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1 Overview 
 

NAST/C2A is a set of Python tools that enables you to generate full-atomic 3D RNA 

structures from secondary structure information in less than a day.  NAST generates coarse-

grained 3D structures from secondary structure information, and C2A adds the full-atomic 

details to these coarse-grained models. 

 

 

 

1.1 Nucleic Acid Simulation Toolkit (NAST) 

 

NAST is a knowledge-based coarse-grained tool for modeling RNA structures. It produces a 

diverse set of plausible 3D structures that satisfy user-provided constraints based on: 

 

1.   Primary sequence 

2.  Known or predicted secondary structure 

3.  Known or predicted tertiary contacts (optional) 

 

Additionally, NAST can use residue-resolution experimental data (e.g., hydroxyl radical 

footprinting) to filter the generated decoy structures.  By filtering the coarse-grained 3D 
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structures it produces based on agreement to available experimental data, a model of the 

molecule which satisfies all the known residue-resolution data is produced. 

 

NAST is written in Python and incorporates Python-OpenMM, a Python version of 

OpenMM, a library that allows molecular dynamics simulations to be accelerated on 

graphics processing units (GPUs). 

 

 

Please cite the following article in any published work which utilizes NAST: 

 

Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D, Altman RB. Coarse-

grained modeling of large RNA molecules with knowledge-based potentials and structural 

filters. RNA. 2009 Feb;15(2):189-99.   

 

 

 

1.2 Coarse to Atomic (C2A) 

 

C2A uses a knowledge-based approach to instantiate full atomic detail into coarse grain 

templates of 3D RNA structures.  C2A uses geometries observed in known RNA 3D crystal 

structures to find plausible full atomic matches to fragments in a coarse-grained template 

structure. Currently, only coarse grain models that use a one-point-per-residues (the C3’ 

atom) representation can be used as input. Models constructed using NAST can be run 

through C2A to generate a full-atomic model.  C2A is written in Python. 

 

 

Please cite the following in any published work which utilizes C2A: 

 

Jonikas M.A., Radmer R.J., Altman R.B. Knowledge-Based Instantiation of Full Atomic 

Detail into Coarse Grain RNA 3D Structural Models. Submitted to Bioinformatics.  

 

http://simtk.org/home/nast 

 

http://simtk.org/home/nast�
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2 Prerequisites 
 

NAST/C2A:  You can download NAST/C2A from http://simtk.org/home/nast`.  Click on 

“Downloads” and follow the directions in README.pdf to install and test NAST/C2A. 

 

Example files:  On Windows, you will need to download a separate package for the 

examples, also available from http://simtk.org/home/nast.   Example files for NAST/C2A 

are included in the Mac and source code installation packages.   

 

VMD (or another software for viewing PDB-format structures):   Download VMD 

from http://www.ks.uiuc.edu/Research/vmd. Click on "Download VMD" and select the 

installation for your platform. We recommend you get Version 1.8.6 or higher. Follow the 

on-line instructions for installing. 

http://simtk.org/home/nast�
http://simtk.org/home/nast�
http://www.ks.uiuc.edu/Research/vmd�
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3 The Basics of Running 

NAST 
 

3.1 Objectives 

 

These exercises are intended for you to: 

• Learn the basics of how to run NAST  

• Learn how to visualize the NAST results within VMD 

 

3.2 Open a command prompt/terminal window 

 

NAST is run from the command prompt/terminal.  To launch a command prompt/terminal 

window, select: 

 

(Windows)      Start -> All Programs -> Accessories -> Command Prompt 

(Mac OS)      Macintosh HD -> Applications -> Utilities -> Terminal 

 

3.3 Navigate to your examples folder 

 

Within the command prompt/terminal window, navigate to the nast-0.5 examples folder 

The exact directory path to this folder will vary, depending on where you saved the files you 

downloaded. 

 

To change to another directory, use the command: 

 

 cd <directory path> 
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On Windows, for example, you downloaded a separate file for the examples.  If you put the 

examples folder on your Desktop, then to get to the NAST/C2A examples folder, in the 

command prompt window, you would type: 

 

(Windows)      cd “c:\Documents and Settings\Your Username\Desktop\nast-

0.5.examples\nast” 

 

where you substitute Your Username with the name of your Windows log-in name.   

 

 

Note:  Quotation marks are required in specifying directory paths within the Windows 

command prompt window if the directory path includes spaces. 

 

 

 

On Mac OS and Linux, the example files came with the programs and are located in a 

subdirectory of the NAST (Mac OS) or nast-0.5 (Linux) folders.  So, for example, on the Mac, 

if you installed NAST on your Desktop, you would type the following in the terminal 

window: 

 

(Mac OS)      cd /Users/<user_name>/Desktop/NAST/nast-0.5/examples/nast 

 

3.4 Your first NAST run 

 

Let’s try out NAST and see what happens. 

