

NAST/C2A

 Tutorials
 Release 0.5

June 16, 2009
 Website: Simtk.org/home/nast

Copyright and Permission Notice

Copyright (c) 2009 Stanford University
Contributors: Joy P. Ku, Magdalena Jonikas, and Randall Radmer

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

v

Acknowledgments

NAST/C2A and all related activities are funded by the Simbios National Center for

Biomedical Computing through the National Institutes of Health Roadmap for Medical

Research, Grant U54 GM072970. Information on the National Centers can be found at

http://nihroadmap.nih.gov/bioinformatics.

https://simtk.org/home/nast�
http://simbios.stanford.edu/�
http://nihroadmap.nih.gov/bioinformatics�

vii

Table of Contents

1 OVERVIEW .. 9

1.1 Nucleic Acid Simulation Toolkit (NAST) .. 9

1.2 Coarse to Atomic (C2A) ... 10

2 PREREQUISITES ... 11

3 THE BASICS OF RUNNING NAST .. 13

3.1 Objectives ... 13

3.2 Open a command prompt/terminal window.. 13

3.3 Navigate to your examples folder .. 13

3.4 Your first NAST run ... 14

3.5 Starting a NAST simulation from an unfolded state .. 17

3.6 Running a longer NAST simulation and creating initial files to be used with C2A................ 22

4 THE BASICS OF RUNNING C2A .. 25

4.1 Objectives ... 25

4.2 Open a command prompt/terminal window.. 25

4.3 Navigate to your examples folder .. 25

4.4 Finding fragment matches ... 26

4.5 Assembling fragments into a model .. 31

4.6 Running C2A on the coarse-grained model you generated with NAST 34

4.7 Modifying C2A-generated full atomic files for use with Amber96 force field 36

5 GENERATING INPUT FILES FOR NAST AND C2A 37

5.1 Overview ... 37

5.2 The BPSEQ file format ... 37

5.3 Generating NAST and C2A files from BPSEQ files ..38

6 APPENDIX A: NAST INPUT FILES ... 43

6.1 Primary sequence file ... 43

6.2 Secondary structure file ... 44

viii

6.3 Tertiary contacts .. 45

7 APPENDIX B: C2A FRAGMENT DEFINITION FILE 47

9

1 Overview

NAST/C2A is a set of Python tools that enables you to generate full-atomic 3D RNA

structures from secondary structure information in less than a day. NAST generates coarse-

grained 3D structures from secondary structure information, and C2A adds the full-atomic

details to these coarse-grained models.

1.1 Nucleic Acid Simulation Toolkit (NAST)

NAST is a knowledge-based coarse-grained tool for modeling RNA structures. It produces a

diverse set of plausible 3D structures that satisfy user-provided constraints based on:

1. Primary sequence

2. Known or predicted secondary structure

3. Known or predicted tertiary contacts (optional)

Additionally, NAST can use residue-resolution experimental data (e.g., hydroxyl radical

footprinting) to filter the generated decoy structures. By filtering the coarse-grained 3D

OVERVIEW

10

structures it produces based on agreement to available experimental data, a model of the

molecule which satisfies all the known residue-resolution data is produced.

NAST is written in Python and incorporates Python-OpenMM, a Python version of

OpenMM, a library that allows molecular dynamics simulations to be accelerated on

graphics processing units (GPUs).

Please cite the following article in any published work which utilizes NAST:

Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D, Altman RB. Coarse-

grained modeling of large RNA molecules with knowledge-based potentials and structural

filters. RNA. 2009 Feb;15(2):189-99.

1.2 Coarse to Atomic (C2A)

C2A uses a knowledge-based approach to instantiate full atomic detail into coarse grain

templates of 3D RNA structures. C2A uses geometries observed in known RNA 3D crystal

structures to find plausible full atomic matches to fragments in a coarse-grained template

structure. Currently, only coarse grain models that use a one-point-per-residues (the C3’

atom) representation can be used as input. Models constructed using NAST can be run

through C2A to generate a full-atomic model. C2A is written in Python.

