1.00 0.98 0.97 0.93 0.98 1.00 1.00 

0.85 0.72 0.63 0.42 0.83 0.41 0.75 0.42 0.81 0.65 0.85 0.94 0.69 0.98 1.00 1.00 0.97 1.00 0.99 0.98 

0.83 0.75 0.63 0.40 0.84 0.38 0.74 0.40 0.82 0.64 0.85 0.94 0.73 0.97 1.00 1.00 0.99 0.99 0.97 0.97 

0.80 0.80 0.61 0.38 0.84 0.34 0.71 0.37 0.82 0.63 0.84 0.92 0.78 0.93 0.97 0.99 1.00 0.97 0.93 0.93 

0.85 0.71 0.64 0.43 0.83 0.42 0.76 0.43 0.81 0.66 0.86 0.92 0.69 0.98 1.00 0.99 0.97 1.00 0.99 0.98 

0.87 0.65 0.64 0.47 0.80 0.46 0.77 0.47 0.78 0.66 0.85 0.90 0.63 1.00 0.99 0.97 0.93 0.99 1.00 1.00 

C1    

C2    

C3   

C4    

C5   

C6   

C7   

C8    

C9  

C10  

C11 

C12 

C13  

W1  

W2  

W3  

W∞   

1.00 0.58 0.68 0.55 0.73 0.53 0.85 0.55 0.86 0.73 0.90 0.74 0.57 0.80 0.78 0.77 0.67 0.80 0.82 0.80 

0.58 1.00 0.44 0.20 0.88 0.40 0.51 0.20 0.61 0.38 0.74 0.82 0.99 0.70 0.76 0.79 0.88 0.74 0.68 0.70 

0.68 0.44 1.00 0.61 0.55 0.38 0.69 0.61 0.73 0.96 0.78 0.42 0.45 0.50 0.52 0.53 0.52 0.55 0.56 0.50 

0.55 0.20 0.61 1.00 0.29 0.46 0.63 1.00 0.37 0.62 0.49 0.26 0.20 0.37 0.35 0.34 0.30 0.37 0.40 0.37 

0.73 0.88 0.55 0.29 1.00 0.57 0.67 0.29 0.71 0.49 0.88 0.91 0.87 0.84 0.88 0.89 0.87 0.87 0.82 0.84 

0.53 0.40 0.38 0.46 0.57 1.00 0.73 0.46 0.33 0.31 0.54 0.55 0.40 0.64 0.61 0.59 0.49 0.62 0.66 0.64 

0.85 0.51 0.69 0.63 0.67 0.73 1.00 0.63 0.75 0.68 0.82 0.66 0.51 0.76 0.75 0.73 0.64 0.77 0.80 0.76 

0.55 0.20 0.61 1.00 0.29 0.46 0.63 1.00 0.37 0.62 0.49 0.26 0.20 0.37 0.35 0.34 0.30 0.37 0.40 0.37 

0.86 0.61 0.73 0.37 0.71 0.33 0.75 0.37 1.00 0.77 0.87 0.66 0.59 0.68 0.71 0.72 0.68 0.73 0.71 0.68 

0.73 0.38 0.96 0.62 0.49 0.31 0.68 0.62 0.77 1.00 0.76 0.38 0.38 0.47 0.49 0.49 0.47 0.52 0.54 0.47 

0.90 0.74 0.78 0.49 0.88 0.54 0.82 0.49 0.87 0.76 1.00 0.79 0.73 0.80 0.82 0.83 0.78 0.83 0.82 0.80 

0.74 0.82 0.42 0.26 0.91 0.55 0.66 0.26 0.66 0.38 0.79 1.00 0.80 0.91 0.93 0.92 0.83 0.90 0.86 0.91 

0.57 0.99 0.45 0.20 0.87 0.40 0.51 0.20 0.59 0.38 0.73 0.80 1.00 0.69 0.75 0.78 0.88 0.73 0.67 0.69 

0.80 0.70 0.50 0.37 0.84 0.64 0.76 0.37 0.68 0.47 0.80 0.91 0.69 1.00 0.98 0.97 0.84 0.98 0.98 1.00 

0.78 0.76 0.52 0.35 0.88 0.61 0.75 0.35 0.71 0.49 0.82 0.93 0.75 0.98 1.00 1.00 0.90 1.00 0.97 0.98 

0.77 0.79 0.53 0.34 0.89 0.59 0.73 0.34 0.72 0.49 0.83 0.92 0.78 0.97 1.00 1.00 0.92 0.99 0.96 0.97 

0.67 0.88 0.52 0.30 0.87 0.49 0.64 0.30 0.68 0.47 0.78 0.83 0.88 0.84 0.90 0.92 1.00 0.90 0.86 0.84 
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Ws   

MSF 

0.80 0.74 0.55 0.37 0.87 0.62 0.77 0.37 0.73 0.52 0.83 0.90 0.73 0.98 1.00 0.99 0.90 1.00 0.98 0.98 

0.82 0.68 0.56 0.40 0.82 0.66 0.80 0.40 0.71 0.54 0.82 0.86 0.67 0.98 0.97 0.96 0.86 0.98 1.00 0.98  

C1    

C2    

C3   

C4    

C5   

C6   

C7   

C8    

C9  

C10  

C11 

C12 

C13  

W1  

W2  

W3  

W∞   

Ws   

MSF 

1.00 0.63 0.58 0.22 0.64 0.22 0.29 0.22 0.75 0.65 0.71 0.78 0.55 0.88 0.87 0.85 0.58 0.87 0.68 0.73 

0.63 1.00 0.64 0.15 0.82 0.23 0.24 0.15 0.66 0.66 0.78 0.70 0.93 0.60 0.65 0.67 0.82 0.64 0.70 0.55 

0.58 0.64 1.00 0.44 0.79 0.35 0.39 0.44 0.64 0.93 0.88 0.51 0.68 0.48 0.50 0.50 0.64 0.50 0.69 0.47 

0.22 0.15 0.44 1.00 0.32 0.70 0.67 1.00 0.11 0.38 0.39 0.06 0.22 0.18 0.14 0.14 0.30 0.15 0.37 0.17 

0.64 0.82 0.79 0.32 1.00 0.45 0.43 0.32 0.65 0.72 0.96 0.71 0.86 0.63 0.65 0.66 0.79 0.65 0.81 0.62 

0.22 0.23 0.35 0.70 0.45 1.00 0.70 0.70 0.12 0.25 0.45 0.17 0.29 0.32 0.28 0.26 0.40 0.28 0.51 0.31 

0.29 0.24 0.39 0.67 0.43 0.70 1.00 0.67 0.34 0.34 0.48 0.28 0.29 0.30 0.28 0.27 0.40 0.29 0.49 0.39 

0.22 0.15 0.44 1.00 0.32 0.70 0.67 1.00 0.11 0.38 0.39 0.06 0.22 0.18 0.14 0.14 0.30 0.15 0.37 0.17 

0.75 0.66 0.64 0.11 0.65 0.12 0.34 0.11 1.00 0.71 0.72 0.71 0.61 0.66 0.69 0.69 0.62 0.69 0.66 0.64 

0.65 0.66 0.93 0.38 0.72 0.25 0.34 0.38 0.71 1.00 0.83 0.55 0.67 0.52 0.53 0.53 0.66 0.54 0.72 0.51 

0.71 0.78 0.88 0.39 0.96 0.45 0.48 0.39 0.72 0.83 1.00 0.68 0.82 0.64 0.65 0.65 0.77 0.65 0.83 0.63 

0.78 0.70 0.51 0.06 0.71 0.17 0.28 0.06 0.71 0.55 0.68 1.00 0.64 0.76 0.77 0.77 0.63 0.77 0.67 0.70 

0.55 0.93 0.68 0.22 0.86 0.29 0.29 0.22 0.61 0.67 0.82 0.64 1.00 0.53 0.58 0.61 0.85 0.58 0.72 0.52 

0.88 0.60 0.48 0.18 0.63 0.32 0.30 0.18 0.66 0.52 0.64 0.76 0.53 1.00 0.98 0.97 0.69 0.98 0.81 0.85 

0.87 0.65 0.50 0.14 0.65 0.28 0.28 0.14 0.69 0.53 0.65 0.77 0.58 0.98 1.00 0.99 0.73 1.00 0.80 0.83 

0.85 0.67 0.50 0.14 0.66 0.26 0.27 0.14 0.69 0.53 0.65 0.77 0.61 0.97 0.99 1.00 0.75 0.99 0.80 0.82 

0.58 0.82 0.64 0.30 0.79 0.40 0.40 0.30 0.62 0.66 0.77 0.63 0.85 0.69 0.73 0.75 1.00 0.73 0.88 0.67 

0.87 0.64 0.50 0.15 0.65 0.28 0.29 0.15 0.69 0.54 0.65 0.77 0.58 0.98 1.00 0.99 0.73 1.00 0.81 0.83 

0.68 0.70 0.69 0.37 0.81 0.51 0.49 0.37 0.66 0.72 0.83 0.67 0.72 0.81 0.80 0.80 0.88 0.81 1.00 0.79 

C1    

C2    

C3   

C4    

C5   

C6   

C7   

C8    

C9  

C10  

C11 

C12 

C13  

W1  

W2  

W3  

W∞   

Ws   

MSF 

1.00 0.87 0.77 0.38 0.95 0.42 0.82 0.38 0.90 0.81 0.96 0.98 0.85 0.97 0.97 0.96 0.86 0.97 0.95 0.97 

0.87 1.00 0.78 0.26 0.91 0.32 0.81 0.26 0.98 0.79 0.90 0.89 0.99 0.87 0.91 0.93 0.99 0.91 0.91 0.87 

0.77 0.78 1.00 0.52 0.79 0.37 0.74 0.52 0.82 0.97 0.83 0.72 0.78 0.71 0.74 0.75 0.78 0.74 0.79 0.71 

0.38 0.26 0.52 1.00 0.33 0.61 0.55 1.00 0.30 0.51 0.39 0.30 0.27 0.30 0.30 0.29 0.27 0.30 0.33 0.30 

0.95 0.91 0.79 0.33 1.00 0.46 0.85 0.33 0.92 0.79 0.99 0.96 0.91 0.95 0.96 0.96 0.91 0.96 1.00 0.95 

0.42 0.32 0.37 0.61 0.46 1.00 0.67 0.61 0.33 0.31 0.46 0.40 0.33 0.41 0.39 0.37 0.33 0.39 0.46 0.41 

0.82 0.81 0.74 0.55 0.85 0.67 1.00 0.55 0.83 0.72 0.85 0.81 0.81 0.80 0.82 0.83 0.81 0.82 0.84 0.80 

0.38 0.26 0.52 1.00 0.33 0.61 0.55 1.00 0.30 0.51 0.39 0.30 0.27 0.30 0.30 0.29 0.27 0.30 0.33 0.30 

0.90 0.98 0.82 0.30 0.92 0.33 0.83 0.30 1.00 0.84 0.93 0.91 0.96 0.89 0.93 0.95 0.97 0.93 0.92 0.89 

0.81 0.79 0.97 0.51 0.79 0.31 0.72 0.51 0.84 1.00 0.84 0.75 0.79 0.73 0.77 0.78 0.79 0.77 0.80 0.73 

0.96 0.90 0.83 0.39 0.99 0.46 0.85 0.39 0.93 0.84 1.00 0.95 0.90 0.94 0.95 0.95 0.90 0.95 0.99 0.94 

0.98 0.89 0.72 0.30 0.96 0.40 0.81 0.30 0.91 0.75 0.95 1.00 0.88 1.00 1.00 0.99 0.89 0.99 0.96 1.00 

0.85 0.99 0.78 0.27 0.91 0.33 0.81 0.27 0.96 0.79 0.90 0.88 1.00 0.85 0.90 0.92 0.99 0.90 0.91 0.85 

0.97 0.87 0.71 0.30 0.95 0.41 0.80 0.30 0.89 0.73 0.94 1.00 0.85 1.00 0.99 0.97 0.86 0.98 0.95 1.00 

0.97 0.91 0.74 0.30 0.96 0.39 0.82 0.30 0.93 0.77 0.95 1.00 0.90 0.99 1.00 1.00 0.91 1.00 0.96 0.99 

0.96 0.93 0.75 0.29 0.96 0.37 0.83 0.29 0.95 0.78 0.95 0.99 0.92 0.97 1.00 1.00 0.93 1.00 0.96 0.97 

0.86 0.99 0.78 0.27 0.91 0.33 0.81 0.27 0.97 0.79 0.90 0.89 0.99 0.86 0.91 0.93 1.00 0.91 0.91 0.86 

0.97 0.91 0.74 0.30 0.96 0.39 0.82 0.30 0.93 0.77 0.95 0.99 0.90 0.98 1.00 1.00 0.91 1.00 0.96 0.98 

0.95 0.91 0.79 0.33 1.00 0.46 0.84 0.33 0.92 0.80 0.99 0.96 0.91 0.95 0.96 0.96 0.91 0.96 1.00 0.95 

 344 

 345 

In summary, by evaluating 20 network scores individually, we have found a wide range 346 

of performance with AUC varying from 0.54 to 0.81 (see Table 2). The top-performing scores 347 

seem to correlate strongly with each other, so they must have captured a common aspect of node 348 

centrality that is relevant to functional importance (e.g. high local connectivity instead of high 349 
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betweenness). Interestingly, the two GNM-based scores, despite measuring distinct dynamic 350 

properties (MSF measures thermal fluctuations while  measures sensitivity to local 351 

perturbations), are also strongly correlated with each other and those degree-based network 352 

scores. Therefore, to speed up the variant prediction workflow we only need to compute those 353 

simpler weighted node degrees as features without significantly losing accuracy.   354 

 355 

2. Combining all network scores to predict variant hotspots by 356 

machine learning 357 

 To optimize the predictive power of the above network-based scores based on three 358 

coevolution analysis methods (or AlphaFold), we have employed machine learning algorithms 359 

(see Methods) to take them as input features, train a binary classifier which predicts if a residue 360 

position is linked to neutral or deleterious variants (using first 79 proteins as training set), and 361 

then test its prediction using the remaining 28 proteins as testing set. We use the AUC of ROC as 362 

the metric for assessing the prediction quality of the trained classifier. 363 

 To evaluate the protein residue contact maps constructed by each method, we combine all 364 

network scores based on the contact maps predicted by the same method (see Table 2) for 365 

machine learning. The resulting AUC of each coevolution analysis method (DeepMetaPSICOV, 366 

