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Abstract

Computation of muscle excitation patterns that produce coordinated movements of muscle-actuated dynamic models is an

important and challenging problem. Using dynamic optimization to compute excitation patterns comes at a large computational

cost, which has limited the use of muscle-actuated simulations. This paper introduces a new algorithm, which we call computed

muscle control, that uses static optimization along with feedforward and feedback controls to drive the kinematic trajectory of a

musculoskeletal model toward a set of desired kinematics. We illustrate the algorithm by computing a set of muscle excitations that

drive a 30-muscle, 3-degree-of-freedom model of pedaling to track measured pedaling kinematics and forces. Only 10min of

computer time were required to compute muscle excitations that reproduced the measured pedaling dynamics, which is over two

orders of magnitude faster than conventional dynamic optimization techniques. Simulated kinematics were within 1� of

experimental values, simulated pedal forces were within one standard deviation of measured pedal forces for nearly all of the crank

cycle, and computed muscle excitations were similar in timing to measured electromyographic patterns. The speed and accuracy of

this new algorithm improves the feasibility of using detailed musculoskeletal models to simulate and analyze movement.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dynamic simulation is a powerful approach for
investigating how the elements of the neuromusculoske-
letal system interact to produce movement. Forward
dynamic simulation provides capabilities not generally
offered by experimental approaches. For example,
muscle excitation patterns or other parameters of a
model can be altered to determine how they affect
movement. This type of analysis has been used to study
neural control of movement (Zajac, 1993), design
neuromuscular stimulation systems (Yamaguchi and
Zajac, 1990), evaluate the causes of pathological move-
ment (Riley and Kerrigan, 1998), and design prosthetic
devices (Piazza and Delp, 2001).
Determining a set of muscle excitations that produce

a desired movement is one of the major challenges in

creating a forward dynamic simulation. One approach is
to use dynamic optimization to determine a set of
muscle excitations that generate a simulation that best
reproduces experimental data (Davy and Audu, 1987;
Yamaguchi and Zajac, 1990; Neptune and Hull,
1998; Kaplan and Heegaard, 2001). Using this ap-
proach, the optimization objective function is typically a
global measure of the error between measured and
simulated biomechanical quantities. Solving dynamic
optimization problems can be computationally over-
whelming when a model includes many muscles and
allows for complex excitation patterns. Consequently,
almost all previous studies have reduced the number of
muscles (Davy and Audu, 1987; Yamaguchi and Zajac,
1990) or simplified the muscle control signals (e.g., by
assuming block excitation patterns; Neptune and Hull,
1998) to minimize the number of variables included in
the optimization problem. Even with these simplifica-
tions, solving dynamic optimization problems can
require thousands of complete integrations of the model
state equations.
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Two novel techniques have been described that reduce
the computational demands of standard dynamic
optimization techniques. Yamaguchi et al. (1995) used
a pseudo-inverse method to efficiently compute muscle
forces that generate desired joint accelerations at each
time step of a forward dynamic simulation. However,
their approach does not incorporate the dynamic
properties of muscles and requires the use of a specific
optimization function to resolve muscle redundancy.
Kaplan and Heegaard (2001) used a second-order
dynamic optimization technique based on discretizing
the state equations. Although this technique greatly
improved performance, it is difficult to implement
because it requires one to symbolically formulate first
and second derivatives of the state equations with
respect to the control variables.
There is a need for new techniques to generate

coordinated forward dynamic simulations that reduce
the computational burden of dynamic optimization, rely
less on simplifying assumptions, and are straightforward
to implement. This paper introduces a new method,
which we term ‘‘computed muscle control’’, for deter-
mining a set of muscle excitations that drives a muscle-
actuated model to track experimental data. Computed
muscle control reduces the computational burden by
requiring only one integration of the state equations. It
allows one to include many muscles in a model without
incurring large computational costs and produces
continuously varying muscle excitations that more
realistically represent physiologic excitation patterns.
We demonstrate the utility of computed muscle control
by producing a muscle-actuated forward simulation that
reproduces measured pedaling dynamics.