 

1.  Go to the 6TNA_MD example folder by typing: 

 

(Windows)       cd 6TNA_MD 

(Mac OS/Linux)      cd 6TNA_MD 
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2.  Now run the test example runTest.py in this directory by typing: 

 

(Windows)       \Python26\python runTest.py 

(Mac OS/Linux)      python runTest.py  

 

Two files will be generated and saved in this directory:  6TNA_nast.pdb and 

6TNA_nast.psf. 

 

3.  We can visualize the results within VMD: 

 

a.   Launch VMD.  If you installed VMD in typical locations, you would select:   

 

(Windows)     Start -> All Programs -> University of Illinois -> VMD -> VMD 1.8.6 

(Mac OS)      Macintosh HD -> Applications -> VMD 

 

b.   The “VMD Main” window will appear.  Select: 

 

   File -> New Molecule… 

 

    
 

c. To load the test trace into VMD, in the “Molecule File Browser” that appears, 

click on “Browse” and select the 6TNA_nast.pdb created by NAST.      
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Note:  In some Windows environments, the extensions (e.g., .pdb) will not 

appear.  You can identify the PDB file by its icon (i.e.,   ) or by hovering 

over a file to see the file type.    

 

Click “Load” in the “Molecule File Browser.” 

 
d. A .psf file is needed to connect the residues together.  To load this file in, 

return to the “Molecule File Browser” window.  Set the fields as follows: 

 

 

Load files for:  6TNA_nast.pdb 

Filename:  6TNA_nast.psf 

 

Note:  In some Windows environments, the extensions (e.g., .psf) will not 

appear.  You can identify the PSF file by its icon (i.e.,  ) or by hovering 

over a file to see the file type.    

 

Click “Load.” 

 

Scroll through the frames of the trajectory to see different conformations of one particular 

molecule using the slider bar in VMD (see figure below). 
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The structures should resemble those shown in the figure below.  This particular run began 

with a coarse-grained representation of a crystal structure (see frame 0 of the trajectory).  

The first several frames of the simulation may look unusual, as the structure seeks to satisfy 

NAST’s energy function. Although you are starting from a crystal structure, it may contain 

distances, angles or dihedrals that are not “RNA-like” based on the observations used to 

define the NAST energy function. In the process of satisfying the desired distribution of 

distances, angles, dihedrals and ideal helical geometry, the structure may pass through high 

energy states that do not look “RNA-like” before settling into an “RNA-like” conformation. If 

the structure does not settle quickly into a “RNA-like” conformation, it may be necessary to 

decrease the time-step of the simulation (more details on how to do this later).  

 

 

 
 
 

3.5 Starting a NAST simulation from an unfolded state 

 

In the previous example, the initial structure used for the NAST simulation was a crystal 

structure, so a 3D structure was already known.  The primary use of NAST, though, is to 

generate 3D structures from an unfolded state.   

 

In this exercise, you will use NAST to produce 3D structures from sequence data, secondary 

structure information, and tertiary contact information.  We will also examine the details of 

the Python script used to accomplish this. 

 

1. Copy the runNast.py Python script to myRunNast.py by typing the following into 

your command prompt/terminal window: 
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(Windows)       copy runNast.py myRunNast.py 

(Mac OS/Linux)      cp runNast.py myRunNast.py 

 

2. Open a text editor to edit myRunNast.py.  DO NOT use Microsoft Word or other 

similar programs.  They will insert formatting instructions that are not readable by 

NAST. 

 

On Windows, we recommend WordPad: 

 

(Windows)  Start -> All Programs -> Accessories -> WordPad 

 

On Mac OS and Linux, there are many options, including emacs, vi, and TextEdit 

(Macintosh HD -> Applications -> TextEdit). 

 

 You should see a file, like that shown below. 
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Parameter 
 

 
Details 

 
pdbInFilename 

 
Specifies the input file name for the initial 
structure for the simulation.  This can be a 
PDB file (must have extension .pdb) or a 
primary sequence – see details later in this 
example, as well as in Appendix A.  Remember 
to put quotes around the file name. 
 

 
pdbOutFilename 

 
Specifies the name of the output trajectory file. 
Make sure to include the extension (.pdb). 
Remember to put quotes around the file name. 
 

 
helixFilename 

 
Specifies the name of the file that specifies the 
secondary structure.   Remember to put quotes 
around the file name.  Details about the file 
can be found in Appendix A. 
  

 
contactsFilename 

 
Specifies the name of the file that specifies the 
tertiary contacts.   Remember to put quotes 
around the file name.  Details about the file 
can be found in Appendix A. 
 

 
numSteps 
 

 
Specifies the total number of steps to run in 
the molecular dynamics simulation .  This 
would be the maximum number of 
conformations you would obtain.  Each step of 
the simulation represents 5 fs. 
 