RaptorX, and SPOT-Contact) is 0.81, 0.80, and 0.82, respectively (see Table 4), which are 367 

slightly better than the best AUC of individual scores (0.78~0.81, see Table 2). The lack of 368 

substantial improvement may be due to high correlations among the scores (see Table 3) which 369 

could reduce the effectiveness of ensemble learning. For comparison, we also trained and tested 370 

classifiers using the AlphaFold-predicted contact maps, and alternative classifiers based on 371 
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protein language models (see Methods). Both alternative methods give comparable yet slightly 372 

better AUC (0.83). Similar to our finding, Butler et al reported AUC of 0.81 after combining the 373 

B-factors of Seq-GNM with evolutionary features [44].  374 

Table 4. Evaluation of classifiers trained by 3 machine learning algorithms (RF, GB and 375 

XGB, see Methods) based on the protein residue contact maps constructed from 3 376 

coevolution analysis tools (DeepMetaPSICOV, RaptorX, and SPOT-Contact), AlphaFold-377 

predicted structures, and protein language models (ESM). 378 

Sources of input features  AUC of RF AUC of GB AUC of XGB 

DeepMetaPSICOV    PSICOV_ext5 

RaptorX                     RaptorX_ext5 

SPOT-Contact           SPOT_ext5 

AlphaFold                             AF_ext6_r10_dw 

ESM 

 

All 3 coevolution methods     

All 3 coevolution methods (w/o C1-C13) 

 

All 3 coevolution methods and ESM 

AlphaFold and ESM 

0.81 

0.80 

0.82 

0.83 

0.83 

 

0.84 

0.82 

 

0.89 

0.88 

0.81 

0.80 

0.82 

0.83 

0.83 

 

0.84 

0.82 

 

0.89 

0.88 

0.81 

0.80 

0.82 

0.83 

0.83 

 

0.84 

0.83 

 

0.89 

0.88 

 379 

 To further boost the prediction performance, we have sought to combine the network 380 

scores of all three coevolution analysis methods for machine learning, resulting in better AUC 381 

(0.84) which slightly outperform both AlphaFold and ESM (0.83). To assess the added value of 382 

including 13 NetworkX-based centrality scores (see Table 1), we have performed an ablation 383 

study that excludes them in machine learning, and found slightly lower AUC (0.82~0.83). So it 384 

is possible to speed up the calculation without significantly reducing accuracy. Taken together, 385 

our findings support the power of combining an array of different network scores from different 386 

coevolution analysis tools to optimize the prediction in the framework of ensemble learning.  387 
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 To further explore how well our method complements alternative methods, we have 388 

combined all the network scores with the ESM scores in machine learning. Encouragingly, we 389 

have obtained markedly improved AUC (0.89), which is comparable to machine learning that 390 

combines the AlphaFold-based network scores with the ESM scores (AUC=0.88).  391 

 For comparison with other studies, Butler et al showed that Seq-GNM combined with 392 

evolutionary parameters attained a sensitivity of 0.84 and a specificity of 0.66 [44]. PolyPhen-2 393 

achieved a sensitivity of 0.73 and a specificity of 0.8 on the HumVar datasets [47].  While using 394 

different training and testing datasets, we have attained competitive results with a sensitivity of 395 

0.82 and a specificity of 0.80 (using all the network scores from three coevolution analysis tools 396 

and the ESM scores). For more direct comparison, we also evaluated PolyPhen-2 based on the 397 

same 28 testing-set proteins and their variants, and obtained an AUC of 0.85, which is close to 398 

our method (see Table 4). However, this metric is likely positively biased since PolyPhen-2 has 399 

been trained on the HumVar dataset.   400 

 In summary, via extensive machine learning, we have demonstrated the power of using 401 

an ensemble of sequences-based network scores calculated by different co-evolution analysis 402 

tools to accurately predict deleterious mutation sites. Although some network scores are highly 403 

correlated (see Table 3) and they vary widely in accuracy (see Table 2), these scores seem to be 404 

sufficiently diverse to allow effective ensemble learning when combined.    405 

 406 

3. Case studies:  407 

To illustrate the biomedical significance of our predictions of variant sites with network scores, 408 

we discuss in details the following four proteins from our dataset.  409 
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Glucose-6-phosphate exchanger (Uniprot id: O43826): As an inorganic phosphate and 410 

glucose-6-phosphate antiporter, it transports cytoplasmic glucose-6-phosphate into the lumen of 411 

the endoplasmic reticulum and translocates inorganic phosphate in the opposite direction. Being 412 

involved in glucose production through glycogenolysis and gluconeogenesis, it plays a central 413 

role in homeostatic regulation of blood glucose levels. It is linked to diseases like congenital 414 

disorder of glycosylation and glycogen storage disease (see 415 

https://www.uniprot.org/uniprotkb/O43826/entry#function). 416 

The AlphaFold-predicted structure forms a dimer of transmembrane helical domains with 417 

most deleterious mutation sites concentrated inside the central core while those non-conserved 418 

residues (i.e. neutral mutation sites) are mostly located on the periphery (see Fig 1c). The contact 419 

maps predicted by three coevolution analysis tools all agree well with the contact map based on 420 

the AlphaFold structure (see Fig 1a) (except that RaptorX omitted many local contacts in 421 

residues 1-200). As a result, the network centrality scores (W3) also agree well between these 422 

methods (see Fig 1b), although the coevolution-based network scores are generally noisier (with 423 

more spikes) than the structure-based scores (see Fig 1b).  Different network scores calculated 424 

from the same contact map are also highly similar (see Fig 1d) despite being based on different 425 

algorithms. For example, scores of  and MSF agree very well (see Fig 1d). Encouragingly, 426 

those residues identified with high network scores are primarily within the central core (inside 427 

each domain or in the inter-domain hinge region), thus overlapping with most deleterious 428 

mutations (see Fig 1c). Among those top-10% hotspot residues (see Fig 1c), mutations Y24H, 429 

N27K, R28H, G88D, G149E, P153L, and G339C were implicated in causing glycogen storage 430 

disease [54] . Two of these mutations (R28H and G149E) were found to exhibit undetectable 431 

https://www.uniprot.org/uniprotkb/O43826/entry#function
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microsomal glucose-6-phosphate transport activity in transient expression studies[55], thus 432 

confirming their functional importance.  433 

 434 

Figure 1. Results for Glucose-6-phosphate exchanger (Uniprot id: O43826): (a) Four contact 435 

maps constructed from coevolution analysis by DeepMetaPSICOV (DMP), RaptorX (RX), 436 

SPOT-Contact (SC), and the predicted structure by AlphaFold (AF) (only those contacts with 437 

probability >0.1 are shown). (b) W3 scores for all residue positions based on the contact maps in 438 

(a), where red and blue dots mark residues with deleterious and neutral mutations, respectively. 439 

(c) Predicted structure by AlphaFold as colored by W3 scores (red/blue for high/low values), 440 
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where residues with deleterious and neutral mutations are shown as large and small balls, 441 

respectively (G20, Y24, N27, R28, G50, S54, S55, G68, L85, G88, W118, Q133, A148, G149, 442 

G150, P153, C176, C183, P191, L229, W246, I278, R300, H301, G339, A367, A373, G376, see 443 

https://www.uniprot.org/uniprotkb/O43826/variant-viewer). (d) Four other network scores (MSF, 444 

, C5 and C12) for all residue positions based on the contact maps in (a).   445 

 446 

Presenilin-1 (Uniprot id: P49768): As the catalytic subunit of the gamma-secretase complex, it 447 

catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors. It 448 

is involved in various diseases including a familial early-onset form of Alzheimer disease and a 449 

form of frontotemporal dementia (see https://www.uniprot.org/uniprotkb/ 450 

P49768/entry#function).  451 

The AlphaFold-predicted structure consists of two closely packed helical domains with 452 

most deleterious mutations clustered inside the core domain while the non-conserved residues 453 

are mostly located on the N-terminal loop (residues 1-70) and the inter-domain linker (residues 454 

300-370) (see Fig 2c). The active site [56] (D257 and D385) is also located in the core domain 455 

(colored green in Fig 2c). The contact maps predicted by three coevolution analysis methods all 456 

resemble the contact map based on the predicted structure (see Fig 2a) (except that RaptorX 457 

omitted local contacts in residues 1-100). As a result, the network scores agree well between 458 

them in the helical domains (see Fig 2c), but with more differences in the flexible regions 459 

(residues 1-70 and 300-370). Reassuringly, those residues identified by high network scores are 460 

primarily clustered within the central core overlapping with most deleterious mutations, while 461 

the flexible N-terminal and linker feature low scores consistent with low sequence conservation 462 

(see Fig 2c).  Among those top 10% hotspot residues (see Fig 2c), mutations at C92, V96, A231, 463 

https://www.uniprot.org/uniprotkb/O43826/entry#function
https://www.uniprot.org/uniprotkb/O43826/entry#function
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M233, L235, A246, L250, S390, L392, and C410 were found to cause loss of function and 464 

altered amyloid-beta production [57]  :  C92S led to loss of protease function and increased 465 

Abeta42 levels. V96F caused loss of protease activity. A231T/V and M233T led to decreased 466 

protease activity, altered amyloid-beta production and increased amyloid-beta 42/amyloid-beta 467 

40 ratio. L235P/R and S390I abolished protease activity. A246E and L250S abolished protease 468 

activity and increased amyloid-beta 42/amyloid-beta 40 ratio. L392V resulted in reduced 469 

proteolysis, altered amyloid-beta production and increased amyloid-beta 42/amyloid-beta 40 470 

ratio. C410I reduced proteolysis. Since most of these residues are not near the active site, their 471 

effects on protease activity are likely allosteric. 472 

 473 
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Figure 2. Results for Presenilin-1 (Uniprot id: P49768): (a) Four contact maps constructed 474 

from coevolution analysis by DeepMetaPSICOV (DMP), RaptorX (RX), SPOT-Contact (SC), 475 

and the predicted structure by AlphaFold (AF) (only those contacts with probability >0.1 are 476 

shown). (b) W3 scores for all residue positions based on the contact maps in (a), where red and 477 

blue dots mark residues with deleterious and neutral mutations, respectively. (c) Predicted 478 

structure by AlphaFold as colored by W3 scores (red/blue for high/low values), where residues 479 

with deleterious and neutral mutations are shown as large and small balls, respectively (A79, 480 

V82, C92, V96, F105, L113, Y115, T116, P117, E120, N135, M139, I143, M146, T147, H163, 481 

W165, L166, S169, L171, L173, L174, G206, G209, I213, L219, A231, M233, L235, A246, 482 

L250, A260, L262, C263, P264, G266, P267, R269, L271, R278, E280, L282, A285, L286, 483 

S289, D333, G378, G384, S390, L392, N405, A409, C410, A426, A431, P436, see 484 

https://www.uniprot.org/uniprotkb/ P49768/variant-viewer), and active-site residues are colored 485 

in green. (d) Four other network scores (MSF, , C5 and C12) for all residue positions based on 486 

the contact maps in (a).  487 

 488 

b(0,+)-type amino acid transporter 1 (Uniprot id: P82251): It forms a functional 489 

transporter complex that mediates the electrogenic exchange between cationic amino acids and 490 

neutral amino acids. Its dysfunction is linked to Cystinuria, an autosomal disorder characterized 491 

by impaired epithelial cell transport of cystine and dibasic amino acids in the proximal renal 492 

tubule and gastrointestinal tract (see https://www.uniprot.org/uniprotkb/P82251/entry#function). 493 

The AlphaFold-predicted structure consists of a helical domain with deleterious 494 

mutations concentrating inside the core domain while those non-conserved residues are mostly 495 

located on the domain periphery (N-terminal and C-terminal helices) (see Fig 3c). The active site 496 

https://www.uniprot.org/uniprotkb/P82251/entry#function
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consists of residues 43-47 and 233 and is also located in the core domain (colored green in Fig 497 

3c). The contact maps predicted by three coevolution analysis tools are all similar to the contact 498 

map based on the AlphaFold structure (see Fig 3a) (except that RaptorX omitted some local 499 

contacts in residues 1-200). As a result, the network scores agree well between these methods 500 

(see Fig 3b). Reassuringly, those residues identified with high network scores are primarily 501 

within the central core and overlap with most deleterious mutations, while the peripheral regions 502 

feature low scores consistent with low sequence conservation. Among those top-10% hotspot 503 

residues (see Fig 3c), mutations I44T, A126T, and W230R were implicated in Cystinuria. In 504 

vitro measurements showed W230R has almost no transport activity, and it was proposed that 505 

W230 serves as a gate between two substrate-binding pockets and undergoes conformational 506 

changes to enable amino acid transport [58] . Although the A126T mutation is mildly 507 

dysfunctional [59], it is notable among a cluster of conserved residues with small sidechains in 508 

the contact regions of transmembrane helices, hinting for its possible role in helix-helix 509 

association and relative motions.  510 
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511 

Figure 3. Results for amino acid transporter 1 (Uniprot id: P82251): (a) Four contact maps 512 

constructed from coevolution analysis by DeepMetaPSICOV (DMP), RaptorX (RX), SPOT-513 

Contact (SC), and the predicted structure by AlphaFold (AF) (only those contacts with 514 

probability >0.1 are shown). (b) W3 scores for all residue positions based on the contact maps in 515 

(a), where red and blue dots mark residues with deleterious and neutral mutations, respectively. 516 

(c) Predicted structure by AlphaFold as colored by W3 scores (red/blue for high/low values), 517 

where residues with deleterious and neutral mutations are shown as large and small balls, 518 

respectively (V142,L223,I44,P52,G63,W69,A70,G105,T123,A126,V170,A182,I187,G195, 519 

A224,W230,I241,G259,P261,V330,A331,R333,A354,S379,A382, see 520 
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https://www.uniprot.org/uniprotkb/ P82251/variant-viewer), and active-site residues are colored 521 

in green. (d) Four other network scores (MSF, , C5 and C12) for all residue positions based on 522 

the contact maps in (a). 523 

 524 

Lipoprotein lipase (Uniprot: P06858): As a key enzyme in triglyceride metabolism, it 525 

catalyzes the hydrolysis of triglycerides from circulating chylomicrons and very low density 526 

lipoproteins, thus playing an important role in lipid clearance from the blood stream, lipid 527 

utilization and storage (see https://www.uniprot.org/uniprotkb/P06858/entry#function ). 528 

The AlphaFold-predicted structure consists of an N-terminal helix, a central  domains, 529 

and a C-terminal  domain. Most deleterious mutations are concentrated inside the central 530 

domain while the non-conserved residues are mostly located on the periphery (including N-531 

terminal helix and C-terminal domain) (see Fig 4c). The active site is comprised of a catalytic 532 

triad of S159, D183, and H268 [60] in the central domain (colored green in Fig 4c). The contact 533 

maps predicted by three coevolution analysis methods are similar to the contact map based on 534 

the AlphaFold structure (see Fig 4a). As a result, the network scores agree well between these 535 

methods (see Fig 4b) with minor differences in peripheral regions (such as the N-terminal helix). 536 