2. Methods

We first describe the basic elements of a forward
dynamic musculoskeletal model. We then introduce a
general formulation of the computed muscle control
algorithm and describe how it was used to produce a
muscle-actuated simulation of pedaling.

2.1. Elements of forward dynamic simulation

A forward dynamic simulation is performed by
integrating a set of ordinary differential equations (i.e.,
state equations) that describe the properties of the
musculoskeletal system and the interactions with the
environment. Although there are potentially many
forms for these equations, they typically include first-
order equations for activation dynamics, first-order
equations for musculotendon contraction dynamics,
and second-order equations of motion for the body.
Activation dynamics (i.e., the process by which

muscle–fiber calcium concentration is modulated by

motor unit action potentials) can be modeled by relating
the time rate of change of muscle activation ( ’a) to
muscle activation (a) and excitation (u):

’a ¼
ðu � aÞ � ½u=tact þ ð1� uÞ=tdeact	; uXa;

ðu � aÞ=tdeact; uoa;

(
ð1Þ

where tact and tdeact are the time constants for activation
and deactivation, respectively (Raasch et al., 1997).
Excitation and activation levels are allowed to vary
continuously between zero (no excitation and activa-
tion) and one (full excitation and activation).
Musculotendon contraction dynamics can be de-

scribed by a lumped-parameter model that accounts
for the force–length–velocity properties of muscle and
the elastic properties of tendon (Zajac, 1989). In
particular, the time rate of change of muscle length
’lm

� �
can be related to muscle length (lm), musculotendon

length (lmt), and muscle activation (a):

’lm ¼ f �1
v ðlm; lmt; aÞ; ð2Þ

where fv is the force velocity relation for muscle (Schutte
et al., 1993).
The accelerations of the generalized coordinates of the

model in response to applied forces can be computed by
solving the equations of motion:
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where
,
q; ’

,
q; and .,q are the generalized coordinates, speeds,

and accelerations of the model, respectively,
2
A�1 is the

inverse of the system mass matrix,
,
G is a vector of

generalized forces arising from gravity,
,
C is a vector of

generalized forces arising from Coriolis and centripetal
forces,

2
R is a matrix of muscle moment arms,

,
fm is a

vector of muscle forces, and
,
E is a vector of generalized

forces that characterizes the interactions with the
environment.
To simulate motion based on a set of input muscle

excitations, state Eqs. (1)–(3) are numerically integrated
forward in time starting from a set of initial states to
produce the time histories of muscle activations, muscle
lengths, generalized speeds, and generalized coordinates.

2.2. Computed muscle control algorithm

Our approach is an extension of computed torque
control (Lewis et al., 1993), in which feedforward and
feedback control is used to drive the kinematic
trajectory of a dynamic model toward a set of
experimental kinematics. Computed muscle control
extends computed torque control by resolving actuator
redundancy and accounting for the dynamic force-
generating properties of musculotendon actuators.
The computed muscle control algorithm is applied at

each integration time step during a forward dynamic
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simulation and is comprised of four stages (Fig. 1). In
Stage 1, a set of desired accelerations ð .,qdÞ is computed
based on a set of experimental kinematics and the
current kinematic state of the model:

.
q
,
d ¼

.
q
,
exp þ kv ð ’

,
qexp � ’,q Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

’,eq

þkp ð
,
qexp �

,
q Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

,
eq

; ð4Þ

where ’,q and
,
q are the generalized speeds and coordi-

nates of the model, .,qexp;
’,qexp; and

,
qexp are the

experimental accelerations, velocities, and positions
corresponding to the generalized coordinates of the
model, and kv and kp are feedback gains for the velocity
errors ( ’

,
eq) and position errors ð

,
eqÞ; respectively.

