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Abstract

Clustering is a typical approach to study conformation space where close conformations are
grouped into the same state. It not only provides a concise representation of the free energy
landscape but also is a necessary preprocessing step for building many other more complicated
representations such as Markov State Model. However, since the conformation space is often
sampled according to Boltzmann distribution which is exponential to the free energy, large
amounts of sampled conformations are concentrated at the free energy basins. Typically em-
ployed clustering algorithms such as K-means which measure the quality of clustering in terms
of variance, tend to split the densely sampled free energy basins into many small clusters and
lump the low density regions into the clusters that have quite different structures. In this paper,
we consider the clustering from geometric point of view and measure the quality of clustering in
terms of geometric property. We introduce a fast efficient clustering algorithm: approximating
K-center clustering algorithm. This algorithm has two major advantages (1) It is fast, and can
generate thousands of clusters from millions of conformations within several hours on a single
PC, which is orders of magnitude faster than K-means clustering algorithm. (2) The output
clusters are about of the same radius and thus the population of each cluster represents its
relative density determined by the underlying free energy landscape. Moreover, as it efficiently
reduces the complexity of the system in a faithful way, it’s proved to be very powerful in our
experiments to combine it with more deliberate schemes which are otherwise not applicable due
to the massive nature of data.

1 Introduction

Elucidation of bio-molecular folding process is critical and fundamental to biology and medicine.
However, it is very difficult to experimentally probe the mechanism of the process at atomic reso-
lution. Computer simulations have proved useful for studying biological processes since they can
complement experimental tools by providing dynamic information at an atomic level. However, un-
derstanding biomoleculuar folding is challenging computationally because it is difficult to sample
from the rugged and high-dimensional free energy landscapes. Furthermore, even if this sampling
problem is now solved for many systems of interest, there remains the difficulty of representing
the free energy surface. Projecting the free energy landscape onto a few order parameters is one
common method of depicting the landscape. However, such dimensionality reduction may cause
points that are very distant from one another to appear to be close together. In fact, free energy
barriers may even be completely obscured [1].
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An alternative approach is to decompose the conformation space into clusters by grouping close
conformations into the same state [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. In computer simulation, the
conformation space of a biomolecular system is typically sampled by molecular dynamics (MD)
or Markov-Chain-Monte-Carlo (MCMC) or their enhanced schemes [13, 14, 15, 16, 17, 18], which
produce a sampling of the distribution that is exponential to the free energy, i.e., Boltzmann dis-
tribution. Therefore, the sampled conformations of high density with a large amount of similar
structures nearby account for the regions of low free energy, i.e., free energy basins. A good clus-
tering scheme should preserve such free energy basins by grouping structures within the same
basin into the same state, without over-splitting a free energy basin into many clusters [19]. Since
estimating the density is equivalent to estimating the free energy, another desired property of a de-
composition is to provide the density information as much as possible. However these requirements
are not easily reached by most of the typical clustering methods currently in use.

K -means and its variation K -medoids are one of the popular methods to cluster the conforma-
tion spaces in the literature [12, 19]. However this type of methods measure the quality of clustering
in term of variance and minimize the total intra-cluster variances [20]. They tend to divide densely
sampled free energy basins into many small clusters to avoid large intra-cluster total variances,
whence split conformations with very similar structures into different clusters. As a result, due to
the limited quota on the number of clusters k, they lump the low density regions into the clusters
corresponding to energy basins nearby and thus fails to identify those intermediate or transition
states of interest. Moreover, K-means or K-medoids do not have any control on the volumes of clus-
ters which are often spread out, whence provide poor information about density as well as the free
energy landscape. Another set of widely used clustering methods for conformations is agglomerative
methods [21, 22] including single-linkage [10, 11], average-linkage [3] and complete-linkage [10, 7].
In particular, complete-linkage (also called maximal-distance clustering) controls the diameter of
the clusters and may produce a clustering of with good information on density. However, since
they are carried out in a bottom-up fashion and much of the computation is wasted on figuring
out the grouping order for points within a cluster, these clustering methods are of time complexity
at least quadratic order and hence very ineflicient especially for large data sets. A closely related
clustering method called leader algorithm [20] is also widely used [6, 8, 5|]. However, the leader
algorithm requires a pre-defined threshold that specifies the maximum cluster radius and has no
control over the complexity of the resulting clustering. In fact, it may generate many clusters with
radius well below the given threshold as it chooses the cluster centers in an ad-hoc fashion.