As predicted, those residues identified with high network scores are primarily within the central 537 

domain overlapping with most deleterious mutations, while the peripheral N-terminal helix and 538 

C-terminal domain feature low scores consistent with low sequence conservation (see Fig 4c). 539 

Notably, some of them are found at the interface between the central domain and the C-terminal 540 

domain (circled in Fig 4c), possibly mediating inter-domain motions. Among those top-10% 541 

hotspot residues (see Fig 4c), T128, G132, H163, G169, G181, D183, P184, A185, D207, V208, 542 

H210, G222, V227, D231, I232, P234 and S271 are known to harbor pathogenic mutations in 543 

https://www.uniprot.org/uniprotkb/P06858/entry#function
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Hyperlipoproteinemia 1, an autosomal recessive metabolic disorder characterized by defective 544 

breakdown of dietary fats. Both H163 and G169 lie in helix 4 that constitutes part of the highly 545 

conserved beta-epsilon serine-alpha folding motif which is near S159 of the active site. 546 

Supporting their functional relevance, mutations H163R and G169E were found to abolish the 547 

enzymatic activity [61] . Near D183 (one of the catalytic triad), mutations G181S and P184R 548 

were found to abolish the catalytic activity [62] . Further from D183, conserved substations 549 

D207E and H210Q abolished the enzyme activity [63], and mutations D231E, I232S and P234L 550 

led to loss of the catalytic function [64] . These mutations may disrupt allosteric interactions with 551 

the central catalytic domain.  Another conservative mutation S271T (near D183) also led to loss 552 

of enzyme activity [65]. Taken together, these residues may function by directly or indirectly 553 

coupling to the active site. 554 
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 555 

Figure 4. Results for Lipoprotein lipase (Uniprot id: P06858): (a) Four contact maps 556 

constructed from coevolution analysis by DeepMetaPSICOV (DMP), RaptorX (RX), SPOT-557 

Contact (SC), and the predicted structure by AlphaFold (AF) (only those contacts with 558 

probability >0.1 are shown). (b) W3 scores for all residue positions based on the contact maps in 559 

(a), where red and blue dots mark residues with deleterious and neutral mutations, respectively. 560 

(c) Predicted structure by AlphaFold as colored by W3 scores (red/blue for high/low values), 561 

where residues with deleterious and neutral mutations are shown as large and small balls, 562 

respectively 563 

(H71,A427,D36,N70,V96,A98,R102,W113,T128,G132,H163,G169,G181,D183,P184,A185, 564 
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G186,E190,S199,D201,A203,D207,V208,H210,G215, S220,I221,G222, K225,V227,D231, 565 

I232,P234,C243,I252,C266,R270,S271,D277,S278,L279,S286,Y289,F297,L303,C305, 566 

C310,L313,N318,S325,M328,L330,A361,S365,L392,E437,E437,C445,E448, see 567 

https://www.uniprot.org/uniprotkb/P06858/variant-viewer), and active-site residues are colored 568 

in green. (d) Four other network scores (MSF, , C5 and C12) for all residue positions based on 569 

the contact maps in (a).   570 

 571 

Conclusion 572 

 To conclude, we have combined machine learning, network analysis, and protein 573 

language models to develop a sequences-based variant site prediction method based on the 574 

protein residue contact networks which incorporate sequential, structural, dynamic, and 575 

interaction information simultaneously:  576 

1. We build protein residue networks by exploiting three different state-of-the-art coevolution 577 

analysis tools (RaptorX, DeepMetaPSICOV, and SPOT-Contact) that complement each other.  578 

2. We use three powerful machine learning algorithms (Random Forest, Gradient Boosting, and 579 

Extreme Gradient Boosting) to optimally combine 20 network centrality scores to accurately 580 

predict key residues as hot spots for disease mutations.  581 

3. We train and validate our method using a dataset of 107 proteins rich in disease mutations, 582 

demonstrating its high accuracy in distinguishing between deleterious and neutral sites (with 583 

AUC of ROC ~ 0.84). Further improvement can be achieved after combining our method with 584 

the ESM-based method.     585 

https://www.uniprot.org/uniprotkb/P06858/variant-viewer
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 This study has established a useful strategy of combining an ensemble of network scores 586 

based on different coevolution analysis methods via machine learning to predict key variants 587 

sites of relevance to disease mutations. The code and dataset are made available to public to 588 

enable future developments and applications (see https://simtk.org/projects/hotspots).    589 

 For future work, it will be interesting to go beyond contact map predictions by integrating 590 

other scores derived from the co-evolution analysis (for example, see refs [66-68]) in our 591 

workflow, which may further boost the accuracy of variant site prediction.   592 

 593 

594 

https://simtk.org/projects/hotspots
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Supporting Information 760 

S1 Table. Evaluation of 20 network scores based on protein residue contact maps 761 

constructed from 3 coevolution analysis tools (DeepMetaPSICOV, RaptorX, and SPOT-762 

Contact) 763 

Score  AUC* of 

DeepMetaPSICOV 

AUC* of 

RaptorX  

AUC* of 

SPOT-Contact 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

C12 

C13 


MSF 

W1 

W2 

W3 

W∞ 

Ws  

0.75±0.13 

0.75±0.17 

0.78±0.10 

0.65±0.12 

0.78±0.17 

0.63±0.16 

0.77±0.11 

0.65±0.12 

0.79±0.13 

0.76±0.12 

0.80±0.13 

0.78±0.16 

0.75±0.17 

0.80±0.13 

0.81±0.14 

0.81±0.14 

0.81±0.15 

0.81±0.14 

0.80±0.13 

0.80±0.13 

0.78±0.14 

0.75±0.19 

0.75±0.15 

0.52±0.15 

0.78±0.17 

0.56±0.19 

0.61±0.20 

0.52±0.15 

0.78±0.16 

0.75±0.14 

0.78±0.17 

0.80±0.14 

0.74±0.18 

0.78±0.14 

0.79±0.15 

0.79±0.15 

0.77±0.15 

0.78±0.15 

0.77±0.14 

0.78±0.13 

0.75±0.15 

0.76±0.19 

0.70±0.15 

0.61±0.07 

0.78±0.18 

0.65±0.17 

0.72±0.16 

0.61±0.07 

0.75±0.16 

0.69±0.15 

0.78±0.17 

0.80±0.17 

0.76±0.19 

0.78±0.16 

0.80±0.17 

0.80±0.17 

0.79±0.17 

0.80±0.16 

0.78±0.16 

0.78±0.16 

* mean ± standard-deviation 764 
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Abstract 17 

            To enable personalized genetics and medicine, it is important yet highly challenging to 18 

accurately predict disease-causing mutations in target proteins at high throughput. Previous 19 

computational methods have been developed using evolutionary phylogeny information in 20 

combination with various biochemical and structural properties features of amino acidsprotein 21 

residues to discriminate neutral vs. deleterious mutations. However, the power of these methods 22 

is often limited because they either assume known protein structures or do not fully 23 

incorporatetreat residues independently structural, dynamic, and interaction information critical 24 

for protein functions. To address these limitationswithout fully considering their global 25 

interactions. , To address the above limitations, we build upon recent progress in machine 26 

learning, network analysis, and protein language models, and develop a sequences-based variant 27 

site prediction workflow based on the protein residue contact networks: 1. We employ and 28 

integrate various methods of building protein residue networks using state-of-the-art coevolution 29 

analysis tools (e.g., RaptorX, DeepMetaPSICOV, and SPOT-Contact) powered by deep learning. 30 

2. We use machine learning algorithms (e.g., Random Forest, Gradient Boosting, and Extreme 31 

Gradient Boosting) to optimally combine 13 20 network centrality scores (calculated by 32 

NetworkX) with 7 other network scores calculated from the contact probability matrices to 33 

jointly predict key residues as hot spots for disease mutations. 3. Using a dataset of 107 proteins 34 

rich in disease mutations, we rigorously evaluate the network scores individually and collectively 35 

(via machine learning) in comparison with alternative structures-based network scores (using 36 

predicted structures by AlphaFold). By optimally combing three coevolution analysis methods 37 

and the resulting network scores by machine learning, we are able to discriminate deleterious and 38 

neutral mutation sites accurately (AUC of ROC ~ 0.84). Furthermore, by combining our method 39 
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with a state-of-the-art predictor of the functional effects of sequence variations based on large 40 

protein language models, we have significantly improved the prediction of disease variant sites 41 

(AUC ~ 0.89).  This work supports a promising strategy of combining an ensemble of network 42 

scores based on different coevolution analysis methods (and optionally predictive scores from 43 

other methods) via machine learning to predict candidate sites of disease mutations, which will 44 

inform downstream applications of disease diagnosis and targeted drug design. 45 

46 
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Introduction 47 

 The holy grail of structural biology is to solve high-resolution biomolecular structures at 48 

the genomic scale to inform mechanistic studies of their functions. Thanks to recent revolutions 49 

in computational structural biology (e.g. accurate protein structure prediction by AlphaFold [1] 50 

and other deep-learning-based methodsRoseTTAFold [2]), it is now feasible to predict static 51 

native structures for many many proteins of interest given their sequences (with some caveats, 52 

see [3]), thus practically solving the protein folding problem [4]. However, it remains 53 

challenging to predict dynamic structural ensembles [5] and mutation-induced structural 54 

changeseffects [6]  to meet the demand of mechanistic studies of protein functions and 55 

dysfunctions.  While the public databases of protein sequences and variations increase rapidly 56 

owning to genomic/metagenomic sequencing efforts (e.g. the MetaClust database contains about 57 

1.6 billion protein sequence fragments [7]), the growth of experimental protein structures [8] and 58 

predicted structures remains to catch up ((e.g. the AlphaFold database contains over 200 million 59 

predicted structures [9]). Such sequences-structures gap has motivated the development of new 60 

computational tools that make functional sense of protein sequences without directly using 61 

structural information (for example, by using deep learning to train large protein language 62 

models [10] ). Recently, AlphaMissense attained state of the art prediction of missense variant 63 

pathogenicity by adapting AlphaFold fine-tuned on human and primate variant population 64 

frequency databases [11].  .  65 

 A major interest in personalized genetics and medicine is in understanding novel genetic 66 

variations through genotype-phenotype association studies in relation to diseases. Particularly, a 67 

rapidly growing number of non-synonymous single nucleotide variants (nSNVs) have been 68 
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uncovered in protein coding regions that can adversely impact protein function and cause 69 

diseases [12]. Various computational methods were developed using evolutionary conservation 70 

and phylogeny in combination with biochemical and structural properties of amino acids to 71 

discriminate neutral vs. deleterious nSNVs [13-22]. Protein structural dynamics has also proven 72 

useful in discovering functionally important residues [23,24]  which could constitute hot spots 73 

for disease-causing nSNVs [25,26]. However, the requirement of 3D structures has limited the 74 

number of nSNVs that can be analyzed by existing structure-based computational tools, although 75 

such constraint has been significantly alleviated by recent progress in protein structure prediction 76 

[27].   77 

 As alternatives to structure-based methods, sequences-based coevolution analysis has 78 

become increasingly powerful in predicting structural couplings between pairs of contacting 79 

residues [28-31] , thanks to the development of direct coupling methods that can overcome the 80 

confounding indirect coupling effects [29,32,33] . In principle, coevolving pairs of residues can 81 

be identified from a sufficiently large multiple sequence alignment, allowing the prediction of 82 

close spatial proximity in the native structures. Boosted by deep learning and other algorithmic 83 

developments, this coevolution analysis has led to accurate prediction of residue contacts which 84 

make de novo protein structure prediction possible [28]  . Furthermore, coevolution analysis 85 

(enhanced by deep learning) has also been used to study various aspects of protein functional 86 

interactions such as allostery [34] . For example, RaptorX uses an ultra-deep neural network 87 

combining coevolution information with sequence conservation information to infer 3D contacts 88 

with higher accuracy than previous methods [35,36]. DeepMetaPSICOV [37] combines the input 89 

feature sets used by earlier methods (e.g. MetaPSICOV [38] and DeepCov [39] ) as input to a 90 

deep, fully convolutional residual neural network. SPOT-Contact predicts protein contact maps 91 



6 
 

by stacking residual convolutional networks with two-dimensional residual bidirectional 92 

recurrent LSTM networks, and using both one-dimensional sequence-based and two-dimensional 93 

evolutionary coupling based information [40]. These three state-of-the-art coevolution analysis 94 

methods are employed in this study to construct protein residue contact maps for network 95 

analysis (see below).  96 

 Another line of protein research is based on the treatment of a protein as a network where 97 

amino acid residues are nodes and their bonded/non-bonded interactions form edges [41]. Such 98 

models can be readily built upon 3D native structures so that a whole suite of network analysis 99 

tools (see https://networkx.org/) can be applied. For example, Amitai et al [42] used network 100 

analysis of protein structures (usinge.g. closeness centrality) to identify functional residues. 101 

Going beyond network analysis, deep-learning-based study of protein graph neural networks is 102 

an active area of research [43].   103 

            In a recent paper, Butler et al [44] proposed a sequence-based Gaussian network model 104 

(Seq-GNM) to calculate the dynamic profile of a protein without a 3D structure. They used 105 

coevolution analysis to build a network model which connects residues predicted to be in contact 106 

via evolutionary couplings. Their work built on previous studies that shown crystallographic B-107 

factors are useful in predicting the impact of nSNVs on protein function [45,46] : rigid sites with 108 

low B-factors are more susceptible to destabilizing nSNVs than flexible sites with high B-109 

factors.  Indeed, existing computational tools to diagnose neutral and deleterious nSNVs 110 

(e.g.such as PolyPhen-2 [47]) use crystallographic B-factors along with other evolutionary and 111 

structural features. More specifically, Butler et al used Seq-GNM to compute B-factors for 112 

protein residues, and they found that deleterious nSNVs are overabundant at low B-factor sites, 113 

while neutral nSNVs are overabundant at high B-factor sites. Mechanistically, low B-factors may 114 
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indicate that a site is crucial for maintaining structural stability and/or modulating functional 115 

motions (e.g., as a hinge) and thus susceptible to mutations. In contrast, high B-factors are 116 

associated with flexible regions (e.g., loops) with minimal interactions, which are thus more 117 

robust to mutations. Based on these observations, they proposed that the sequences-based 118 

predicted B-factors can discriminate between deleterious and neutral nSNVs without structural 119 

information. 120 

            Inspired by the above study and recent progress in machine learning, network analysis, 121 

and protein language models, we further develop the sequences-based protein residue network 122 

analysis in the following directions: 1. We exploit and integrate various methods of building 123 

protein residue networks using three state-of-the-artdifferent coevolution analysis tools (e.g., 124 