If the desired accelerations as given by Eq. (4) are
achieved, the velocity and position errors will be driven
to zero and display behavior described by a set of
decoupled second-order ordinary differential equations
(Lewis et al., 1993)

.
e
,

q þ kv
’
e
,

q þ kp e
,

q ¼ 0; ð5Þ

where .
,
eq are the acceleration errors (i.e.,

.,qexp � .,qd). It is
therefore possible to choose the feedback gains so that
the errors fall to zero in some desired fashion. For
example, if kv ¼ 2

ffiffiffiffiffi
kp

p
then the errors will fall to zero in

a critically damped manner.
In Stage 2, an optimization problem is solved to

compute a set of muscle activations ð,a �Þ that give rise to
muscle forces that, under steady-state conditions,
produce the desired accelerations .

,
qd computed in Stage

1. To estimate the accelerations that result from a set of
activations, steady-state muscle forces ð

,
f �
mÞ are com-

puted from the activations by accounting for the force–
length–velocity properties of muscle and assuming
contraction dynamics have equilibrated. Then, these
steady-state forces are applied to the model, and the

equations of motion are solved for the accelerations
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The asterisks on
,
a �;

,
f �
m;

.,q � are used to distinguish these
steady-state quantities from the corresponding quanti-
ties (

,
a;

,
fm;

.,q ) that actually occur during the forward
dynamic simulation.
There is some flexibility in the formulation of the

optimization problem, but two basic requirements must
be met. The first requirement is resolving actuator
redundancy by posing a performance criterion (Crow-
ninshield and Brand, 1981; Dul et al., 1984; Kaufman
et al., 1991). The second requirement is finding a set of
activations that generate the desired accelerations. This
can be accomplished by enforcing constraints of the
form .,qd � .,q � ¼ 0: It is also possible to control other
aspects of the simulation by incorporating additional
equality or inequality constraints. For example, one can
limit the desired activations based on recorded EMG
activity and/or track force measurements.
In Stage 3, a linear proportional feedback controller is

used to compute excitations that drive the muscle
activations ð,a Þ to track ,

a �:

u
,
¼ a

, � þ kuða
, � � a

,
Þ: ð7Þ

Here, ku is a feedback gain,
,
a � is the vector of

activations computed in Stage 2, and
,
a is the vector of

current activations in the forward dynamic simulation.
If any muscle excitation values generated by Eq. (7) are
below 0.0 or above 1.0, they are limited to 0.0 or 1.0,
respectively.
In Stage 4, the muscle excitations are input into the

forward dynamic model and numerical integration is

Fig. 1. Schematic of the computed muscle control algorithm. The algorithm is applied at each integration time step of a forward dynamic simulation.

In Stage 1, a set of desired accelerations .
,
qd is computed that will drive the generalized coordinates and speeds of the model (

,
q and ’,q ) toward the

experimental kinematics (
,
qexp and

’,qexp). The experimental accelerations
.,qexp are included as a feedforward term. The positive constants kv and kp are

feedback gains for the velocity errors ð ’,eqÞ and position errors ð
,
eqÞ; respectively. In Stage 2, a set of muscle activations ð

,
a �Þ is found using static

optimization; under steady-state conditions, these activations produce muscle forces that generate the desired accelerations computed in Stage 1.

Additional experimental data, such as external forces ð
,
fexpÞ; can also be incorporated into the static optimization problem. In Stage 3, a set of neural

excitations ð,u Þ is computed from the muscle activations using a linear controller with a feedback gain of ku: In Stage 4, the neural excitations are
input to the forward dynamic model and numerical integration is used to advance the states to the next time step. The generalized coordinates and

speeds of the model are then fed back, and the tracking algorithm is applied repeatedly until the simulation runs to completion.
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used to advance the states to the next time step. Note
that only the muscle excitations (

,
u ) computed in Stage 3

are used as input to Stage 4; the steady-state muscle
activations (

,
a �) and forces ð

,
f �
mÞ are not used in Stage 4.

Rather, the muscle activations (
,
a ) and forces ð

,
fmÞ

generated by the forward dynamic simulation are
governed by state Eqs. (1) and (2) and, thus, activation
and contraction dynamics are included. The generalized
coordinates and speeds are then fed back, and the
tracking algorithm is applied repeatedly until the
simulation runs to completion.