Do not use commas or periods in specifying 
this number. 
 
 

 
stepsPerReport 
 

 
Specifies how often to save a frame (a 
conformation).  In this example, with 1000 
stepsPerReport and a numSteps of 100000, a 
total of 100 frames (conformations) would be 
saved. 
 
Do not use commas or periods in specifying 
this number. 
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Parameter 
 

 
Details 

 
defaultTemperature 
 

 
Specifies the temperature for the molecular 
dynamics simulations in Kelvins.  300.0 K is 
the temperature at which NAST which 
characterized, so this is the value you will want 
to use unless you are purposefully trying to 
increase or decrease the energy of the system. 
 

 
randomSeed 
 

 
Specifies the random seed to be used by the 
molecular dynamics simulation program.  You 
can give a specific value or the value of None, 
in which case the simulation will randomly 
choose a number. We recommend you use the 
value None (no quotes;  case-sensitive). 
 

 
useGpu 
 

 
Specifies whether or not to use the GPU to 
accelerate the molecular dynamics.  Valid 
values are True or False. 
 

 
verbose 
 

 
Specifies whether or not to print out the status 
updates as the simulation runs.  Valid values 
are True or False. 
 

 
 

3. Edit the script to: 

 

a. Start NAST from a sequence instead of a structure.  Change the input file to 

6TNA_C3.seq as the input file.   Primary sequence files cannot have the 

extension .pdb, which is reserved for structure inputs to NAST.   

 

b. Save the output to a new file:  T1.pdb. 

 

c. Change the randomSeed value to None (capital N, followed by the lower 

case letters o, n, e). 
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4. Now run the edited script myRunNast.py by typing: 

 

(Windows)       \Python26\python myRunNast.py 

(Mac OS/Linux)      python myRunNast.py  

 

Two files will be generated and saved in this directory, based on the 

pdbOutFilename that you specified:  T1.pdb and T1.psf. 

 

5. Visualize trace T1.pdb in VMD (See test run exercise – Section 3.4).  Remember to 

load in the T1.psf file to connect the residues. 

 

If you scroll through the frames of the trajectory, you will notice that in this example, 

you started from an unfolded circle.  After a few frames, the structure took on a more 

RNA-like 3D structure (see figure below).  Throughout the course of the simulation, 

the secondary structure and tertiary contacts are constrained. Every time the 
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simulation is run, the outcome will be different (provided the randomSeed variable 

is different) because there is a random component to the assignment of initial 

velocities. 

       

 

3.6 Running a longer NAST simulation and creating initial 

files to be used with C2A 

 

In this example, you will explore three other parameters in the Python script for running 

NAST (numSteps, randomSeed, and verbose) and learn to use VMD to generate the 

initial file needed by C2A.  

 

1. Open a text editor to edit myRunNast.py.  (see previous example on starting NAST 

from an unfolded state)   

 

2. Make the following changes to myRunNast.py: 

 

a. Change the output file name to “T4.pdb” 

b. Change numSteps to 200000 

c. Change randomSeed to None 
 

d. Optional:  Change verbose to True 
 

In this example, we have increased the maximum number of timesteps for the 

molecular dynamics simulation (numSteps). This will increase the conformational 

diversity.  Another way to achieve this is to repeat the run, but make sure you have 

set randomSeed to None so that there is randomness to your simulation.  In this 
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example, we have done both.  Note that if you set randomSeed to a particular value,  

the molecular dynamics simulation will be the same (as long as all the other variables 

are unchanged as well) since the velocities will be set based on the same seed value. 

 

In this example, we also set verbose to True so that you can track the progress of 

the simulation. 

 

If your simulation is taking too long to run, you can kill the job using ctrl-z. The 

frames that we generated thus far in the simulation will be saved. 

 
3. Now run the edited script myRunNast.py by typing: 

 

(Windows)       \Python26\python myRunNast.py 

(Mac OS/Linux)      python myRunNast.py  

 

Two files will be generated and saved in this directory, based on the 

pdbOutFilename that you specified:  T4.pdb and T4.psf. 

 

4. Visualize trace T4.pdb in VMD (See test run exercise – Section 3.4).  Remember to 

load in the T4.psf file to connect the residues. 