In this study, we consider the clustering from geometric point of view and measure the quality
of clustering in terms of geometric property. Given k, our goal is to find a decomposition of
conformation space into k clusters that minimizes the maximum radius of the clusters, instead of
the total variance as does in K-means. Such a minimization ensures the obtained clusters are about
of the uniform geometric size, whence enables one a better estimation on the density and free energy
landscape. This clustering method is called K-center in the literature [23]. Though it is NP-hard,
there is a simple and fast 2-approximation algorithm which is of linear time complexity [24, 25]. By
utilizing the triangular inequality, the algorithm can be further speeded up to generate thousands
of clusters from millions of conformations within several hours on a single PC, which is orders
of magnitude faster than K-means. We call this approximation algorithm AK -center where “A”
stands for approximation.

Furthermore, we show that A K-center clustering can be combined with other more deliberate
methods which are otherwise not applicable due to the massive nature of data. As AK-center
clustering efficiently reduces the complexity of the system in a faithful way, namely preserving
the density and hence free energy information, this hybrid strategy of combining A K-center with
more deliberate scheme proves to be very powerful. as is demonstrated in the result section where



A K-center is combined with spectral clustering to achieve a concise and clean-cut clustering of
conformation space.

Method

In K-center clustering problem, the input consists of points in a metric space as well as a
preordained number k specifying the number of clusters and the goal is to find a partition of the
points into clusters C1,---,C) and the cluster centers v, --- , v from the metric space, so as to
minimize the maximum radius of clusters: max; maxyec; d(p,v;). This problem is NP-hard but has
a simple 2-approximation algorithm [24, 25], meaning that the maximum radius of the outputted
clusters is at most twice than that computed by the exact algorithm. It has been proved that 2
is indeed the best approximation factor possible [25]. The algorithm uses a so called furthest-first
traversal ! of the data and works as follows. The algorithm first picks any data point as the first
cluster center and assigns all data points to the first cluster. Next it chooses the second cluster
center as the point furthest from the first one and generates the second cluster by re-assigning to
it those data points that are closer to the second cluster center, and then chooses the third cluster
center that is furthest from the previous two and generates the third cluster as the data points
having it as the closest cluster center, and so on until k cluster centers and thus k clusters are
obtained. These k chosen points are often called landmarks. We call this approximation K-center
algorithm A K -center. Note the above algorithm has one freedom of choosing the first cluster center,
which is done in a random fashion in our implementation.

A K-center(P, k)
: Pick the first cluster vy arbitrarily from P.
. Assign all data point to cluster C
: fori=2,3,--- ,k do
Take as the cluster center v; a point in P furthest from {vq,--- , 7,1}, namely v; maximizes
mini<j<; ||p — v;|| for any p € P.
for each data point p; € P do
if d(p;,vi) < d(pj,v;) (v is the current cluster center for p;) then
Re-assign p; to the new generated cluster Cj.
end if
end for
10: end for
11: Output v;’s and Cj’s.

=W =

Since the maximum radius of the clusters monotonically decreases as the landmarks are added,
we can keep adding the landmarks until the maximum radius of the clusters becomes less than a
given threshold. Thus, we can obtain a modified clustering algorithm denoted AK -center(P, ¢)
where 0 specifies the allowed maximum radius of the clusters.

The complexity of the algorithm is O(NK) in terms of pair-wise distance computation and
comparison where IV is the number of data points and K is the number of the generated clusters.
When we are given millions of conformations, it is not feasible to store all the pair-wise distances
and algorithm must compute them on the fly. The distance one often uses is the root mean squared
deviation (rmsd), which could be expensive to compute, especially for big molecules. Observe that
rmsd is indeed a distance measure, namely it satisfies triangular inequality. If we maintain the

!This strategy of choosing landmakrs is used in many data analysis methods such as isomap [26] and manifold
learning [27].



distances from the data points to their cluster centers, which needs O(NN) spaces, and the pair-wise
distances between cluster centers, which needs O(K?) spaces, by utilizing triangular inequality,
we can save a large amount of pair-wise distance computations. Before computing d(p;,v;) to
determine if re-assign the data point p; the newly generated cluster i in (step 6), we first check if

d(pj,v) < d(vi, v;)/2.
If so, by triangular inequality, we have

d(pjvyl) > d(”iv’/l) - d(pj77/l) > d(pj,l/l)

and hence for sure that the data point p; will not be re-assigned, which saves the computation
of the pair-wise distance d(p;, ;). In the results section, we demonstrate the effectiveness of this
strategy.