Please cite the following in any published work which utilizes C2A:

Jonikas M.A., Radmer R.J., Altman R.B. Knowledge-Based Instantiation of Full Atomic

Detail into Coarse Grain RNA 3D Structural Models. Submitted to Bioinformatics.

http://simtk.org/home/nast

http://simtk.org/home/nast�

 PREREQUISITES

11

2 Prerequisites

NAST/C2A: You can download NAST/C2A from http://simtk.org/home/nast`. Click on

“Downloads” and follow the directions in README.pdf to install and test NAST/C2A.

Example files: On Windows, you will need to download a separate package for the

examples, also available from http://simtk.org/home/nast. Example files for NAST/C2A

are included in the Mac and source code installation packages.

VMD (or another software for viewing PDB-format structures): Download VMD

from http://www.ks.uiuc.edu/Research/vmd. Click on "Download VMD" and select the

installation for your platform. We recommend you get Version 1.8.6 or higher. Follow the

on-line instructions for installing.

http://simtk.org/home/nast�
http://simtk.org/home/nast�
http://www.ks.uiuc.edu/Research/vmd�

13

3 The Basics of Running

NAST

3.1 Objectives

These exercises are intended for you to:

• Learn the basics of how to run NAST

• Learn how to visualize the NAST results within VMD

3.2 Open a command prompt/terminal window

NAST is run from the command prompt/terminal. To launch a command prompt/terminal

window, select:

(Windows) Start -> All Programs -> Accessories -> Command Prompt

(Mac OS) Macintosh HD -> Applications -> Utilities -> Terminal

3.3 Navigate to your examples folder

Within the command prompt/terminal window, navigate to the nast-0.5 examples folder

The exact directory path to this folder will vary, depending on where you saved the files you

downloaded.

To change to another directory, use the command:

 cd <directory path>

THE BASICS OF RUNNING NAST

14

On Windows, for example, you downloaded a separate file for the examples. If you put the

examples folder on your Desktop, then to get to the NAST/C2A examples folder, in the

command prompt window, you would type:

(Windows) cd “c:\Documents and Settings\Your Username\Desktop\nast-

0.5.examples\nast”

where you substitute Your Username with the name of your Windows log-in name.

Note: Quotation marks are required in specifying directory paths within the Windows

command prompt window if the directory path includes spaces.

On Mac OS and Linux, the example files came with the programs and are located in a

subdirectory of the NAST (Mac OS) or nast-0.5 (Linux) folders. So, for example, on the Mac,

if you installed NAST on your Desktop, you would type the following in the terminal

window:

(Mac OS) cd /Users/<user_name>/Desktop/NAST/nast-0.5/examples/nast

3.4 Your first NAST run

Let’s try out NAST and see what happens.

1. Go to the 6TNA_MD example folder by typing:

(Windows) cd 6TNA_MD

(Mac OS/Linux) cd 6TNA_MD

 Your first NAST run

15

2. Now run the test example runTest.py in this directory by typing:

(Windows) \Python26\python runTest.py

(Mac OS/Linux) python runTest.py

Two files will be generated and saved in this directory: 6TNA_nast.pdb and

6TNA_nast.psf.

3. We can visualize the results within VMD:

a. Launch VMD. If you installed VMD in typical locations, you would select:

(Windows) Start -> All Programs -> University of Illinois -> VMD -> VMD 1.8.6

(Mac OS) Macintosh HD -> Applications -> VMD

b. The “VMD Main” window will appear. Select:

 File -> New Molecule…

c. To load the test trace into VMD, in the “Molecule File Browser” that appears,

click on “Browse” and select the 6TNA_nast.pdb created by NAST.

THE BASICS OF RUNNING NAST

16

Note: In some Windows environments, the extensions (e.g., .pdb) will not

appear. You can identify the PDB file by its icon (i.e.,) or by hovering

over a file to see the file type.

Click “Load” in the “Molecule File Browser.”

d. A .psf file is needed to connect the residues together. To load this file in,

return to the “Molecule File Browser” window. Set the fields as follows:

Load files for: 6TNA_nast.pdb

Filename: 6TNA_nast.psf

Note: In some Windows environments, the extensions (e.g., .psf) will not

appear. You can identify the PSF file by its icon (i.e.,) or by hovering

over a file to see the file type.