RaptorX, DeepMetaPSICOV, and SPOT-Contact) as powered enabled by deep learning. 2. We 125 

use exploit three machine learning algorithms (e.g., Random Forest, Gradient Boosting, and 126 

Extreme Gradient Boosting) to optimally combine 13 20 distinct network node centrality scores 127 

(calculated by the NetworkX package) withas 7 other network scores calculated from the contact 128 

probability matrices to jointly predict key residues as hot spot residuess for disease mutations. 3. 129 

Using Based on a dataset of 107 proteins rich inwith known disease deleterious/neutral 130 

mutations, we rigorously evaluate the our sequences-based sequences-based network scores both 131 

individually and in combination, and then (via machine learning) in compareison with alternative 132 

structures-based network scores and a physics force field based method (using predicted 133 

structures by AlphaFold). By optimally combing three coevolution analysis methods and the 134 

resulting 20 network scores by machine learning, we are able to discriminate deleterious and 135 

neutral mutation sites accurately (AUC of ROC ~ 0.84), which is on par with structure-based 136 

network scores (AUC ~ 0.83). Furthermore, by combining our method with a state-of-the-art 137 
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predictor of the functional effects of sequence variation based on large protein language models 138 

(ESM [48]), we have significantly improved the prediction of disease variant sites (AUC ~ 0.89).  139 

 In the following sections, we first describe the detailed methodology in the order of 140 

the proposed workflow, then we report the results of evaluation of our network-based scores both 141 

individually and collectively (via machine learning), finally we discuss specific case studies of 142 

four proteins to illustrate the usage of our method.This work supports the strategy of combining 143 

an ensemble of network scores based on different coevolution analysis methods via machine 144 

learning to predict candidate sites for disease mutations which will inform many downstream 145 

biomedical applications.       146 

 Materials and methods 147 

Here is a summary of the workflow of our sequences-based method: 148 

a. Collect datasets of protein sequences and variants (see Section 1) 149 

b. Run co-evolution analysis of a given target protein sequence to build a residue 150 

contact map P (see Section 2) 151 

c. Use NetworkX to calculate node centrality scores based on P (see Section 3) 152 

d. Use sequence-based GNM to calculate additional node scores (see Section 4) 153 

e. (optional) Use protein language model (ESM) to predict variant importance (see 154 

Section 5) 155 

f. (optional) Use AlphaFold and FoldX to predict variant importance (see Section 6 and 156 

7) 157 

g. Use machine learning to optimally combine the above scores for classifying 158 

deleterious vs neutral variant sites (see Section 8) 159 
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1. Training and testing Ddatasets of protein sequences and variants 160 

 A dataset of 107 protein sequences with ≤500 residues and ≥20 annotated 161 

deleterious/neutral variants were collected from the HumVar database [47] (sources: humvar-162 

2011_12.deleterious.pph.input and humvar-2011_12.neutral.pph.input from 163 

ftp://genetics.bwh.harvard.edu/pph2/training/training-2.2.2.tar.gz). Their UniProt ids and 164 

sequencesare as follows: 165 

O14896,O15305,O15537,O43826,O60260,O60880,O60931,P00439,P00441,P00480, 166 

P00492,P00740,P00742,P00813,P00966,P01008,P01009,P01185,P01308,P01909,P01920,P0204167 

2,P02533,P02649,P02766,P04070,P04180,P04181,P04440,P05155,P06132,P06280,P06858,P07168 

902 can be accessed at https://simtk.org/projects/hotspots. This diverse dataset contains 97 proteins 169 

with their pairwise sequence identity < 30%. 170 

    ,P08034,P08100,P08246,P08397,P08559,P08686,P08709,P10746,P10828,P11166,P16930,P1171 

7302,P17661,P19429,P19544,P21549,P22830,P23760,P23942,P25189,P25445,P26367,P26439,172 

P29033,P29965,P30518,P30566,P30793,P31213,P31785,P32245,P35557,P35575,P39019,P4118173 

1,P42771,P45379,P45381,P49768,P51608,P51648,P51681,P51810,P53634,P56539,P58012,P60174 

201,P63092,P68133,P68871,P69891,P69892,P69905,P82251,P98172,Q00604,Q01453,Q03393,175 

Q03426,Q05066,Q13148,Q14654,Q15465,Q16586,Q6VVB1,Q92838,Q92947,Q93099,Q96NR8176 

,Q99519,Q9GZX3,Q9H9S5,Q9UBM7. 177 

 178 

 The HumVar dataset consists of 13,032 human disease-causing mutations from UniProt 179 

and 8,946 human nonsynonymous single-nucleotide polymorphisms (nsSNPs) without annotated 180 

involvement in disease. This dataset was previously used to train and test PolyPhen-2 [47] for 181 

predicting damaging effects of missense mutations, and was used by Butler et al [44] in 182 
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benchmarking their seq-GNM method for predicting deleterious/neutral nSNVs. However, 183 

because they used different subsets of HumVar to train and test their methods, it is not possible to 184 

directly compare the performance between our method and theirs.   185 

 186 

Since this dataset is highly imbalanced (there are 4040 deleterious mutation sites but only 187 

120 neutral mutation sites) [49], we have added 3403 additional neutral sites with very low 188 

conservation scores (i.e. grade ≤2 as assessed by the ConSurf program [50]). Our objective is to 189 

train and test a binary classifier of residues in these proteins as deleterious or neutral. To this 190 

end, we split 107 proteins into training and testing sets (with 79 and 28 proteins, respectively), 191 

and perform evaluations based on the testing set. The main metric of evaluation is the ROC 192 

curves and associated area under the curve (AUC). AUC is a standard metric for evaluating 193 

binary classifiers based on the ROC curve of sensitivity and specificity. The ROC curves are also 194 

used in other computational papers for variant prediction (see [47]). 195 

 196 

 S2. Sequences-based coevolution analysis and protein contact map 197 

construction 198 

 We perform coevolution analysis using three state-of-the-art methods: the RaptorX server 199 

(http://raptorx.uchicago.edu), the DeepMetaPSICOV server (http://bioinf.cs.ucl.ac.uk/psipred/), 200 

and the SPOT-Contact server (https://sparks-lab.org/server/spot-contact/). A sequence length limit 201 

(500) is imposed by the capacity of coevolution analysis servers, and may be circumvented if 202 

installing and running coevolution analysis locally. 203 
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 These methods use multiple sequence alignments to compute the probability Pij of residue 204 

pair (i, j) forming spatial contact.  Based on the matrix of predicted Pij, a protein residue contact 205 

map can be built with residues as nodes and pairwise contacts as edges weighted by Pij. By default, 206 

we do not apply any threshold cutoff to Pij for defining contacts (unless networks with unweighted 207 

edges are required by some node centrality algorithms in NetworkX, where we remove edges with 208 

Pij<0.1, and set weight to 1 for the remaining edges).  209 

 210 

3. Network analysis of protein contact map 211 

 By treating a protein contact map as a network of nodes and edges, we calculate various 212 

node centrality scores to predict key residues as hotspots for disease mutations.  213 

 A simple score to measure node centrality is a weighted node degree that accounts for the 214 

nearest neighbor interactions (denoted W1): 215 

1,i ik

k i

W P



      (1) 216 

 To include indirect couplings beyond the nearest neighbors, we calculate the node degree 217 

based on the n’th power of the contact probability matrix (denoted Wn):  218 

, 1,

n

n i ik n k ik

k i k i

W P W P

 

  
   (2) 219 

 As n goes to infinity, Wn converges to the eigenvector of P matrix with the highest 220 

eigenvalue 
max  (denoted W

): 221 
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maxPW W       (3) 222 

 Among various Wn, W2 can be interpreted as the node degrees of a new network based on 223 

a neighborhood similarity matrix S as follows (denoted Ws): 224 

,

,

,  ij ik jk s i ik

k i j k i

S P P W S
 

  
  (4) 225 

 In this study we use five network scores (W1, W2, W3, W∞ and Ws) as predictive features 226 

for node importance. Additionally, we exploit 13 network centrality metrics as calculated by the 227 

NetworkX package (see Table 1). To allow meaningful comparison of scores between proteins, 228 

the scores of each protein are sorted and their ranking percentiles are linearly transformed to 229 

values between 0 and 1.  230 

 Table 1. Network centrality scores as implemented in the NetworkX package 231 

(see https://networkx.org/documentation/stable/reference/algorithms/centrality.html ) 232 

Symbol Centrality name Definition  

C1 

C2 

C3 

 

 

C4 

 

C5 

 

 

C6 

 

C7 

 

C8 

 

C9 

 

C10 

 

 

degree_centrality 

eigenvector_centrality 

closeness_centrality 

 

 

betweenness_centrality 

 

current_flow_closeness_centrality 

 

 

current_flow_betweenness_centrality 

 

communicability_betweenness_centrality 

 

load_centrality 

 

subgraph_centrality 

 

harmonic_centrality 

 

 

Corresponding to W1 

Corresponding to W∞ 

Closeness centrality of a node u is the reciprocal of the 

average shortest path distance to u over all n-1 reachable 

nodes. 

Betweenness centrality of a node u is the sum of the 

fraction of all-pairs shortest paths that pass through u. 

Current-flow closeness centrality is a variant of closeness 

centrality based on effective resistance between nodes in a 

network. 

Current-flow betweenness centrality is based on an 

electrical current model for information spreading. 

Communicability betweenness centrality is based on the 

number of walks connecting every pair of nodes.   

Load centrality of a node u is the fraction of all shortest 

paths that pass through u. 

Subgraph centrality of a node u is the sum of weighted 

closed walks of all lengths starting and ending at u. 

Harmonic centrality of a node u is the sum of the reciprocal 

of the shortest path distances from all other nodes to u. 
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C11 

 

 

C12 

 

C13 

second_order_centrality 

 

 

laplacian_centrality 

 

katz_centrality_numpy 

Second order centrality of a node u is the standard 

deviation of the return times to u of a perpetual random 

walk on G. 

Laplacian Centrality of a node u is measured by the drop in 

the Laplacian Energy after deleting u from the graph. 

Katz centrality computes the centrality for a node u based 

on the centrality of its neighbors. It is a generalization of 

the eigenvector centrality. 

 233 

 234 

 235 

4. Sequences-based GNM 236 

 For comparison, we implemented Bulter et al’s sequence-based GNM [44]. The original 237 

structure-based Gaussian network model (GNM) represents a protein structure as an elastically 238 

connected network of residues to obtain the equilibrium fluctuations of residues. In the absence 239 

of a structure, the sequence-based GNM (Seq-GNM) treats coevolving residue pairs as 240 

contacting pairs.   241 

 To construct the Kirchhoff matrix (denoted K), each non-bonded residue pair is assigned 242 

a value of -1 times its contact probability.  The bonded residue pairs (i, i+1) are assigned -1 to 243 

enforce local chain connectivity. The diagonal elements of K are assigned so that the sum of each 244 

row and column is zero:  245 

ij

ij

ik

k i

P i j

K
P i j



 


 





     (5) 246 

 The vibrational thermal fluctuations of residues are evaluated by inverting the Kirchhoff 247 

matrix (or summing over the modes as weighted by 1/m). The per-residue mean-square 248 
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fluctuations (MSF), which are proportional to the crystallographic B factors, are given as 249 

follows: 250 

2
1

0

mi
i ii

m m

V
MSF K







 
    (6) 251 

where the eigen-decomposition of K gives eigenvectors 
mV  and eigenvalues m that satisfy: 252 

m m mKV V       (7) 253 

Low-MSF residues correspond to rigid cores or hinges of dynamical importance [44]. 254 

 As an alternative way to evaluate node importance using GNM, we perform a 255 

perturbation-based hotspot analysis as follows: For mode m, calculate how much its eigenvalue 256 

changes (
,m i ) in response to a perturbation at a chosen residue position i [23,24,51] (i.e., by 257 

uniformly weakening the contacts with residue i). Then compute ,i m i

m

   to assess the 258 

dynamic importance of this residue position [52]. High- i residues correspond to sites highly 259 

sensitive to local perturbations that mimic mutations.    260 

 The above two GNM-based scores are combined with the other network scores for 261 

machine learning. 262 

 263 

5. ESM based variant prediction 264 

 For comparison with our method, we use a deep-learning variant predictor based on a 265 

large protein language model (ESM). We downloaded and installed the ESM package and 266 
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pretrained models from https://github.com/facebookresearch/esm. Since our dataset consists of 267 

known variants (from HumVar) and added non-conserved sites (with specific mutations 268 

unknown), we simulate the mutational effects on each site by introducing Alanine substitution if 269 

the wildtype residue is not an Alanine and Glycine substitution otherwise. Then we process the 270 

mutated sequence with 5 pretrained ESM models (esm1v_t33_650M_UR90S_1, 271 

esm1v_t33_650M_UR90S_2, esm1v_t33_650M_UR90S_3, esm1v_t33_650M_UR90S_4, and 272 

esm1v_t33_650M_UR90S_5), which predict the difference in the probability of observing the 273 

widetype residue and the mutant residue at a given site [48]. We record the predictions of five 274 

ESM models as separate features to be optimally integrated via machine learning. 275 

 276 

6. AlphaFold for structural prediction 277 

 We downloaded predicted structures for the 107 proteins from AlphaFold DB 278 

(https://alphafold.ebi.ac.uk/). A residue contact probability matrix is constructed based on the 279 

predicted structures as follows:   280 

10

1

1 ij
ij d

P
e






     (8) 281 

where 
ij

d  is the distance between residues i and j, and 10 Å is used as a soft cutoff distance. We 282 

then use this contact probability matrix to perform the same network analysis as in the 283 

sequences-based method and for optimization with machine learning. 284 

 285 

7. Foldx for structural refinement and Alanine scanning analysis 286 

https://alphafold.ebi.ac.uk/
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 FoldX program [53] was downloaded from https://foldxsuite.crg.eu/. We use the 287 

RepairPDB command to refine the AlphaFold-predicted models (by fixing bad torsion angles 288 

and Van der Waals clashes). Then we use the AlaScan command to mutate each residue to Ala 289 

and calculate the resulting changes in Gibbs free energies which are then used as a feature to 290 

predict hotspots of disease mutations.  291 

  292 

8. Machine learning algorithms 293 

 We use the following machine learning methods of the scikit-learn package 294 

(https://scikit-learn.org/stable/) to learn optimal combinations of all features to predict if a given 295 

site is deleterious or neutral mutation site: 296 

 Random Forest Classifier (RF) (sklearn.ensemble.RandomForestClassifier): A random 297 

forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of 298 

the dataset and uses averaging to improve the predictive accuracy and control over-fitting. We 299 

tune the following hyper-parameters: max_depth,  n_estimators, max_features.  300 