 

5. From VMD, save one of the frames of T4.pdb as T4-last.pdb. Pick a frame that you 

will want to add full atomic detail to in a later exercise. It does not necessarily need to 

be the last frame of the simulation: 

 

a. Click on the trajectory of interest in the VMD Main Menu to select it. 

b. Select File -> Save Coordinates.  
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c.  In the “Save Trajectory” window that appears, set: 
 

Selected atoms:  all 

File type:  pdb 

First:  <frame number for the conformation to use with C2A> 

Last:  <same frame number as for First:> 

 
Click “Save.”  When prompted for the file name to save to, enter: 
 

T4-last.pdb 
 
Be sure to specify the .pdb extension. 
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4 The Basics of Running C2A 
 

4.1 Objectives 

 

These exercises are intended for you to: 

• Learn how to use C2A to search a reference molecule for fragments that match your 

coarse-grained molecule 

• Learn how to use C2A to assemble fragment matches into a full atomic model 

 

4.2 Open a command prompt/terminal window 

 

C2A is run from the command prompt/terminal.  To launch a command prompt/terminal 

window, select: 

 

(Windows)      Start -> All Programs -> Accessories -> Command Prompt 

(Mac OS)      Macintosh HD -> Applications -> Utilities -> Terminal 

 

4.3 Navigate to your examples folder 

 

Within the command prompt/terminal window, navigate to the nast-0.5 examples folder 

The exact directory path to this folder will vary, depending on where you saved the files you 

downloaded. 

 

To change to another directory, use the command: 

 

 cd <directory path> 

 

On Windows, for example, you downloaded a separate file for the examples.  If you put the 

examples folder on your Desktop, then to get to the NAST/C2A examples folder, in the 

command prompt window, you would type: 
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(Windows)      cd “c:\Documents and Settings\Your Username\Desktop\nast-

0.5.examples\nast” 

 

where you substitute Your Username with the name of your Windows log-in name.   

 

 

Note:  Quotation marks are required in specifying directory paths within the Windows 

command prompt window if the directory path includes spaces. 

 

 

 

On Mac OS and Linux, the example files came with the programs and are located in a 

subdirectory of the NAST (Mac OS) or nast-0.5 (Linux) folders.  So, for example, on the Mac, 

if you installed NAST on your Desktop, you would type the following in the terminal 

window: 

 

(Mac OS)      cd /Users/<user_name>/Desktop/NAST/nast-0.5/examples/nast 

 

4.4 Finding fragment matches 

 

The first step in adding full atomic detail to a coarse-grained model is to search a reference 

molecule for matching fragments and create a working library to be used by C2A.  As with 

NAST, the process is controlled via a Python script. 

 

1.  First, change to the directory 6TNA_c2a. 

 

If you are continuing from the NAST examples, you would type the following into 

your command prompt/terminal window: 

 

(Windows)      cd ..\6TNA_c2a 

(Mac OS/Linux)      cd ../6TNA_c2a 
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If you are starting from the examples directory, type the following:  

 

(Windows)      cd 6TNA_c2a 

(Mac OS/Linux)      cd 6TNA_c2a 

 

2. Open a text editor to examine the file ex1.py.  DO NOT use Microsoft Word or other 

similar programs when editing these files, since they insert formatting instructions 

that are not readable by C2A. 

 

You should see a file like that shown below.  This file is the script that searches a 

reference molecule for fragment matches and creates a working library that will be 

used later to C2A.  The table below describes each of the 6 parameters for the script 

in more detail. 
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Parameter 
 

 
Details 

 
templateTrace 
 

 
Specifies the name of the PDB file containing 
the coarse-grained model.  Currently, only 
coarse-grained models with a representation 
of one-point-per-residue using the C3’ atom 
are supported.  Remember to put the file name 
in single quotes. 
 

 
fragmentFile 
 

 
Specifies the name of the text file that defines 
the fragments of the coarse-grained model 
that need to be matched.  See Appendix B for 
more details.  Remember to put the file name 
in single quotes. 
 
NOTE:  This file name must be of the format 
<molecule-name>-FD.txt. 
 
NOTE:  There must be a matching file which 
contains the primary sequence and is named  
<molecule-name>-primary.txt or   
<molecule-name>.seq. 
 

 
conversionData 
 

 
Specifies the name of the file that contains 
information for converting from one base to 
another. This is necessary as the geometric 
matches will not necessarily contain the right 
sequence of bases.  You should never need to 
change this.  Remember to put the file name in 
single quotes. 
 

 
searchStructureFile 
 

 
Specifies the name of the PDB file containing 
the reference full atomic structure.  Remember 
to put the file name in single quotes. 
 

 
nhradius 
 

 
Specifies a cutoff for searching for non-helical 
matches (in Angstroms). This is used to 
control the strictness of the match search. If 
one of your non-helical fragments results in 
zero matches, increase this number. 
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Parameter 
 

 
Details 

 
hradius 
 

 
Specifies a cutoff for searching for helical 
matches (in Angstroms).  This is used to 
control the strictness of the match search. If 
one of your helical fragments results in zero 
matches, increase this number. 
 

 

 

3. Now let’s run the script ex1.py.  In the command prompt/terminal window, type: 

 

(Windows)       \Python26\python ex1.py 

(Mac OS/Linux)      python ex1.py  

 

You will see an output that looks like that shown in the figure below.  The script 

outputs how long it took to find matching fragments for each fragment of the 

template coarse-grained model.  A warning appears if less than 200 matches are 

found. 