2.3. Implementation for pedaling

To illustrate the application of the computed muscle
control algorithm and to assess its computational
performance, we applied the algorithm to pedaling. A
planar two-legged forward dynamics model of pedaling
was used (Fregly, 1993; Fregly and Zajac, 1996; Raasch
et al., 1997; Neptune and Hull, 1998) (Fig. 2). The model
was actuated by 30 muscles and included nine segments:
a pelvis and a left and right femur, tibia, patella, and
foot. Hip and ankle joints were modeled as revolutes. A
planar kinematic joint that allowed sliding-rolling
between the femur, tibia, and patella was used to
represent each knee (Delp et al., 1990). The pelvis was
fixed, the crank was pinned to ground, pedals were
pinned to the crank, and the feet were rigidly connected
to the pedals. Due to the closed loops between the pelvis

and crank, the model had only three degrees of freedom.
The crank angle and left and right pedal angles were
used as the independent generalized coordinates: qc; qr;
and q1; respectively. Musculoskeletal geometry and
parameters were based on the lower extremity model
developed by Delp et al. (1990). The optimal fiber
lengthened of soleus was lengthened by 0.02m beyond
that reported in Delp et al. (1990) to improve the
isometric torque–angle curve for this muscle, as was
done in Anderson and Pandy (1999). Muscle activation
dynamics was modeled by Eq. (1) with activation and
deactivation time constants of 15ms and 50ms,
respectively. Muscle contraction dynamics were repre-
sented by Eq. (2). A fourth order, variable-step Runge–
Kutta integrator was used to integrate the state
equations.
Average crank angles and pedal forces of ten male

competitive cyclists from Neptune et al. (1997) were
used as experimental input to the computed muscle
control algorithm. The cyclists in that study rode at a
work rate of 250W and crank frequency of 60RPM.
The time histories of the crank and pedal angles were fit
using quintic splines and differentiated to form analy-
tical expressions for

,
qexp;

’,qexp; and
.,qexp: Crankload

dynamics were modeled by an equivalent inertial and
resistive torque applied about the center of the crank
arm (Fregly, 1993).
For the static optimization problem, the performance

criterion (J) was chosen to be the sum of squared muscle
activations (Anderson and Pandy, 2001):

J ¼
X30
m¼1

ða�
mÞ
2; ð8Þ

where a�
m is the steady-state activation of muscle m: In

addition, five equality constraints were enforced. The
first three constraints required that the steady-state
activations produce steady-state muscle forces ðf �

mÞ that
would, if applied, give rise to accelerations .

,
q � equal to

the desired accelerations .
,
qd:

.
q
, � �

.
q
,
d ¼ 0: ð9Þ

A steady-state muscle force was defined as the force
that would result from activation a�

m after contraction
dynamics have equilibrated, i.e., when the fiber velocity
is equal to the overall musculotendon velocity projected
along the fiber direction ð’l �m ¼ ’lmtcos amÞ: More specifi-
cally, f �

m was computed by scaling the active force–
length–velocity (flv) surface by a�

m; adding the passive
force (fpassive), and multiplying by the cosine of the
pennation angle:

f �
m ¼ fa�

m � flvðl�m; ’l
�

mÞ þ fpassiveðl�mÞg � cosða
�
mÞ; ð10Þ

where, for muscle m; a�m is the pennation angle at the
steady-state muscle length l �

m : The steady-state muscle
length was found using a root solver to balance the force

Fig. 2. A planar two-legged model was used to simulate pedaling. The

model has three independent degrees of freedom. Crank (qc) and right

and left pedal angles (qr; ql) were selected as the independent

generalized coordinates. Fifteen muscle–tendon units, each with an

independent excitation signal, actuated each leg.
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between each muscle and its tendon (Delp and Loan,
2000). Two additional constraints were used to track the
radial pedal forces:

f �
r � fr;exp ¼ 0; ð11Þ

f �
l � fl;exp ¼ 0; ð12Þ

where f �
r and f �

l are the right and left steady-state pedal
forces generated in the model in response to the steady-
state activations ð,a �Þ; and fr;exp and fl;exp are the right
and left experimental pedal forces. Tangential pedal
forces were not tracked because they are directly related
to the crank accelerations, which were tracked. Thus,
the static optimization problem was to find values of the
activations