  Gradient Boosting Classifier (GB) (sklearn.ensemble.GradientBoostingClassifier): This 301 

algorithm builds an additive model in a forward stage-wise fashion. In each stage a regression 302 

tree is fit on the negative gradient of the loss function, e.g. binary log loss. We tune the following 303 

hyper-parameters: n_estimators, max_depth, max_features.  304 

 305 

  Extreme Gradient Boosting Classifier (XGB) (xgboost.XGBClassifier): This algorithm is 306 

an optimized distributed version of gradient boosting designed to be highly efficient, flexible and 307 

https://foldxsuite.crg.eu/
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portable. We tune the following hyper-parameters: n_estimators, max_depth, reg_alpha, 308 

reg_lambda. 309 

 These three methods were chosen because they have performed successfully in machine 310 

learning contests in Kaggle (see https://www.packtpub.com/product/the-kaggle-311 

book/9781801817479). They are also relatively cheap to train and optimize compared with the 312 

deep learning methods.  313 

 We use Optuna (https://optuna.org/) for hyper-parameter tuning of the above algorithms. 314 

We have run Optuna multiple times to ensure the resulting best metric is reproducible. 315 

316 
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Results and discussion  317 

 318 

This study explores how to systematically utilize the coevolution information from 319 

multiple sequence alignments to model and analyze a protein as a residue contact network 320 

beyond the scope of GNM. To this end, we first use coevolution analysis to construct a protein 321 

residue contact map with edges weighted by the predicted contact probability; then we exploit an 322 

array of 20 network-based scores to assess the node importance as predictors for disease 323 

mutation sites; finally we evaluate the predictive power of these scores individually and 324 

collectively (using machine learning) based on a subset of 107 protein sequences and their 325 

variants from the HumVar database. For comparison, we also evaluate alternative methods based 326 

on predicted protein structures, a physics-based force field, and protein language models. 327 

 328 

1.  329 

Evaluation of individual network scores  330 

Based on the protein residue contact maps built from three coevolution analysis tools 331 

(DeepMetaPSICOV, RaptorX, and SPOT-Contact), we applied network analysis to calculate 20 332 

network scores (see Table 2), measuring node centrality using various different algorithms (see 333 

Methods). These scores include simple weighted node degrees for n-hop nearest neighbors (see 334 

Methods) and more sophisticated centrality metrics (see Table 1), along with 2 seq-GNM based 335 

scores (MSF and , see Methods). We evaluate the performance of each score using the AUC 336 

of ROC for the testing set, which provides a balanced evaluation of sensitivity and specificity as 337 
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functions of the cutoff score (see Table 2). More specifically, we sort all testing-set variants by a 338 

particular score and predict a variant deleterious/neutral if its score is above/below a cutoff value. 339 

This results in an ROC curve from which we have calculated AUC (see Table 2). 340 

Overall, DeepMetaPSICOV (max AUC=0.80) and SPOT-Contact (max AUC=0.81) 341 

perform slightly better than RaptorX (max AUC=0.78). Interestingly, simple weighted node 342 

degrees (W1, W2, and W3) perform better than those more complex centrality scores (see Table 343 

2). When computing node degrees, going beyond the nearest neighbors seems to improve the 344 

prediction slightly (see Table 2). Two GNM-based scores perform similarly but slightly worse 345 

than the weighted node degrees (see Table 2).  Among those NetworkX-based scores (see Table 346 

1), C5, C11 and C12 outperform the others, while those betweenness-based scores (C4, C6, and 347 

C8) underperform (see Table 2). Therefore, the functional importance of a node/residue pertains 348 

more to its role as a highly-connected hub than as an information bottleneck of the shortest paths.  349 

Table 2. Evaluation of 20 network scores based on protein residue contact maps 350 

constructed from 3 coevolution analysis tools (DeepMetaPSICOV, RaptorX, and SPOT-351 

Contact) and AlphaFold-predicted structures 352 

Score  AUC* of 

DeepMetaPSICOV 

AUC* of 

RaptorX  

AUC* of 

SPOT-Contact 

AUC* of 

AlphaFold 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

C12 

C13 

0.74 

0.73 

0.76 

0.64 

0.78 

0.63 

0.75 

0.64 

0.77 

0.75 

0.79 

0.77 

0.73 

0.76 

0.74 

0.73 

0.54 

0.76 

0.58 

0.61 

0.54 

0.76 

0.73 

0.76 

0.77 

0.73 

0.73 

0.76 

0.69 

0.60 

0.79 

0.67 

0.72 

0.60 

0.74 

0.68 

0.77 

0.79 

0.76 

0.82 

0.77 

0.73 

0.58 

0.80 

0.60 

0.74 

0.58 

0.78 

0.75 

0.80 

0.83 

0.76 
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
MSF 

W1 

W2 

W3 

W∞ 

Ws  

FoldX 

0.79 

0.79 

0.79 

0.80 

0.80 

0.80 

0.80 

0.76 

0.76 

0.77 

0.78 

0.78 

0.74 

0.78 

0.78 

0.78 

0.78 

0.80 

0.81 

0.79 

0.80 

0.83 

0.80 

0.83 

0.83 

0.82 

0.77 

0.83 

0.68  

* The AUC is calculated based on the ROC for all variants of the 28 testing set proteins. 353 

Alternatively, we also calculated AUCs based on the ROCs of individual proteins and their 354 

summary statistics (see Table S1).  355 

 356 

For comparison with alternative methods, we evaluated the performance of variant 357 

prediction by five pre-trained protein language models (ESM, see Methods), and the resulting 358 

AUC varies between 0.79 and 0.81, which are comparable to the network scores (see Table 2). 359 

For further comparison with structures-based methods, we also performed network analysis 360 

based on protein structures as predicted by AlphaFold (see Methods). Overall, the structures-361 

based scores (max AUC=0.83) perform slightly better than the sequences-based scores. This may 362 

be partly due to the structure-based contact maps (see Eq. 8) being more sharply defined than the 363 

fuzzier contact-probability-based contact maps. Notably, when structural information is used, our 364 

network analysis performs significantly better than a physics-based force field (FoldX) with 365 

AUC=0.68. Taken together, these findings support the usefulness of individual sequences-based 366 

network centrality scores in predicting important residues on par with alternative more 367 

sophisticated methods.  368 

To further understand the different accuracies of the above scores, we explore the 369 

relationships between them by evaluating the pairwise Pearson correlations (PC) (see Table 3). 370 

W1, W2, W3, W∞, Ws , MSF and  are highly correlated (with PC≥0.93 for DeepMetaPSICOV, 371 
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PC≥0.84 for SPOT-Contact, PC≥0.86 for AlphaFold), although their correlations are somewhat 372 

weaker for RaptorX. Among the NetworkX-based scores (see Table 1), C5, C11 and C12 are 373 

also highly correlated with the above scores. Such strong correlations support the attribution of 374 

higher AUC of these scores (see Table 2) to their capturing the same essential features (i.e. high 375 

node degrees) of those important nodes. In contrast, the betweenness-based scores (C4, C6, and 376 

C8) do not correlate well with the above scores, which is consistent with their lower AUC (see 377 

Table 2).  378 

Table 3. Pearson correlations between network scores (row 1, 2, 3 and 4 correspond to 379 

results of DeepMetaPSICOV, SPOT-Contact, RaptorX and AlphaFold, respectively) 380 

 C1    C2    C3   C4    C5   C6   C7   C8    C9  C10  C11 C12 C13  W1  W2  W3  W∞   Ws   MSF 
C1    

C2    

C3   

C4    

C5   

C6   

C7   

C8    

C9  

C10  

C11 

C12 

C13  

W1  

W2  

W3  

W∞   

Ws   

MSF 

1.00 0.57 0.74 0.63 0.72 0.40 0.82 0.63 0.84 0.79 0.88 0.84 0.54 0.87 0.85 0.83 0.80 0.85 0.87 0.87 

0.57 1.00 0.43 0.21 0.75 0.18 0.47 0.21 0.66 0.42 0.67 0.76 0.98 0.65 0.72 0.75 0.80 0.71 0.65 0.65 

0.74 0.43 1.00 0.64 0.63 0.36 0.72 0.64 0.73 0.96 0.81 0.57 0.43 0.63 0.63 0.63 0.61 0.64 0.64 0.63 

0.63 0.21 0.64 1.00 0.34 0.42 0.64 1.00 0.40 0.65 0.53 0.37 0.21 0.46 0.42 0.40 0.38 0.43 0.47 0.46 

0.72 0.75 0.63 0.34 1.00 0.46 0.67 0.34 0.74 0.58 0.91 0.86 0.76 0.80 0.83 0.84 0.84 0.83 0.80 0.80 

0.40 0.18 0.36 0.42 0.46 1.00 0.63 0.42 0.21 0.29 0.45 0.33 0.20 0.45 0.41 0.38 0.34 0.42 0.46 0.45 

0.82 0.47 0.72 0.64 0.67 0.63 1.00 0.64 0.73 0.71 0.80 0.68 0.46 0.76 0.75 0.74 0.71 0.76 0.77 0.76 

0.63 0.21 0.64 1.00 0.34 0.42 0.64 1.00 0.40 0.65 0.53 0.37 0.21 0.46 0.42 0.40 0.37 0.43 0.47 0.46 

0.84 0.66 0.73 0.40 0.74 0.21 0.73 0.40 1.00 0.79 0.85 0.79 0.63 0.77 0.81 0.82 0.82 0.81 0.78 0.77 

0.79 0.42 0.96 0.65 0.58 0.29 0.71 0.65 0.79 1.00 0.79 0.59 0.41 0.65 0.65 0.64 0.63 0.66 0.66 0.65 

0.88 0.67 0.81 0.53 0.91 0.45 0.80 0.53 0.85 0.79 1.00 0.85 0.68 0.84 0.85 0.85 0.84 0.86 0.85 0.84 

0.84 0.76 0.57 0.37 0.86 0.33 0.68 0.37 0.79 0.59 0.85 1.00 0.74 0.91 0.94 0.94 0.92 0.92 0.90 0.91 

0.54 0.98 0.43 0.21 0.76 0.20 0.46 0.21 0.63 0.41 0.68 0.74 1.00 0.63 0.69 0.73 0.78 0.69 0.63 0.63 

0.87 0.65 0.63 0.46 0.80 0.45 0.76 0.46 0.77 0.65 0.84 0.91 0.63 1.00 0.98 0.97 0.93 0.98 1.00 1.00 

0.85 0.72 0.63 0.42 0.83 0.41 0.75 0.42 0.81 0.65 0.85 0.94 0.69 0.98 1.00 1.00 0.97 1.00 0.99 0.98 

0.83 0.75 0.63 0.40 0.84 0.38 0.74 0.40 0.82 0.64 0.85 0.94 0.73 0.97 1.00 1.00 0.99 0.99 0.97 0.97 

0.80 0.80 0.61 0.38 0.84 0.34 0.71 0.37 0.82 0.63 0.84 0.92 0.78 0.93 0.97 0.99 1.00 0.97 0.93 0.93 

0.85 0.71 0.64 0.43 0.83 0.42 0.76 0.43 0.81 0.66 0.86 0.92 0.69 0.98 1.00 0.99 0.97 1.00 0.99 0.98 

0.87 0.65 0.64 0.47 0.80 0.46 0.77 0.47 0.78 0.66 0.85 0.90 0.63 1.00 0.99 0.97 0.93 0.99 1.00 1.00 

C1    

C2    

C3   

C4    

C5   

C6   

C7   

C8    

C9  

C10  

C11 

C12 

1.00 0.58 0.68 0.55 0.73 0.53 0.85 0.55 0.86 0.73 0.90 0.74 0.57 0.80 0.78 0.77 0.67 0.80 0.82 0.80 

0.58 1.00 0.44 0.20 0.88 0.40 0.51 0.20 0.61 0.38 0.74 0.82 0.99 0.70 0.76 0.79 0.88 0.74 0.68 0.70 

0.68 0.44 1.00 0.61 0.55 0.38 0.69 0.61 0.73 0.96 0.78 0.42 0.45 0.50 0.52 0.53 0.52 0.55 0.56 0.50 

0.55 0.20 0.61 1.00 0.29 0.46 0.63 1.00 0.37 0.62 0.49 0.26 0.20 0.37 0.35 0.34 0.30 0.37 0.40 0.37 

0.73 0.88 0.55 0.29 1.00 0.57 0.67 0.29 0.71 0.49 0.88 0.91 0.87 0.84 0.88 0.89 0.87 0.87 0.82 0.84 

0.53 0.40 0.38 0.46 0.57 1.00 0.73 0.46 0.33 0.31 0.54 0.55 0.40 0.64 0.61 0.59 0.49 0.62 0.66 0.64 

0.85 0.51 0.69 0.63 0.67 0.73 1.00 0.63 0.75 0.68 0.82 0.66 0.51 0.76 0.75 0.73 0.64 0.77 0.80 0.76 

0.55 0.20 0.61 1.00 0.29 0.46 0.63 1.00 0.37 0.62 0.49 0.26 0.20 0.37 0.35 0.34 0.30 0.37 0.40 0.37 

0.86 0.61 0.73 0.37 0.71 0.33 0.75 0.37 1.00 0.77 0.87 0.66 0.59 0.68 0.71 0.72 0.68 0.73 0.71 0.68 

0.73 0.38 0.96 0.62 0.49 0.31 0.68 0.62 0.77 1.00 0.76 0.38 0.38 0.47 0.49 0.49 0.47 0.52 0.54 0.47 

0.90 0.74 0.78 0.49 0.88 0.54 0.82 0.49 0.87 0.76 1.00 0.79 0.73 0.80 0.82 0.83 0.78 0.83 0.82 0.80 

0.74 0.82 0.42 0.26 0.91 0.55 0.66 0.26 0.66 0.38 0.79 1.00 0.80 0.91 0.93 0.92 0.83 0.90 0.86 0.91 
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C13  

W1  

W2  

W3  

W∞   

Ws   

MSF 

0.57 0.99 0.45 0.20 0.87 0.40 0.51 0.20 0.59 0.38 0.73 0.80 1.00 0.69 0.75 0.78 0.88 0.73 0.67 0.69 