 

 

 

 

4. Verify that you have at least 1 match for each fragment.  You can do this in one of two 

ways: 
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a. Scroll through the script output and see if any of the warnings say: 

 

Warning, keeping only 0 options for … 

 

If you see such a warning, then no matches were found for that particular 

fragment and you should re-run the script with larger values for nhradius 

and/or hradius. If the line below the warning refers to a helix, increase the 

hradius value. Otherwise, increase the nhradius value. Try using 

increments of 1 Angstrom when increasing these variables. 

 

b. Look at the output files generated by ex1.py.  The output file names are of the 

format <fragment-identifier>-stats.dat.  So in your command 

prompt/terminal window, type: 

 

(Windows)       dir *-stats.dat 

(Mac OS/Linux)      ls -l *-stats.dat 

 

Look at the file sizes of each of these files.  If any of them are 0, then no 

matches were found for that particular fragment and you should re-run the 

script with larger values for nhradius and/or hradius. If the name of the 

file contains the letter H followed by a number, the fragment with 0 matches 

is a helical fragment, therefore you should increase the hradius variable. 

Otherwise, it is a non-helical fragment, and you should increase the 

nhradius variable. 

 

5. The ex1.py script also created a new file called 6TNA-C3-1N32-subA-0-lib.pkl.  The 

format of this output is: 

 

“model name” – “reference molecule name” – “model frame id” –lib.pk 

 

The “model name” comes from the templateTrace file name.  The “reference 

molecule name” comes from the fragmentFile specification.   
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“Model frame id” identifies which frame the library is associated with.  In this 

example, the templateTrace file only contained one frame (frame 0).  However, it 

is possible to use a PDB file that contains more than one frame, in which case, 

multiple libraries would be generated, each with a different “model frame id,” 

starting with 0. 

 

This library is needed by the second step of C2A, which assembles the fragments into 

a full atomic structure. 

 

4.5 Assembling fragments into a model 

 

The second step in adding full atomic detail to a coarse-grained model is to assemble the 

matching fragments that were found.  

 

1. Open a text editor to examine the file ex2.py.  DO NOT use Microsoft Word or other 

similar programs to edit or create these files since they insert formatting instructions 

that are not readable by C2A. 
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You should see a file like that shown above.  This file is the script that assembles 

fragments from a working library into the full atomic structure.  The table below 

describes each of the 6 parameters for the script in more detail. 

 

 
Parameter 
 

 
Details 

 
fragmentFile 
 

 
Specifies the name of the text file that defines 
the fragments of the coarse-grained model 
that need to be matched.  See Appendix B for 
more details.  Remember to put the file name 
in quotes. 
 

 
coarseIn 
 

 
Specifies the name of the PDB file containing 
the coarse-grained model.   Remember to put 
the file name in quotes. 
 

 
pieceLib 
 

 
Specifies the name of the library that contains 
the matched fragments.  This is one of the 
outputs from running the first step of C2A 
(using script ex1.py).   Remember to put the 
file name in quotes. 
 

 
outName 
 

 
This is the root name for the output files.  
Remember to put the file name in quotes. 
 

 
n 
 

 
Specifies the number of full atomic structures 
to make 
 

 
cutoff 
 

 
Specifies the distance (in Angstroms) that 
defines a “collision.”  A fragment, if inserted 
into the full atomic model, would create a 
“collision” if it is closer to another atom than 
this cutoff distance and would not be used as 
part of the final model. 
 

 

 

2. Now let’s run the script ex2.py.  In the command prompt/terminal window, type: 
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(Windows)       \Python26\python ex2.py 

(Mac OS/Linux)      python ex2.py  

 

The file test-0.pdb will be created.  Load this file into VMD to visualize it (see 

detailed instructions under “Your first NAST run”).  You may notice some gaps in the 

structure.  This is the result of full atomic fragments coming from disjointed parts of 

the full atomic reference molecule, being assembled together in a new way. The gaps 

are large enough to make the structure chemically unrealistic; however, they can 

easily be minimized by using a classical molecular dynamics program, like 

GROMACS (OpenMM Zephyr provides an easy-to-use interface to GROMACS – see 

details in Section 4.7).   

 

 

 

 

 

 

https://simtk.org/home/zephyr�
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4.6 Running C2A on the coarse-grained model you generated 

with NAST 

 

Now that you’ve learned the basis of running C2A, you can try it on the coarse-grained 

model that you generated earlier with NAST (Section 3.6) 

 

1. Copy over the coarse-grained model you saved from the NAST-generated trajectory 

(T4-last.pdb).  In the command prompt/terminal window, type: 

 

(Windows)       copy ..\6TNA_MD\T4-last.pdb . 

(Mac OS/Linux)      cp ../6TNA_MD/T4-last.pdb . 