,
a � that minimized Eq. (8) and satisfied

Eqs. (9), (11), and (12).
Feedback gains kp ¼ 400; kv ¼ 40; and ku ¼ 10 were

used. Without actuator dynamics, these gains would
achieve critically damped error dynamics with a time
constant of 50ms (Eq. (5)).
The musculoskeletal model and the code describing

activation and contraction dynamics were produced
using SIMM and the Dynamics Pipeline (Delp and
Loan, 2000). Equations of motion for the pedaling
model were derived using SD/FAST (Parametric Tech-
nology Corporation, Waltham, MA). Optimizations
were performed using a sequential quadratic program-
ming algorithm (FSQP; Lawrence et al., 1997; AEM
Design, Tucker, GA).

3. Results

The computed muscle control algorithm generated a
forward dynamic simulation of pedaling that closely
tracked experimental data (Fig. 3) using approximately
10min of processor time on a 1.7GHz Pentium IV. The
simulated pedal and crank angles were within one
standard deviation of experimental measurements
throughout the entire pedaling cycle (RMS errors were
p1�). Simulated pedal forces were within one standard
deviation of experimentally measured pedal forces for a
majority of the crank cycle. RMS errors were 17N for
the tangential pedal force and 37N for the radial pedal
force.
The time intervals during which the muscles were

excited were in relatively close agreement with intervals
of excitation estimated from electromyographic record-
ings (Fig. 4). The timings of the excitations also were
similar to the timings of the pulse excitations obtained
when simulated annealing was used to compute muscle
excitation patterns (Neptune and Hull, 1998). However,
the computed muscle control solution produced con-
tinuously variable excitation patterns in contrast to the
pulse excitation pattern generated with simulated
annealing.

4. Discussion

Our objective was to develop a faster method for
generating muscle-actuated simulations of movement
that track experimental data. Computed muscle control
achieves improved computational performance over
dynamic optimization by using state feedback and static
optimization to compute muscle excitations. Because
feedback is used, only a single complete integration of
the state equations is required, in contrast to the many
thousands of integrations required by standard dynamic
optimization techniques. A simulated annealing ap-
proach, for example, can require between 5000 and
10,000 complete integrations of the state equations to
converge to a solution for pedaling (Neptune, 1999).
Since each complete integration of the state equations
takes about 1min, simulated annealing would take
about 80–160 h to find a solution. By comparison, the
computed muscle control algorithm took only 10min.
The speed of computed muscle control lessens the

need to reduce the number of muscles in a model and
make simplifying assumptions about muscle excitation
patterns. The large computational cost of dynamic
optimization, on the other hand, has driven researchers
to adopt different strategies to reduce the number of
control variables. For example, Raasch et al. (1997)
grouped muscles thought to have similar function,
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pedal angles and pedal forces. Experimental data represents the mean
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Neptune et al. (1997) assumed pulse excitation patterns,
and Pandy et al. (1992) used linear interpolation
between a small number of control points. The
computed muscle control algorithm, by contrast,
generated continuously varying muscle excitations for
30 separate muscles.
The pseudo-inverse method described by Yamaguchi

et al. (1995) is fast and allows for continuously varying
muscle controls, but it has two important limitations.
First, it does not account for activation and contraction
dynamics. As a result, unrealistic instantaneous changes
in muscle forces can occur, particularly when tracking
rapid movements. Second, the pseudo-inverse method
assumes that the performance criterion is to minimize
the sum of squared muscle stresses. While there is
evidence to support the use of this criterion during
walking (Crowninshield and Brand, 1981), it may not be
ideal for other movements.
In contrast to the pseudo-inverse method, computed