0.80 0.70 0.50 0.37 0.84 0.64 0.76 0.37 0.68 0.47 0.80 0.91 0.69 1.00 0.98 0.97 0.84 0.98 0.98 1.00 

0.78 0.76 0.52 0.35 0.88 0.61 0.75 0.35 0.71 0.49 0.82 0.93 0.75 0.98 1.00 1.00 0.90 1.00 0.97 0.98 

0.77 0.79 0.53 0.34 0.89 0.59 0.73 0.34 0.72 0.49 0.83 0.92 0.78 0.97 1.00 1.00 0.92 0.99 0.96 0.97 

0.67 0.88 0.52 0.30 0.87 0.49 0.64 0.30 0.68 0.47 0.78 0.83 0.88 0.84 0.90 0.92 1.00 0.90 0.86 0.84 

0.80 0.74 0.55 0.37 0.87 0.62 0.77 0.37 0.73 0.52 0.83 0.90 0.73 0.98 1.00 0.99 0.90 1.00 0.98 0.98 

0.82 0.68 0.56 0.40 0.82 0.66 0.80 0.40 0.71 0.54 0.82 0.86 0.67 0.98 0.97 0.96 0.86 0.98 1.00 0.98  

C1    

C2    

C3   

C4    

C5   

C6   

C7   

C8    

C9  

C10  

C11 

C12 

C13  

W1  

W2  

W3  

W∞   

Ws   

MSF 

1.00 0.63 0.58 0.22 0.64 0.22 0.29 0.22 0.75 0.65 0.71 0.78 0.55 0.88 0.87 0.85 0.58 0.87 0.68 0.73 

0.63 1.00 0.64 0.15 0.82 0.23 0.24 0.15 0.66 0.66 0.78 0.70 0.93 0.60 0.65 0.67 0.82 0.64 0.70 0.55 

0.58 0.64 1.00 0.44 0.79 0.35 0.39 0.44 0.64 0.93 0.88 0.51 0.68 0.48 0.50 0.50 0.64 0.50 0.69 0.47 

0.22 0.15 0.44 1.00 0.32 0.70 0.67 1.00 0.11 0.38 0.39 0.06 0.22 0.18 0.14 0.14 0.30 0.15 0.37 0.17 

0.64 0.82 0.79 0.32 1.00 0.45 0.43 0.32 0.65 0.72 0.96 0.71 0.86 0.63 0.65 0.66 0.79 0.65 0.81 0.62 

0.22 0.23 0.35 0.70 0.45 1.00 0.70 0.70 0.12 0.25 0.45 0.17 0.29 0.32 0.28 0.26 0.40 0.28 0.51 0.31 

0.29 0.24 0.39 0.67 0.43 0.70 1.00 0.67 0.34 0.34 0.48 0.28 0.29 0.30 0.28 0.27 0.40 0.29 0.49 0.39 

0.22 0.15 0.44 1.00 0.32 0.70 0.67 1.00 0.11 0.38 0.39 0.06 0.22 0.18 0.14 0.14 0.30 0.15 0.37 0.17 

0.75 0.66 0.64 0.11 0.65 0.12 0.34 0.11 1.00 0.71 0.72 0.71 0.61 0.66 0.69 0.69 0.62 0.69 0.66 0.64 

0.65 0.66 0.93 0.38 0.72 0.25 0.34 0.38 0.71 1.00 0.83 0.55 0.67 0.52 0.53 0.53 0.66 0.54 0.72 0.51 

0.71 0.78 0.88 0.39 0.96 0.45 0.48 0.39 0.72 0.83 1.00 0.68 0.82 0.64 0.65 0.65 0.77 0.65 0.83 0.63 

0.78 0.70 0.51 0.06 0.71 0.17 0.28 0.06 0.71 0.55 0.68 1.00 0.64 0.76 0.77 0.77 0.63 0.77 0.67 0.70 

0.55 0.93 0.68 0.22 0.86 0.29 0.29 0.22 0.61 0.67 0.82 0.64 1.00 0.53 0.58 0.61 0.85 0.58 0.72 0.52 

0.88 0.60 0.48 0.18 0.63 0.32 0.30 0.18 0.66 0.52 0.64 0.76 0.53 1.00 0.98 0.97 0.69 0.98 0.81 0.85 

0.87 0.65 0.50 0.14 0.65 0.28 0.28 0.14 0.69 0.53 0.65 0.77 0.58 0.98 1.00 0.99 0.73 1.00 0.80 0.83 

0.85 0.67 0.50 0.14 0.66 0.26 0.27 0.14 0.69 0.53 0.65 0.77 0.61 0.97 0.99 1.00 0.75 0.99 0.80 0.82 

0.58 0.82 0.64 0.30 0.79 0.40 0.40 0.30 0.62 0.66 0.77 0.63 0.85 0.69 0.73 0.75 1.00 0.73 0.88 0.67 

0.87 0.64 0.50 0.15 0.65 0.28 0.29 0.15 0.69 0.54 0.65 0.77 0.58 0.98 1.00 0.99 0.73 1.00 0.81 0.83 

0.68 0.70 0.69 0.37 0.81 0.51 0.49 0.37 0.66 0.72 0.83 0.67 0.72 0.81 0.80 0.80 0.88 0.81 1.00 0.79 

C1    

C2    

C3   

C4    

C5   

C6   

C7   

C8    

C9  

C10  

C11 

C12 

C13  

W1  

W2  

W3  

W∞   

Ws   

MSF 

1.00 0.87 0.77 0.38 0.95 0.42 0.82 0.38 0.90 0.81 0.96 0.98 0.85 0.97 0.97 0.96 0.86 0.97 0.95 0.97 

0.87 1.00 0.78 0.26 0.91 0.32 0.81 0.26 0.98 0.79 0.90 0.89 0.99 0.87 0.91 0.93 0.99 0.91 0.91 0.87 

0.77 0.78 1.00 0.52 0.79 0.37 0.74 0.52 0.82 0.97 0.83 0.72 0.78 0.71 0.74 0.75 0.78 0.74 0.79 0.71 

0.38 0.26 0.52 1.00 0.33 0.61 0.55 1.00 0.30 0.51 0.39 0.30 0.27 0.30 0.30 0.29 0.27 0.30 0.33 0.30 

0.95 0.91 0.79 0.33 1.00 0.46 0.85 0.33 0.92 0.79 0.99 0.96 0.91 0.95 0.96 0.96 0.91 0.96 1.00 0.95 

0.42 0.32 0.37 0.61 0.46 1.00 0.67 0.61 0.33 0.31 0.46 0.40 0.33 0.41 0.39 0.37 0.33 0.39 0.46 0.41 

0.82 0.81 0.74 0.55 0.85 0.67 1.00 0.55 0.83 0.72 0.85 0.81 0.81 0.80 0.82 0.83 0.81 0.82 0.84 0.80 

0.38 0.26 0.52 1.00 0.33 0.61 0.55 1.00 0.30 0.51 0.39 0.30 0.27 0.30 0.30 0.29 0.27 0.30 0.33 0.30 

0.90 0.98 0.82 0.30 0.92 0.33 0.83 0.30 1.00 0.84 0.93 0.91 0.96 0.89 0.93 0.95 0.97 0.93 0.92 0.89 

0.81 0.79 0.97 0.51 0.79 0.31 0.72 0.51 0.84 1.00 0.84 0.75 0.79 0.73 0.77 0.78 0.79 0.77 0.80 0.73 

0.96 0.90 0.83 0.39 0.99 0.46 0.85 0.39 0.93 0.84 1.00 0.95 0.90 0.94 0.95 0.95 0.90 0.95 0.99 0.94 

0.98 0.89 0.72 0.30 0.96 0.40 0.81 0.30 0.91 0.75 0.95 1.00 0.88 1.00 1.00 0.99 0.89 0.99 0.96 1.00 

0.85 0.99 0.78 0.27 0.91 0.33 0.81 0.27 0.96 0.79 0.90 0.88 1.00 0.85 0.90 0.92 0.99 0.90 0.91 0.85 

0.97 0.87 0.71 0.30 0.95 0.41 0.80 0.30 0.89 0.73 0.94 1.00 0.85 1.00 0.99 0.97 0.86 0.98 0.95 1.00 

0.97 0.91 0.74 0.30 0.96 0.39 0.82 0.30 0.93 0.77 0.95 1.00 0.90 0.99 1.00 1.00 0.91 1.00 0.96 0.99 

0.96 0.93 0.75 0.29 0.96 0.37 0.83 0.29 0.95 0.78 0.95 0.99 0.92 0.97 1.00 1.00 0.93 1.00 0.96 0.97 

0.86 0.99 0.78 0.27 0.91 0.33 0.81 0.27 0.97 0.79 0.90 0.89 0.99 0.86 0.91 0.93 1.00 0.91 0.91 0.86 

0.97 0.91 0.74 0.30 0.96 0.39 0.82 0.30 0.93 0.77 0.95 0.99 0.90 0.98 1.00 1.00 0.91 1.00 0.96 0.98 

0.95 0.91 0.79 0.33 1.00 0.46 0.84 0.33 0.92 0.80 0.99 0.96 0.91 0.95 0.96 0.96 0.91 0.96 1.00 0.95 

 381 

 382 

In summary, by evaluating 20 network scores individually, we have found a wide range 383 

of performance with AUC varying from 0.54 to 0.81 (see Table 2). The top-performing scores 384 
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seem to correlate strongly with each other, so they must have captured a common aspect of node 385 

centrality that is relevant to functional importance (e.g. high local connectivity instead of high 386 

betweenness). Interestingly, the two GNM-based scores, despite measuring distinct dynamic 387 

properties (MSF measures thermal fluctuations while  measures sensitivity to local 388 

perturbations), are also strongly correlated with each other and those degree-based network 389 

scores. Therefore, to speed up the variant prediction workflow we only need to compute those 390 

simpler weighted node degrees as features without significantly losing accuracy.   391 

 392 

2. Combining all network scores to predict variant hotspots by 393 

machine learning 394 

 To optimize the predictive power of the above network-based scores based on three 395 

coevolution analysis methods (or AlphaFold), we have employed machine learning algorithms 396 

(see Methods) to take them as input features, train a binary classifier which predicts if a residue 397 

position is linked to neutral or deleterious variants (using first 79 proteins as training set), and 398 

then test its prediction using the remaining 28 proteins as testing set. We use the AUC of ROC as 399 

the metric for assessing the prediction quality of the trained classifier. 400 

 To evaluate the protein residue contact maps constructed by each method, we combine all 401 

network scores based on the contact maps predicted by the same method (see Table 2) for 402 

machine learning. The resulting AUC of each coevolution analysis method (DeepMetaPSICOV, 403 

RaptorX, and SPOT-Contact) is 0.81, 0.80, and 0.82, respectively (see Table 4), which are 404 

slightly better than the best AUC of individual scores (0.78~0.81, see Table 2). The lack of 405 

substantial improvement may be due to high correlations among the scores (see Table 3) which 406 
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could reduce the effectiveness of ensemble learning. For comparison, we also trained and tested 407 

classifiers using the AlphaFold-predicted contact maps, and alternative classifiers based on 408 

protein language models (see Methods). Both alternative methods give comparable yet slightly 409 

better AUC (0.83). Similar to our finding, Butler et al reported AUC of 0.81 after combining the 410 

B-factors of Seq-GNM with evolutionary features [44].  411 

Table 4. Evaluation of classifiers trained by 3 machine learning algorithms (RF, GB and 412 

XGB, see Methods) based on the protein residue contact maps constructed from 3 413 

coevolution analysis tools (DeepMetaPSICOV, RaptorX, and SPOT-Contact), AlphaFold-414 

predicted structures, and protein language models (ESM). 415 

Sources of input features  AUC of RF AUC of GB AUC of XGB 

DeepMetaPSICOV    PSICOV_ext5 

RaptorX                     RaptorX_ext5 

SPOT-Contact           SPOT_ext5 

AlphaFold                             AF_ext6_r10_dw 

ESM 

 

All 3 coevolution methods     

All 3 coevolution methods (w/o C1-C13) 

 

All 3 coevolution methods and ESM 

AlphaFold and ESM 

0.81 

0.80 

0.82 

0.83 

0.83 

 

0.84 

0.82 

 

0.89 

0.88 

0.81 

0.80 

0.82 

0.83 

0.83 

 

0.84 

0.82 

 

0.89 

0.88 

0.81 

0.80 

0.82 

0.83 

0.83 

 

0.84 

0.83 

 

0.89 

0.88 

 416 

 417 

 To further boost the prediction performance, we have sought to combine the network 418 

scores of all three coevolution analysis methods for machine learning, resulting in better AUC 419 

(0.84) which slightly outperform both AlphaFold and ESM (0.83). To assess the added value of 420 

including 13 NetworkX-based centrality scores (see Table 1), we have performed an ablation 421 

study that excludes them in machine learning, and found slightly lower AUC (0.82~0.83). So it 422 
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is possible to speed up the calculation without significantly reducing accuracy. Taken together, 423 

our findings support the power of combining an array of different network scores from different 424 

coevolution analysis tools to optimize the prediction in the framework of ensemble learning.  425 

 To further explore how well our method complements alternative methods, we have 426 

combined all the network scores with the ESM scores in machine learning. Encouragingly, we 427 

have obtained markedly improved AUC (0.89), which is comparable to machine learning that 428 

combines the AlphaFold-based network scores with the ESM scores (AUC=0.88).  429 

 For comparison with other studies, Butler et al showed that Seq-GNM combined with 430 

evolutionary parameters attained a sensitivity of 0.84 and a specificity of 0.66 [44]. PolyPhen-2 431 

achieved a sensitivity of 0.73 and a specificity of 0.8 on the HumVar datasets [47].  While using 432 

different training and testing datasets, we have attained competitive results with a sensitivity of 433 