 

2. Copy ex1.py to myEx1.py.  You will do your edits to myEx1.py.  Type: 

 

(Windows)       copy ex1.py myEx1.py 

(Mac OS/Linux)      cp ex1.py myEx1.py 

 

3. Open myEx1.py in a text editor and modify it to use your coarse-grained model.   So 

set: 

 

templateTrace = ‘T4-last.pdb’ 

 

No other parameters will change in this case.  You will use the same fragment 

definition as 6TNA-C3, since we are still working with the same tRNA molecule, and 

the same reference molecule. 

 

4. Now let’s run your edited script myEx1.py.  In the command prompt/terminal 

window, type: 

 

(Windows)       \Python26\python myEx1.py 

(Mac OS/Linux)      python myEx1.py  
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Check for warnings that 0 options were found.  If this warning appears, re-run the 

script with larger values for nhradius and/or hradius. 

 

Also verify that the T4-last-1N32-subA-0-lib.pkl file was created by listing the 

contents of the directory: 

 

(Windows)       dir 

(Mac OS/Linux)      ls 

 

5. Now set up the files to run step 2 of C2A.  Copy ex2.py to myEx2.py.  You will do 

your edits to myEx2.py.  Type: 

 

(Windows)       copy ex2.py myEx2.py 

(Mac OS/Linux)      cp ex2.py myEx2.py 

 

6. Open myEx2.py in a text editor and modify it to use your coarse-grained model and 

the new working library.   Also, change the output root name.  So set: 

 

coarseIn = ‘T4-last.pdb’ 

pieceLib = open(‘T4-last-1N32-subA-0-lib.pkl’) 

outName=’T4-FA’ 

 

7. Now let’s run your edited script myEx2.py.  In the command prompt/terminal 

window, type: 

 

(Windows)       \Python26\python myEx2.py 

(Mac OS/Linux)      python myEx2.py  

 

8. Visualize the output file T4-FA-0.pdb within VMD. 

 

9. You may wish to make more than one full atomic structure from your coarse-grained 

template by increase the value of n. Because of the random component in selecting 

and assembling matches, it is preferable to generate many full atomic structures (~5-

10), as some may be better than others. 
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4.7 Modifying C2A-generated full atomic files for use with 

Amber96 force field  

 

The PDB files generated by C2A are not compatible with the Amber96 force field, used 

within the molecular dynamics program GROMACS and OpenMM Zephyr, a program built 

on top of GROMACS.  You can modify the output full atomic file to be used by these 

programs by using the fixpdbforgromacs.py script.  For the previous exercise with a full 

atomic output file named T4-FA-0.pdb, you would type:  

 

(Windows)        

\Python26\python fixpdbforgromacs.py T4-FA-0.pdb T4-FA-0-mod.pdb 

 

(Mac OS/Linux)        

python fixpdbforgromacs.py T4-FA-0.pdb T4-FA-0-mod.pdb 

 

Note that you provide the input file name, followed by the name for the new modified file. 

 

You can later use the OpenMM Zephyr program with your T4-FA-0-mod.pdb file to 

minimize the chemically unrealistic gaps in the C2A output structure.
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5 Generating Input Files for 

NAST and C2A 
 

5.1 Overview 

 

Both NAST and C2A require a number of input files.  NAST requires input files for the 

primary sequence and for the secondary structure and optionally a file for the tertiary 

contacts.  C2A requires a fragment definition file, describing the structure in terms of 

helices, loops, junctions and ends.  These required files can all be generated automatically if 

you have a BPSEQ format.   

 

In this chapter, you will learn about .bpseq files and how to generate the NAST and C2A files 

from them.  Specific details about the input files themselves can be found in Appendices A 

(NAST input files) and B (C2A input file). 

 

5.2 The BPSEQ file format 

 

The BPSEQ file format is a simple text file that describes structural information.  It contains 

one line for each base in the molecule.  Each row contains three columns. The first column 

specifies the sequence position, starting at one. The second column lists the base using its 

one-letter notation. The third column lists the position number of the base with which is 

paired.  If the base is unpaired, the third column is zero. 

 

Structures in the BPSEQ file format can be obtained from websites, such as the Comparative 

RNA Web site and project (http://www.rna.ccbb.utexas.edu/DAT/) and RNA STRAND 

(http://www.rnasoft.ca/strand/). 

 

 

 

 

http://www.rna.ccbb.utexas.edu/DAT/�
http://www.rnasoft.ca/strand/�
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5.3 Generating NAST and C2A files from BPSEQ files 

 

The instructions below explain how to generate the initial files needed for NAST and C2A 

from a BPSEQ file.  After you obtain these initial files, you can test your familiarity with the 

process by generating a coarse grain model from them and then adding in the full atomic 

detail. 