3 Results
3.1 Systems

We demonstrate the application of A K-center clustering to two model peptide systems in explicit
solvent: alanine dipeptide and Fy peptide (Figure 1). For both models, We measure the distance
using rmsd involving heavy atoms.

For alanine dipeptide, the conformations are from the trajectories obtained from the 400K
replica of a 20 ns/replica parallel tempering simulation described in [19]. There are 975 trajecto-
ries, each of which contains 20 ps simulation with conformations stored every 0.1 ps, thus totally
195k conformations. For alanine dipeptide system, it is easy to obtain equilibrium sampling and
projection of free energy landscapes onto a pair of torsion angles (¢ and ) is relatively accu-
rate. Therefore we can visualize the resulting clusters and check their various properties on this
projection of the free energy landscape. see Figure 3(a).

A o

Figure 1.: Left: The terminally blocked alanine dipeptide. Right: The 21-residue helix-forming Fy peptide.

The 21-residue helix-forming Fy peptide is a larger peptide system, MD simulation generates
two sets of 1000 trajectories at 302K of varying length of the capped F; peptide, one set initiated
from an ideal helix and another from a random coil [28]. The first 35ns of each trajectory was
discarded to make sure the data indeed reach equilibrium, leaving a total of 1975 trajectories, each
of which varies in length in 10 to 95 ns with a sampling interval of 100ps, and totally 745,263
conformations.

3.2 Efficiency

In this section, we demonstrate the efficiency of AK-center clustering method. We compare
with the commonly used K-means clustering. Recall that AK-center clustering method has one



freedom of choosing the first cluster center vy. The experiments on both data sets with different
randomly chosen 1/1’s show almost the same results in terms of efficiency as well as other properties
described in Section 3.3 and Section 3.4 (data not shown). Thus, in the paper, we only discuss the
results with the fixed first cluster center that is randomly chosen.

Since rmsd measures the distance between two conformations up to a rigid transformation
(translation, rotation or their combination), the mean structure of a cluster is not well defined.
The often employed clustering on conformation space is K-medoids, which works iteratively as
follows. Randomly choose k points as cluster centers and form k clusters Cy,--- , C} by assigning
the rest of points to their closest cluster center, and then update cluster centers, and then form
the new k clusters based on the newly chosen cluster centers, and continue until the cluster centers
remain unchanged. To update the cluster center of C;, randomly choose a few trial points and take
the one with the least variance.

Table 1 shows the timing of AK-center and K-medoids applying on alanine dipeptide data.
A K-center is much more efficient than K-medoids. It also shows that utilizing triangular equality
can speed up both methods in more that an order of magnitude. Table 2 shows that A K-center
can generate ten thousands of clusters from about a million conformations in a few hours. The
timing is collected on a dual core machine with 16G MEM.

k 200 1000 2000 4000
A K-center 29 / 355 46 / 694 76 / 1389 132 / 2834
K-medoids | 1262 / 4333 | 1408 / 7914 | 1837 / 15067 | 2657 / 29666

TABLE 1:: Timing (in second) with / without triangle inequality of AK-center and K-medoids on alanine
dipeptide data. In K-medoids, we take 100 trial points in updating the cluster center for each cluster and
total iterations is 10.

k 1000
A K-center | 3815

5000
13528

10000
28595

20000
40915

TABLE 2:: Timing (in seconds) with triangle inequality of AK-center on Fs-peptide data.

3.3 Density information

Due to the good control on radius by AK-center method, below we will show that it preserves
density information better than K-medoids method does, which gives important information on the
free-energy landscape. This gets verified on both systems. For alanine dipeptide, the histogram of
radii of clusters show that most of clusters generated by A K-center are about the same size around
0.14 A (Figure 2(a)), while those by K-medoids have much wider spread (Figure 2(b)). The
histogram for Fs-peptide (Figure 2(c)) shows most of clusters generated by AK-center are about
the same size around 0.27 A. Therefore for the clusters generated by AK-center, the capacity of
each cluster well indicates its relative density, and hence the free energy of the state that the cluster
COVETS.