muscle control incorporates activation and contraction
dynamics in the forward dynamic simulation (Fig. 1,
Stage 4). Thus, non-physiologic, instantaneous changes

in muscle force are not possible. In addition, computed
muscle control affords flexibility in the formulation of
the optimization problem. Performance criteria such as
minimum fatigue (Dul et al., 1984), minimum muscle
activation (Kaufman et al., 1991), or other criteria can
be posed. Experimental data such as measured forces
and EMG patterns can also be used to guide the
solution by incorporating penalty functions in the
performance criterion or by enforcing constraints (e.g.,
Eqs. (11) and (12)).
Several limitations of using computed muscle control

should be recognized. First, although muscle activation
and contraction dynamics are included in the forward
dynamics stage of the algorithm (Fig. 1, Stage 4),
latencies associated with these processes introduce
errors between measured and simulated states. At any
given time, the muscle forces necessary to produce a
desired set of accelerations can be computed, but there
are delays between muscle excitations and the produc-
tion of muscle forces. The effects of these delays were
seen where the simulated radial pedal forces lagged
slightly behind the experimental values (Fig. 3, crank

0 90 180 270 360
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TA

SOL

MGAS

BFSH
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BFLH
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1

Fig. 4. Estimated muscle excitations (solid black lines) for eleven of the muscles included in the model. The muscles shown are gluteus maximus

(GMAX), psoas (PSO), semimembranosus (SEM), biceps femoris long head (BFLH), rectus femoris (RF), vasti (VAS), biceps femoris short head

(BFSH), medial gastrocnemius (MGAS), soleus (SOL), and tibialis anterior (TA). For comparison, a simulated annealing solution (dashed lines) and

the timing of EMG activity (shaded bars) are given. The simulated annealing solution was obtained using the approach outlined in Neptune and Hull

(1998). EMG data represents the mean and standard deviations of muscle onset and offset times for ten cyclists pedaling at 60RPM (Neptune et al.,

1997).
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angle ofB180�). Thus, when tracking rapid movements
in which actuator delays have larger effects, a method
for incorporating actuator dynamics into the estimation
of controls may need to be implemented (Lewis et al.,
1993). Second, computed muscle control is not a
dynamic optimization method; only performance criter-
ia that can be evaluated at an instant in time, such as the
sum of squared muscles stresses, can be used. Computed
muscle control cannot therefore be used to optimize
global measures of performance, such as metabolic
energy expended over the duration of a movement.
Finally, it should be noted that the ability to use
computed muscle control relies on having kinematic
data as input and that the quality of the forward
dynamic simulation likely depends on the quality of
these data.
Inverse dynamics with static optimization (Crownin-

shield and Brand, 1981), dynamic optimization (Davy
and Audu, 1987), and computed muscle control are
three techniques that make estimates of muscle forces.
Anderson and Pandy (2001) reported that static
optimization and dynamic optimization can yield
similar estimates of muscle forces for normal gait, and
there is no reason to expect that computed muscle
control would make substantially different estimates.
For more rapid movements, in which activation and
contraction dynamics play a large role, differences
between static optimization and dynamic optimization
solutions might be greater. In these cases, the forces
estimated by computed muscle control are influenced by
a static optimization performance criterion, but the
force trajectories are constrained by activation and
contraction dynamics. The ability of computed muscle
control to predict muscle forces for different movements
is an area for future investigation.
The primary value of computed muscle control is its

ability to produce coordinated forward dynamic simula-
tions of movements with relatively little computational
expense. These forward dynamic simulations can be
used as an initial guess for a dynamic optimization
problem, as the basis of perturbation studies (e.g.,
altering muscle excitations and computing the resulting
motions), or as means of conducting detailed investiga-
tions of muscle function (e.g., assessing storage and
utilization of elastic strain energy). These are capabilities
not readily afforded by an inverse dynamics and static
optimization approach. Computed muscle control com-
bines the computational speed and practically of static
optimization with the added benefit of producing a well
coordinated forward dynamic simulation.
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