 

1.  Go to RNA STRAND (http://www.rnasoft.ca/strand/) and download the BPSEQ file 

for PDB_00005: 

 

a. Enter PDB_00005 in the search box and click “Search RNA STRAND ID.”  

You should be taken to a page that looks like that shown in the figure below. 

 

 

 

b. Click on the instructions “click to expand/contract all tables” near the top to 

bring up a table of information to the right of the webpage. 

http://www.rnasoft.ca/strand/�
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c. Select “Bpseq” from the “Format” drop-down menu.  Then click on “View the 

RNA sequence and secondary structure for molecule PDB_00005.”  You will 

see a webpage that looks like that in the figure below. 
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d. Cut and paste the results into a file named PDB_00005.bpseq.   The file name 

must have the extension .bpseq. 

 

Windows users:  If you are using WordPad, you will be required to specify 

a document type.  Choose “Text Document.”  This will save the file in the 

needed format, but it will append .txt to the end of your file name.  To remove 

the .txt, go to your command prompt window and navigate to the directory 

where you saved the file: 

 

(Windows)     cd <directory> 

 

Then, copy the file to a new name ending with .bpseq.  For example, if the 

WordPad file was saved as PDB_00005.bpseq.txt, then you would type: 

 

(Windows)     copy PDB_00005.bpseq.txt PDB_00005.bpseq 

 

Mac OSX TextEdit users:  If you are using TextEdit, you will first need to 

create a blank file from the terminal window with the .bpseq extension.  



   Generating NAST and C2A files from BPSEQ files 

 

41 

TextEdit is not able to create pure text files, although it can edit them.  To 

create the blank text file, type: 

 

(Mac OS)     touch PDB_00005.bpseq 

 

Open PDB_00005.bpseq in TextEdit and paste in the data.  Save the file.   

 

2. Create a new directory for PDB_00005 within the NAST examples folder and move 

your PDB_00005.bpseq file into it. 

a. Navigate back to the examples/nast folder.  If you are continuing from the 

C2A exercises, this should just be one directory level higher so you would 

type: 

 

(Windows)       cd ..  

(Mac OS / Linux)      cd .. 

 

b. Make a new folder called PDB_00005  (that’s 4 zeros!) 

 

(Windows)       mkdir PDB_00005  

(Mac OS / Linux)      mkdir PDB_00005 

 

c. Put your PDB_00005.bpseq file into this new PDB_00005 directory. 

 

3.  Go to the new directory from within your command prompt/terminal window: 

 

(Windows)       cd PDB_00005 

(Mac OS / Linux)      cd PDB_00005 

 

4. In the new PDB_00005 directory, generate the input files needed for NAST and C2A 

by typing:  

 

(Windows)       \Python26\python ..\parseBPseq.py PDB_00005 

(Mac OS / Linux)      python ../parseBPseq.py PDB_00005 
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In specifying the file name, you do not include the .bpseq extension. 

 

After the script completes, you should have three new files in the directory:  

PDB_00005-helix.txt, PDB_00005.seq, and PDB_00005-FD.txt.  To check the 

contents of your directory, type the following into your command prompt/terminal 

window: 

 

(Windows)       dir  

(Mac OS / Linux)      ls 

 

 

The current version of parseBPseq.py cannot handle tertiary contacts in the .bpseq file (it 

will create a one-pair-long helix). You must specify tertiary contacts by writing your own 

tertiary contact file. 

 

 

You can now use these files to build a coarse grain model and add full atomic detail.  Try this 

out on your own! 
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6 Appendix A:                    

NAST Input Files 

 
NAST requires a primary sequence file and a secondary structure file.  It can optionally take 

a tertiary contacts file.  The format for all these files are described below. 

 

6.1 Primary sequence file 

File name format:   Must NOT end with the extension .pdb, which is reserved for reading 

structures into NAST  

Format:  

• One residue per line 

• Only options are: A, U, C, G  

(Technically, NAST can handle any type of residue, including modified residues. 

However, C2A can only handle the regular bases, which have to be capitalized –  

modified bases are often represented with lower case letters, like g.  If you intend to 

use the output of NAST with C2A, you are limited to regular bases.) 

• For a break in the sequence (e.g., more than one strand), use TER  

Example: 

A 
G 
C 
U 
TER 
A 
G 
C 
U 
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See also  6TNA_C3.seq  (in the NAST examples folder under examples/nast/6TNA_MD/). 
 
 
 
 

6.2 Secondary structure file 

  

Format: 

• Two lines per helix, one blank line separating helices  

• The numbers represent residues based on their position in the sequence, with 

numbering starting at 1. 

• Paired residues line up vertically  

 

In the example 1 below, there are 2 helices.  In the first, residue 1 lines up with 20; 2 with 19; 

3 with 18; and 4 with 17.  In the second helix, residue 6 lines up with 15;  7 with 14; and 8 

with 13. 