0.82 and a specificity of 0.80 (using all the network scores from three coevolution analysis tools 434 

and the ESM scores). For more direct comparison, we also evaluated PolyPhen-2 based on the 435 

same 28 testing-set proteins and their variants, and obtained an AUC of 0.85, which is close to 436 

our method (see Table 4). However, this metric is likely positively biased since PolyPhen-2 has 437 

been trained on the HumVar dataset.   438 

 In summary, via extensive machine learning, we have demonstrated the power of using 439 

an ensemble of sequences-based network scores calculated by different co-evolution analysis 440 

tools to accurately predict deleterious mutation sites. Although some network scores are highly 441 

correlated (see Table 3) and they vary widely in accuracy (see Table 2), these scores seem to be 442 

sufficiently diverse to allow effective ensemble learning when combined.    443 

 444 
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3. Case studies:  445 

To illustrate the biomedical significance of our predictions of variant sites with network scores, 446 

we discuss in details the following four proteins from our dataset.  447 

Glucose-6-phosphate exchanger (Uniprot id: O43826): As an inorganic phosphate and 448 

glucose-6-phosphate antiporter, it transports cytoplasmic glucose-6-phosphate into the lumen of 449 

the endoplasmic reticulum and translocates inorganic phosphate in the opposite direction. Being 450 

involved in glucose production through glycogenolysis and gluconeogenesis, it plays a central 451 

role in homeostatic regulation of blood glucose levels. It is linked to diseases like congenital 452 

disorder of glycosylation and glycogen storage disease (see 453 

https://www.uniprot.org/uniprotkb/O43826/entry#function). 454 

The AlphaFold-predicted structure forms a dimer of transmembrane helical domains with 455 

most deleterious mutation sites concentrated inside the central core while those non-conserved 456 

residues (i.e. neutral mutation sites) are mostly located on the periphery (see Fig 1c). The contact 457 

maps predicted by three coevolution analysis tools all agree well with the contact map based on 458 

the AlphaFold structure (see Fig 1a) (except that RaptorX omitted many local contacts in 459 

residues 1-200). As a result, the network centrality scores (e.g. W3) also agree well between 460 

these methods (see Fig 1b), although the coevolution-based network scores are generally noisier 461 

(with more spikes) than the structure-based scores (see Fig 1b).  Different network scores 462 

calculated from the same contact map are also highly similar (see Fig 1d) despite being based on 463 

different algorithms. For example, scores of  and MSF agree very well (see Fig 1d). 464 

Encouragingly, those residues identified with high network scores are primarily within the 465 

central core (inside each domain or in the inter-domain hinge region), thus overlapping with 466 

https://www.uniprot.org/uniprotkb/O43826/entry#function


27 
 

most deleterious mutations (see Fig 1c). Among those top-10% hotspot residues (see Fig 1c), 467 

mutations Y24H, N27K, R28H, G88D, G149E, P153L, and G339C were implicated in causing 468 

glycogen storage disease [54] . Two of these mutations (R28H and G149E) were found to exhibit 469 

undetectable microsomal glucose-6-phosphate transport activity in transient expression 470 

studies[55], thus confirming their functional importance.  471 

 472 

Figure 1. Results for Glucose-6-phosphate exchanger (Uniprot id: O43826): (a) Four contact 473 

maps constructed from coevolution analysis by DeepMetaPSICOV (DMP), RaptorX (RX), 474 

SPOT-Contact (SC), and the predicted structure by AlphaFold (AF) (only those contacts with 475 
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probability >0.1 are shown). (b) W3 scores for all residue positions based on the contact maps in 476 

(a), where red and blue dots mark residues with deleterious and neutral mutations, respectively. 477 

(c) Predicted structure by AlphaFold as colored by W3 scores (red/blue for high/low values), 478 

where residues with deleterious and neutral mutations are shown as large and small balls, 479 

respectively (G20, Y24, N27, R28, G50, S54, S55, G68, L85, G88, W118, Q133, A148, G149, 480 

G150, P153, C176, C183, P191, L229, W246, I278, R300, H301, G339, A367, A373, G376, see 481 

https://www.uniprot.org/uniprotkb/O43826/variant-viewer). (d) Four other network scores (MSF, 482 

, C5 and C12) for all residue positions based on the contact maps in (a).   483 

 484 

Presenilin-1 (Uniprot id: P49768): As the catalytic subunit of the gamma-secretase complex, it 485 

catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors. It 486 

is involved in various diseases including a familial early-onset form of Alzheimer disease and a 487 

form of frontotemporal dementia (see https://www.uniprot.org/uniprotkb/ 488 

P49768/entry#function).  489 

The AlphaFold-predicted structure consists of two closely packed helical domains with 490 

most deleterious mutations clustered inside the core domain while the non-conserved residues 491 

are mostly located on the N-terminal loop (residues 1-70) and the inter-domain linker (residues 492 

300-370) (see Fig 2c). The active site [56] (D257 and D385) is also located in the core domain 493 

(colored green in Fig 2c). The contact maps predicted by three coevolution analysis methods all 494 

resemble the contact map based on the predicted structure (see Fig 2a) (except that RaptorX 495 

omitted local contacts in residues 1-100). As a result, the network scores agree well between 496 

them in the helical domains (see Fig 2c), but with more differences in the flexible regions 497 

(residues 1-70 and 300-370). Reassuringly, those residues identified by high network scores are 498 

https://www.uniprot.org/uniprotkb/O43826/entry#function
https://www.uniprot.org/uniprotkb/O43826/entry#function
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primarily clustered within the central core overlapping with most deleterious mutations, while 499 

the flexible N-terminal and linker feature low scores consistent with low sequence conservation 500 

(see Fig 2c).  Among those top 10% hotspot residues (see Fig 2c), mutations at C92, V96, A231, 501 

M233, L235, A246, L250, S390, L392, and C410 were found to cause loss of function and 502 

altered amyloid-beta production [57]  :  C92S led to loss of protease function and increased 503 

Abeta42 levels. V96F caused loss of protease activity. A231T/V and M233T led to decreased 504 

protease activity, altered amyloid-beta production and increased amyloid-beta 42/amyloid-beta 505 

40 ratio. L235P/R and S390I abolished protease activity. A246E and L250S abolished protease 506 

activity and increased amyloid-beta 42/amyloid-beta 40 ratio. L392V resulted in reduced 507 

proteolysis, altered amyloid-beta production and increased amyloid-beta 42/amyloid-beta 40 508 

ratio. C410I reduced proteolysis. Since most of these residues are not near the active site, their 509 

effects on protease activity are likely allosteric. 510 
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 511 

Figure 2. Results for Presenilin-1 (Uniprot id: P49768): (a) Four contact maps constructed 512 

from coevolution analysis by DeepMetaPSICOV (DMP), RaptorX (RX), SPOT-Contact (SC), 513 

and the predicted structure by AlphaFold (AF) (only those contacts with probability >0.1 are 514 

shown). (b) W3 scores for all residue positions based on the contact maps in (a), where red and 515 

blue dots mark residues with deleterious and neutral mutations, respectively. (c) Predicted 516 

structure by AlphaFold as colored by W3 scores (red/blue for high/low values), where residues 517 

with deleterious and neutral mutations are shown as large and small balls, respectively (A79, 518 

V82, C92, V96, F105, L113, Y115, T116, P117, E120, N135, M139, I143, M146, T147, H163, 519 

W165, L166, S169, L171, L173, L174, G206, G209, I213, L219, A231, M233, L235, A246, 520 
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L250, A260, L262, C263, P264, G266, P267, R269, L271, R278, E280, L282, A285, L286, 521 

S289, D333, G378, G384, S390, L392, N405, A409, C410, A426, A431, P436, see 522 

https://www.uniprot.org/uniprotkb/ P49768/variant-viewer), and active-site residues are colored 523 

in green. (d) Four other network scores (MSF, , C5 and C12) for all residue positions based on 524 

the contact maps in (a).  525 

 526 

b(0,+)-type amino acid transporter 1 (Uniprot id: P82251): It forms a functional 527 

transporter complex that mediates the electrogenic exchange between cationic amino acids and 528 

neutral amino acids. Its dysfunction is linked to Cystinuria, an autosomal disorder characterized 529 

by impaired epithelial cell transport of cystine and dibasic amino acids in the proximal renal 530 

tubule and gastrointestinal tract (see https://www.uniprot.org/uniprotkb/P82251/entry#function). 531 

The AlphaFold-predicted structure consists of a helical domain with deleterious 532 

mutations concentrating inside the core domain while those non-conserved residues are mostly 533 

located on the domain periphery (e.g. N-terminal and C-terminal helices) (see Fig 3c). The active 534 

site consists of residues 43-47 and 233 and is also located in the core domain (colored green in 535 

Fig 3c). The contact maps predicted by three coevolution analysis tools are all similar to the 536 

contact map based on the AlphaFold structure (see Fig 3a) (except that RaptorX omitted some 537 

local contacts in residues 1-200). As a result, the network scores agree well between these 538 

methods (see Fig 3b). Reassuringly, those residues identified with high network scores are 539 

primarily within the central core and overlap with most deleterious mutations, while the 540 

peripheral regions feature low scores consistent with low sequence conservation. Among those 541 

top-10% hotspot residues (see Fig 3c), mutations I44T, A126T, and W230R were implicated in 542 

Cystinuria. In vitro measurements showed W230R has almost no transport activity, and it was 543 
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proposed that W230 serves as a gate between two substrate-binding pockets and undergoes 544 

conformational changes to enable amino acid transport [58] . Although the A126T mutation is 545 

mildly dysfunctional [59], it is notable among a cluster of conserved residues with small 546 

sidechains in the contact regions of transmembrane helices, hinting for its possible role in helix-547 

helix association and relative motions.  548 

549 

Figure 3. Results for amino acid transporter 1 (Uniprot id: P82251): (a) Four contact maps 550 

constructed from coevolution analysis by DeepMetaPSICOV (DMP), RaptorX (RX), SPOT-551 

Contact (SC), and the predicted structure by AlphaFold (AF) (only those contacts with 552 

probability >0.1 are shown). (b) W3 scores for all residue positions based on the contact maps in 553 
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(a), where red and blue dots mark residues with deleterious and neutral mutations, respectively. 554 

(c) Predicted structure by AlphaFold as colored by W3 scores (red/blue for high/low values), 555 

where residues with deleterious and neutral mutations are shown as large and small balls, 556 

respectively (V142,L223,I44,P52,G63,W69,A70,G105,T123,A126,V170,A182,I187,G195, 557 

A224,W230,I241,G259,P261,V330,A331,R333,A354,S379,A382, see 558 

https://www.uniprot.org/uniprotkb/ P82251/variant-viewer), and active-site residues are colored 559 

in green. (d) Four other network scores (MSF, , C5 and C12) for all residue positions based on 560 

the contact maps in (a). 561 

 562 

 563 

 564 

Lipoprotein lipase (Uniprot: P06858): As a key enzyme in triglyceride metabolism, it 565 

catalyzes the hydrolysis of triglycerides from circulating chylomicrons and very low density 566 

lipoproteins, thus playing an important role in lipid clearance from the blood stream, lipid 567 

utilization and storage (see https://www.uniprot.org/uniprotkb/P06858/entry#function ). 568 

The AlphaFold-predicted structure consists of an N-terminal helix, a central  domains, 569 

and a C-terminal  domain. Most deleterious mutations are concentrated inside the central 570 

domain while the non-conserved residues are mostly located on the periphery (including e.g. N-571 

terminal helix and C-terminal domain) (see Fig 4c). The active site is comprised of a catalytic 572 

triad of S159, D183, and H268 [60] in the central domain (colored green in Fig 4c). The contact 573 

maps predicted by three coevolution analysis methods are similar to the contact map based on 574 

the AlphaFold structure (see Fig 4a). As a result, the network scores agree well between these 575 

methods (see Fig 4b) with minor differences in peripheral regions (e.g. insuch as the N-terminal 576 
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helix). As predicted, those residues identified with high network scores are primarily within the 577 

central domain overlapping with most deleterious mutations, while the peripheral N-terminal 578 

helix and C-terminal domain feature low scores consistent with low sequence conservation (see 579 

Fig 4c). Notably, some of them are found at the interface between the central domain and the C-580 

terminal domain (circled in Fig 4c), possibly mediating inter-domain motions. Among those top-581 

10% hotspot residues (see Fig 4c), T128, G132, H163, G169, G181, D183, P184, A185, D207, 582 

V208, H210, G222, V227, D231, I232, P234 and S271 are known to harbor pathogenic 583 

mutations in Hyperlipoproteinemia 1, an autosomal recessive metabolic disorder characterized 584 

by defective breakdown of dietary fats. Both H163 and G169 lie in helix 4 that constitutes part of 585 

the highly conserved beta-epsilon serine-alpha folding motif which is near S159 of the active 586 

site. Supporting their functional relevance, mutations H163R and G169E were found to abolish 587 

the enzymatic activity [61] . Near D183 (one of the catalytic triad), mutations G181S and P184R 588 

were found to abolish the catalytic activity [62] . Further from D183, conserved substations 589 

D207E and H210Q abolished the enzyme activity [63], and mutations D231E, I232S and P234L 590 

led to loss of the catalytic function [64] . These mutations may disrupt allosteric interactions with 591 

the central catalytic domain.  Another conservative mutation S271T (near D183) also led to loss 592 

of enzyme activity [65]. Taken together, these residues may function by directly or indirectly 593 

coupling to the active site. 594 
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 595 

Figure 4. Results for Lipoprotein lipase (Uniprot id: P06858): (a) Four contact maps 596 

constructed from coevolution analysis by DeepMetaPSICOV (DMP), RaptorX (RX), SPOT-597 

Contact (SC), and the predicted structure by AlphaFold (AF) (only those contacts with 598 

probability >0.1 are shown). (b) W3 scores for all residue positions based on the contact maps in 599 

(a), where red and blue dots mark residues with deleterious and neutral mutations, respectively. 600 

(c) Predicted structure by AlphaFold as colored by W3 scores (red/blue for high/low values), 601 

where residues with deleterious and neutral mutations are shown as large and small balls, 602 

respectively 603 

(H71,A427,D36,N70,V96,A98,R102,W113,T128,G132,H163,G169,G181,D183,P184,A185, 604 
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G186,E190,S199,D201,A203,D207,V208,H210,G215, S220,I221,G222, K225,V227,D231, 605 

I232,P234,C243,I252,C266,R270,S271,D277,S278,L279,S286,Y289,F297,L303,C305, 606 

C310,L313,N318,S325,M328,L330,A361,S365,L392,E437,E437,C445,E448, see 607 

https://www.uniprot.org/uniprotkb/P06858/variant-viewer), and active-site residues are colored 608 

in green. (d) Four other network scores (MSF, , C5 and C12) for all residue positions based on 609 

the contact maps in (a).   610 

 611 

Conclusion 612 

 To conclude, we have combined machine learning, network analysis, and protein 613 

language models to develop a sequences-based variant site prediction method based on the 614 

protein residue contact networks which incorporate sequential, structural, dynamic, and 615 

interaction information simultaneously:  616 

1. We build protein residue networks by exploiting three different state-of-the-art coevolution 617 

analysis tools (RaptorX, DeepMetaPSICOV, and SPOT-Contact) that complement each other.  618 

2. We use three powerful machine learning algorithms (Random Forest, Gradient Boosting, and 619 

Extreme Gradient Boosting) to optimally combine 20 network centrality scores to accurately 620 

predict key residues as hot spots for disease mutations.  621 

3. We train and validate our method using a dataset of 107 proteins rich in disease mutations, 622 

demonstrating its high accuracy in distinguishing between deleterious and neutral sites (with 623 