For alanine dipeptide, the mean force potential in ¢ —1 plane can be estimated by the histogram
of (¢,1)’s of all sampled conformations, see Figure 3(a), which is taken as the reference. To
demonstrate the density information preserved by clustering, we color a bin in ¢ — ¢ plane with
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Figure 2.: Histograms of the radii of clusters (a) K-medoids on alanine dipeptide with k& = 4000.(b)
A K-center on alanine dipeptide with k& = 4000; (¢) AK-center on Fs-peptide with & = 10000.

the average population of those clusters that cover the bin. As shown in Figure 3, A K-center gives
much better density estimation than K-medoids does.

Figure 3.: Mean force potential estimated using density; (a) ground truth; (b) Results from AK-center; (c)
Results from K-medoids.

3.4 Improving cluster boundaries

It is known that the clusters obtained by A K-center algorithm may not have clean-cut bound-
aries [29]. However, after applying AK-center clustering, the complexity of the system is reduced
by a lot, often from millions to thousands or tens of thousands, whence more deliberate scheme can
be further employed to obtain a clustering with clean-cut boundaries. Below we demonstrate this
idea by further applying spectral clustering over the clusters obtained by A K-center, to decompose
conformation space into metastable states.

A metastable state consists of many free energy basins where the energy barriers between them
are low. Transitions are fast within a metastable state but slow in-between. This separation
of time scale enables one to build a Markov State Model (MSM) over the conformation space
where each state in MSM is a metastable state. Such MSM can predict the long time behavior
of a biological system at the time scale that current computer simulation can not reach [1, 30].
However, it is a challenging task to decompose conformation space into metastable states. One
measure on the quality of metastable state decomposition is called the metastability, the sum of
self-transition probabilities of all metastable states [19]. The bigger the metastability is, the better



the decomposition is since the transition within a metastable state is faster than those in-between.
To achieve the maximum metastability, spectral clustering is naturally employed over the transition
matrix, as suggested by in [31]. Following [19], we take as microstates the clusters computed by
A K-center algorithm (k = 4000 for alanine dipeptide and & = 10000 for Fs-peptide), and build a
transition matrix using the input trajectories, and perform the spectral clustering over the transition
matrix to obtain the metastable states. We obtain 6 metastable states with metastability 5.56 for
alanine dipeptide data and 20 metastable states with metastability 13.07 for Fs-peptide. Both
results are comparable to that (5.64 for alanine dipeptide and 14.05 for Fs-peptide) obtained by
a much more complicated scheme in [19] involving 10 iterations of splitting and lumping based on
the initial micrcostates generated by K-means. As we discussed before, K-means clustering tends
to split the densely sampled free energy basin into many small clusters and lump the low density
regions into the clusters of quite different structures. Therefore, it is necessary to perform many
iterations of splitting and lumping to obtain good metastable states. On the other hand, A K-center
clustering does not lump the conformations with very different structures into the same cluster,
thus no extra effect needs to split the initial microstates.

4 Discussion and conclusion

One common concern about K-center clustering is that it tends to generate lots of noise clusters
of few population away from the highly populated basin clusters. The algorithm may waste its
resource, the quota k as the total number of clusters, on picking up noise. However, due to
the special property of conformation space, namely conformations are highly concentrated at free
energy basins, such waste is much less severe than that by K-means on splitting densely sampled
free energy basins. Moreover, this problem of picking up noise can be leveraged by designing
some noise filter and then leaving out those sparsely-populated noise. How to design noise filters
systematically is one of our current research direction.

To conclude, we have considered the clustering from geometric point of view and presented
a fast efficient clustering algorithm called A K-center for conformation space which preserves the
density and energy landscape information. We have also show its efficiency by applications to two
data set each with 10° conformations: alanine dipeptide and F, peptide. We have also shown A K-
center clustering can be combined with more deliberate schemes, for instance, to produce a concise
and clean-cut clustering of conformation space. We believe such hybrid strategy of combining A K-
center with other approaches which are otherwise not applicable due to high complexity of the
system is not only useful for studying conformation space, but also other systems with the feature
that data are highly concentrated at certain regions. We also believe that it is not hard to extend
the A K-center clustering method for clustering data sets of billions of conformations, by using the
techniques such as hierarchical structure, which is one of our on going research.
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