Example 1: 

1 2 3 4 
20 19 18 17 
 
6 7 8 
15 14 13 
 
 

See also 6TNA_helix.txt (in the NAST examples folder under examples/nast/6TNA_MD/) .  

In this file a series of three periods (…) can be used to indicate a range, so the above example 

could have between written as follows: 

Example 2: 

1 … 4 
20 … 17 
 
6 … 8 
15 … 13 
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This format is useful for allowing you to describe bulges, as shown in Example 3.  Here, 1 

pairs with 20;  19 is a bulge residue (not paired with anything);  2 pairs with 18 and so on. 

Example 3: 

1 2 … 4 
20 18 … 16 
 

 

6.3 Tertiary contacts 

Format:  

• One line per tertiary contact  

• The numbers represent residues based on their position in the sequence, with 

numbering starting at 1. 

• A tertiary contact is essentially a spring that connects the two specified residues.  

This interaction is specified in four columns:  

o First two columns are the two residues in the tertiary contact  

o Column 3 is the spring-preferred distance in nm 

o Last column is the spring strength in kJ/nm2  

 

In the example below, there are two tertiary contacts.  The first row specifies the 

contact between residues 8 and 14.  The spring-preferred distance is 1.3 nm and the 

spring strength is 200 kJ/nm2.  The distance value of 1.3 nm represents the 

approximate distance between the C3’ atoms of two base-paired residues. The spring 

strength of 200 kJ/nm2 has been determined to work best in our experiments. To 

constrain the desired distance more stringently (for example, if using known 

distances from crystal structures), increase this value (for example, try 500). If you 

want the tertiary contact distance to be more flexibly distributed around the 
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specified distance, decrease this value (for example, try 50). The second row specifies 

a similar contact between residues 15 and 48. 

Example: 

8   14   1.3  200 
15  48   1.3  200   
 
 

See also 6TNA_contacts.txt (in the NAST examples folder under 

examples/nast/6TNA_MD/) .  
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7 Appendix B:  C2A 

Fragment Definition File 

 
C2A requires a fragment definition file, which is described below. 

 

File name format:  Must end with -FD.txt  

Example:   

H1 1:7,66:72 10 

H2 10:13,22:25 10 

H3 27:31,39:43 10 

H4 49:53,61:65 10 

L1 H2 10 

L2 H3 10 

L3 H4 10 

J1 H1:5,H2:5 10 

J2 H2:3,H3:5 10 

J3 H3:3,H4:5 10 

E1 H1:3+4 10 

 

 

Format:  

- Helices:    

o Helix fragment definitions must start with the letter H 

o The first range of number (Residue1:Residue2) lists the residues that make up 

the 5’ end of the helix 



 

 

48 

o The second range of numbers (Residue3:Residue4) lists the residues that 

make up the 3’ end of the helix 

o The last number specifies the number of choices to be used in the fragment 

assembly 

o In the example above, the line H1 1:7,66:72 10 instructs C2A that:  

H1 is the first helix.  

1:7 means that the 5' end of the helix is made up of residues 1 through 7.  

66:72 means the 3' end of the helix is made up of residues 66 to 72. That is 66 

pairs with 7, etc.  

10 represents the number of choices to be used in the fragment assembly 

protocol.  Here, the 10 best fragments will be the only choices for H1.  

- Loops:  

o Loop definitions must start with the letter L 

o The middle entry specifies where the loop is located 

o The last value is the number of choices to be used in the fragment assembly 

protocol 

o In the example above, the line L1 H2 10  instructs C2A that: 

L1 is the identifier for the loop.  

L1 is the loop at the end of H2.  

10 once again represents the number of choices for the assembly protocol.  

- Junctions:  

o Junctions must start with the letter J 

o The second entry specifies what the 5’ end of the junction is connected to 

o The third entry specifies what the 3’ end of the junction is connected to 

o The last value is the number of choices to be used in the fragment assembly 

protocol 
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o In the example above, the line J1 H1:5,H2:5 10 instructs C2A that: 

J1 is the identifier for this junction.  

H1:5 means that the junction is connected on the 5' end to the 5' half of helix 

H1.  

H2:5 means that the junction is connected on the 3' end to the 5' half of helix 

H2.  

10 represents the number of choices for the fragment assembly protocol.  

- Ends:  

o Ends must start with the letter E 

o The second entry specifies where the end is connected to and in which 

direction it extends 

o The last entry is the number of choices to be used in the fragment assembly 

protocol 

o In the example above, the line E1 H1:3+4 10 instructs C2A that: 

E1 is the indentifier.  

H1:3 means that the end is connected to the 3' half of helix H1.  

+4 means that the end extends from the helix by four residues counting up (if 

it were counting down, it would be -4) 
10 represents the number of choices for the fragment assembly protocol 
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