AUC of ROC ~ 0.84). Further improvement can be achieved after combining our method with 624 

the ESM-based method.     625 
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 This study has established a useful strategy of combining an ensemble of network scores 626 

based on different coevolution analysis methods via machine learning to predict key variants 627 

sites of relevance to disease mutations. The code and dataset are made available to public to 628 

enable future developments and applications (see https://simtk.org/projects/hotspots).    629 

 For future work, it will be interesting to go beyond contact map predictions by integrating 630 

other scores derived from the co-evolution analysis (for example, see refs [66-68]) in our 631 

workflow, which may further boost the accuracy of variant site prediction.   632 

 633 

634 

https://simtk.org/projects/hotspots
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Supporting Information 800 

S1 Table. Evaluation of 20 network scores based on protein residue contact maps 801 

constructed from 3 coevolution analysis tools (DeepMetaPSICOV, RaptorX, and SPOT-802 

Contact) 803 

Score  AUC* of 

DeepMetaPSICOV 

AUC* of 

RaptorX  

AUC* of 

SPOT-Contact 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

C12 

C13 


MSF 

W1 

W2 

W3 

W∞ 

Ws  

0.75±0.13 

0.75±0.17 

0.78±0.10 

0.65±0.12 

0.78±0.17 

0.63±0.16 

0.77±0.11 

0.65±0.12 

0.79±0.13 

0.76±0.12 

0.80±0.13 

0.78±0.16 

0.75±0.17 

0.80±0.13 

0.81±0.14 

0.81±0.14 

0.81±0.15 

0.81±0.14 

0.80±0.13 

0.80±0.13 

0.78±0.14 

0.75±0.19 

0.75±0.15 

0.52±0.15 

0.78±0.17 

0.56±0.19 

0.61±0.20 

0.52±0.15 

0.78±0.16 

0.75±0.14 

0.78±0.17 

0.80±0.14 

0.74±0.18 

0.78±0.14 

0.79±0.15 

0.79±0.15 

0.77±0.15 

0.78±0.15 

0.77±0.14 

0.78±0.13 

0.75±0.15 

0.76±0.19 

0.70±0.15 

0.61±0.07 

0.78±0.18 

0.65±0.17 

0.72±0.16 

0.61±0.07 

0.75±0.16 

0.69±0.15 

0.78±0.17 

0.80±0.17 

0.76±0.19 

0.78±0.16 

0.80±0.17 

0.80±0.17 

0.79±0.17 

0.80±0.16 

0.78±0.16 

0.78±0.16 

* mean ± standard-deviation 804 
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Response to Reviewer #1   

 

We thank reviewer 1 for the constructive comments and suggestions! 

 

Abstract 

 

The abstract in this paper did not adequately capture the details expected in an abstract. Background 

to the research was not introduced. Problem being addressed was not efficiently stated. Previous 

methods that have tried addressing the problems were not highlighted. For instance, the author stated 

that “To meet this challenge, we build upon recent progress in machine learning, network analysis, 

and protein language models, and develop a …” without actually highlighting the previous work 

done. Majority of the content in the abstract are on the authors’ finding. The author is expected to 
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previous methods and their limitations). We have reduced the number of keywords to no more than 

six. 

 

Introduction 

 

The authors should minimize the use of ‘e.g’ both in the introduction section and the abstract. 

We have removed most ‘e.g’ in the paper. 

 

Citation in the body of the introduction is quite few. More citations and references should be 
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We have added more references in Introduction (with total 48 references cited). 

 

Kindly provide justification for this claim “…it is now feasible to predict static structures for many 

proteins of interest given their sequences”. 

We have added new references to substantiate the above claim with some caveats (line 42).    

 

It appears that the last paragraph of the introduction is exactly same as some major part of the 

abstract word for word. Authors are encouraged to avoid self-plagiarism. 

We have rewritten this paragraph and Abstract to avoid duplications between them.  

 

Similar to the abstract, information in the introductory part of this paper is insufficient. 

We have tried our best to give a detailed introduction to the background and literature relevant to this 

study (with total 48 references cited). We will appreciate it if the reviewer could kindly give more 

specific comments if any information is still missing.   

 

Also, authors are advised to provide a brief description of the different sections of the manuscript at 

the end of the introduction. 

We have added a brief outline of the Methods and Results sections at the end of Introduction (line 

125). 



 

Materials and Methods 

 

The subsequent section after the introduction should be captioned “Materials and Methods” as 

opposed to the caption used by the author. 

We have renamed the Method section to “Materials and Methods”. 

 

Each section and subsection should be numbered accordingly. Currently, sections and subsections 

are not identifiable. 

We have numbered all subsections of “Materials and Methods” in the order of the proposed 

workflow. 

 

Furthermore, for easier flow and understanding of the methodology, a framework or an algorithm of 

the methodology could be added. This would provide readers with a conceptualized view of the 

methodology. 

We have added a summary of the workflow of our method at the beginning of “Materials and 

Methods” (line 131). 

 

The uniport Id of the 107 protein sequences collected can be provided as a supplementary file. 

Detailed information about the dataset of 107 protein sequences and variants is available at the 

following site: https://simtk.org/projects/hotspots 

 

The author claimed to have used Random Forest, Gradient Boosting Classifier and Extreme 

Gradient Boosting Classifier. Kindly provide a justification for the choice of this machine learning 

methods 

These three methods were chosen because they have performed successfully in machine learning 

contests in Kaggle. They are also relatively cheap to train and optimize compared with the deep 

learning methods (see line 276).   

 

In addition, what parameters were tuned by the author? Did the author used Optuna for all the ML 

methods. How is the result prior to the use of hyper-parameter tuning technique? 

We added details of hyper-parameters at lines 266, 270, 274. Yes, we used Optuna for each of the 

three ML methods. While the resulting improvement is modest (relative to the default parameters), it 

is a common practice in ML to perform task-specific hyper-parameters tuning. We have run Optuna 

multiple times to ensure the resulting best metric is reproducible.   

 

Why was AUC of ROC used as the metric for assessing prediction quality? 

The AUC is a standard metric for evaluating binary classifiers based on the ROC curve of sensitivity 

and specificity. The ROC curves are also used in other computational papers for variant predictions 

(see line 162). 

 

Results and Discussion 

 

Most importantly, results obtained by the author should be presented while being discussed instead 

of being added to the supplementary or being placed at the end of the paper. This makes it difficult to 

understand the result being discussed. Some of the figures should also be presented as they are being 

discussed. 
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We have moved figures and tables to where they were discussed.  

  

Conclusion 

 

The conclusion section is completely missing in this paper. Author is encourage to provide a 

conclusion section alongside a summarized and itemized key findings from the research. 
We have added Conclusion to summarize our key findings.  



Response to Reviewer #2 

We thank reviewer 2 for the constructive comments and suggestions! 

 

Major points 

 

• Sequences-based coevolution methods return a prediction of the protein structure from multiple 

sequence alignments (MSAs). It is not clear to me how these MSAs (or a unique MSA?) are 

designed. The authors sometimes refer to them (or to it), and sometimes they put the focus on the 107 

sequences used in the training and testing of the binary classifier but it is not clear to me how they 

are chosen, and if they belong to the initial MSA or not. I have appreciated the final focus on four 

sequences, even though the performances, and a comparison to other techniques, of the new pipeline 

(for instance the AUC) should be included in the discussion. 

To clarify, the coevolution-based methods that we used (RaptorX, DeepMetaPSICOV, and SPOT-

Contact) take a protein sequence as input and then predict a residue-residue contact probability 

matrix (not the protein structure) based on MSA. Our method does not utilize the MSA directly. The 

107 protein sequences were chosen from the HumVar database (see line 143), and they do not 

belong to a specific MSA. Instead, each of these sequences was used to build its own MSA by 
the above coevolution-based methods.  
  
We have compared our sequences-based method with alternative methods based on structures 

(AlphaFold) or physical force fields (FoldX) or protein language model (ESM) using a testing set of 

28 proteins (see Tables 2 and 4). We also added additional comparison with PolyPhen-2 (see line 

397).    
   
 

• Linked to the first question, if the analysis is performed on a unique dataset, i.e. a unique MSA of a 

protein family, I encourage the authors to repeat these experiments on different protein domains, as a 

stress test to their new pipeline. 

To clarify, our evaluation is not performed on a unique MSA of a particular protein family. Instead, it 

is based on a diverse dataset of 107 proteins from various different protein families, which contain 97 

dissimilar proteins (with their pairwise sequence identity < 30%) (line 147).     

 

• In the third step of the workflow, the authors split the 107 protein sequences into a train and a test 

set. How is this subdivision decided? One should in principle check whether the sequences in the two 

sets are sufficiently “distant” (for instance using clustering analysis) or repeat the procedure for 

different assignments into the two subsets. Additionally, how does the choice of the size of these two 

sets affect the results? 

The train/test split is purely random: 79 for training and 28 for testing. We have checked the 

sequence similarity between the two sets, only 1 training-set protein has sequence identity >30% with 

proteins of the testing set. In fact, 97/107 proteins have pairwise sequence identity <30%. We 

repeated training and testing on this reduced dataset of 97 dissimilar proteins, and the resulting AUCs 

are only slightly higher (by <0.03), suggesting that the few similar sequences did not markedly 

change the training/testing results.  

The choice of train/test split ratio (~75/25) is based on common practice of ML (see 

https://onlinelibrary.wiley.com/doi/full/10.1002/sam.11583). We also tried other sizes of testing set 

(18 and 38) which only slightly increase the resulting AUCs by 0.01~0.04. So the training/testing 

results are not sensitive to this choice.  



 

• Coevolution methods, together with a proxy for pairwise contact prediction, allow for an estimate 

of the degree of deleteriousness of point and pairwise mutations. In recent developments (see Refs. 

37-42 in [1] and also more recent works in [2-3]), the authors show that the sequence “energy” of the 

coevolution models can be interpreted as (negative) protein fitness which, indeed, correlates well 

with deep mutational scanning-based measures. Since this coevolution information is exploited in the 

first step of the presented pipeline, I would like to ask the following questions: 

 

– Can the authors display how well these methods alone perform compared to the author's workflow? 

Although it would be useful to use ΔE_DCA defined in ref[3] to predict variant effects, such 

calculation is not supported by the co-evolution-based contact prediction methods used here 

(RaptorX, DeepMetaPSICOV, and SPOT-Contact), and is therefore beyond the scope of this study. 

This study is limited to the use of residue contact maps as predicted by co-evolution analysis, rather 

than fully exploiting all scores derived from the co-evolution analysis of MSA.   

 

– Can this information be integrated (together with the pure network scores) in the second and third 

steps? 

Yes, we expect potentially fruitful integration of our network-based methods with other co-evolution-

based scores like ΔE_DCA to improve the prediction of variant effects. We have mentioned this and 

cited ref [1-3] in the discussion of future work (see line 590). 

  

• It is not clear to me why the twenty measures used in the second step (if I have understood 

correctly, they are associated with network centrality properties) are the correct (or the most 

informative) metrics to cope with sequence hotspots. I would expect that some important hotspots 

may be related to the interaction with other proteins, and, therefore, they may be “far” from the core 

of the folded protein network. Also, other information like the electrical-chemical properties of the 

amino acids is neglected. Can the authors comment on them? 

We agree that not all hotspot residues can be predicted by our method which focused on intra-protein 

residue contacts, and some hotspot residues may not possess high centrality scores (as mentioned 

above by the reviewer). However, we have shown that our method is competitive with alternative 

methods (ESM and PolyPhen-2), supporting the value of centrality scores as informative predictors 

for disease mutations. Further, our method provides new predictive features that complement other 

scores (such as ΔE_DCA), and together they may enable more accurate predictions of variant effects 

(see line 590).    

 

• Pag. 15. The evaluation of each single score (among the twenty?) against the different structures is 

not well described. The comparison is made according to which measure? The final binary classifier? 

If this is the case, does it mean that the authors compared the importance of each score independently 

and then all together? 

For the evaluation of each single score, we sort all testing-set variants by that score and predict a 

variant deleterious/neutral if its score is above/below a cutoff value. This resulted in an ROC curve 

from which we calculated AUC (line 302).  

After assessing the individual scores independently, we then used ML to combine them to train a 

binary classifier which was then assessed with the AUC of ROC (see Table 4).   

 

• Overall, the presentation of the results is a little confusing to me. Comparisons seem to be made 

“internally” by changing the metrics in the second step, of the protein structure prediction in the first 

step. On page 19, the authors mention a comparison between their algorithm and Seq-GNM, 



PolyPhen-2 but they run on different datasets, so the final performances may not be compared. I 

believe that a more “fair” comparison with other state-of-the-art techniques should be presented. 

We agree that fair comparisons with alternative methods like PolyPhen-2 are desirable. However, 

since our training/testing datasets were taken from HumVar, and PolyPhen-2 has been trained on this 

dataset, it is not possible to compare their performance objectively. With this caveat in mind, we 

have evaluated PolyPhen-2 based on the same 28 testing-set proteins and their variants, and found 

the AUC of PolyPhen-2 to be 0.85 (see line 397), which is close to our method (after combining 3 

co-evolution analyses, see Table 4). Additionally, we have compared our method with another state-

of-the-art method based on ESM, which gave AUC~0.83. Therefore, our method is competitive with 

these alternative methods. To be clear, our main goal is to complement rather than compete with 

existing methods. Indeed, we have shown that the combination of our method with ESM has yielded 

better performance than ESM alone (see Table 4). 

 

• The ROC and AUC metrics are presented as final comparison metrics. Is the value presented in the 

manuscript an average value among the test sequences? If this is the case, what about the standard 

error associated with it? 

To clarify, the AUCs in Table 2 are calculated from the ROC for all variants of the 28 testing set 

proteins. We also calculated AUCs for each protein alone, and their means and S.D. are shown in 

Table S1. The cumulative AUCs in Table 2 are comparable to the mean AUCs of individual proteins 

in Table S1. 

 

 

Minor points 

 

• Would it be possible to swap the Methods section and the Results section? Also, some parts are 

frequently repeated in both Methods and Results. 

I am afraid not because the PLOSONE format requires the Methods section precedes the Results 

section.  

We have reduced methodological details in Results to avoid repetitions. 

 

• Within the Methods section, in my opinion, the paper would gain readability if the sections 

followed the main pipeline of the method (now the third step is described before the first one). 

We have numbered the subsections in the order of the workflow/pipeline (starting with the datasets). 

The workflow is summarized at line 131. 
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