Click “Load.”

Scroll through the frames of the trajectory to see different conformations of one particular

molecule using the slider bar in VMD (see figure below).

 Starting a NAST simulation from an unfolded state

17

The structures should resemble those shown in the figure below. This particular run began

with a coarse-grained representation of a crystal structure (see frame 0 of the trajectory).

The first several frames of the simulation may look unusual, as the structure seeks to satisfy

NAST’s energy function. Although you are starting from a crystal structure, it may contain

distances, angles or dihedrals that are not “RNA-like” based on the observations used to

define the NAST energy function. In the process of satisfying the desired distribution of

distances, angles, dihedrals and ideal helical geometry, the structure may pass through high

energy states that do not look “RNA-like” before settling into an “RNA-like” conformation. If

the structure does not settle quickly into a “RNA-like” conformation, it may be necessary to

decrease the time-step of the simulation (more details on how to do this later).

3.5 Starting a NAST simulation from an unfolded state

In the previous example, the initial structure used for the NAST simulation was a crystal

structure, so a 3D structure was already known. The primary use of NAST, though, is to

generate 3D structures from an unfolded state.

In this exercise, you will use NAST to produce 3D structures from sequence data, secondary

structure information, and tertiary contact information. We will also examine the details of

the Python script used to accomplish this.

1. Copy the runNast.py Python script to myRunNast.py by typing the following into

your command prompt/terminal window:

THE BASICS OF RUNNING NAST

18

(Windows) copy runNast.py myRunNast.py

(Mac OS/Linux) cp runNast.py myRunNast.py

2. Open a text editor to edit myRunNast.py. DO NOT use Microsoft Word or other

similar programs. They will insert formatting instructions that are not readable by

NAST.

On Windows, we recommend WordPad:

(Windows) Start -> All Programs -> Accessories -> WordPad

On Mac OS and Linux, there are many options, including emacs, vi, and TextEdit

(Macintosh HD -> Applications -> TextEdit).

 You should see a file, like that shown below.

 Starting a NAST simulation from an unfolded state

19

Parameter

Details

pdbInFilename

Specifies the input file name for the initial
structure for the simulation. This can be a
PDB file (must have extension .pdb) or a
primary sequence – see details later in this
example, as well as in Appendix A. Remember
to put quotes around the file name.

pdbOutFilename

Specifies the name of the output trajectory file.
Make sure to include the extension (.pdb).
Remember to put quotes around the file name.

helixFilename

Specifies the name of the file that specifies the
secondary structure. Remember to put quotes
around the file name. Details about the file
can be found in Appendix A.

contactsFilename

Specifies the name of the file that specifies the
tertiary contacts. Remember to put quotes
around the file name. Details about the file
can be found in Appendix A.

numSteps

Specifies the total number of steps to run in
the molecular dynamics simulation . This
would be the maximum number of
conformations you would obtain. Each step of
the simulation represents 5 fs.

Do not use commas or periods in specifying
this number.

stepsPerReport

Specifies how often to save a frame (a
conformation). In this example, with 1000
stepsPerReport and a numSteps of 100000, a
total of 100 frames (conformations) would be
saved.

Do not use commas or periods in specifying
this number.

THE BASICS OF RUNNING NAST

20

Parameter

Details

defaultTemperature

Specifies the temperature for the molecular
dynamics simulations in Kelvins. 300.0 K is
the temperature at which NAST which
characterized, so this is the value you will want
to use unless you are purposefully trying to
increase or decrease the energy of the system.

randomSeed

Specifies the random seed to be used by the
molecular dynamics simulation program. You
can give a specific value or the value of None,
in which case the simulation will randomly
choose a number. We recommend you use the
value None (no quotes; case-sensitive).

useGpu

Specifies whether or not to use the GPU to
accelerate the molecular dynamics. Valid
values are True or False.

verbose

Specifies whether or not to print out the status
updates as the simulation runs. Valid values
are True or False.

3. Edit the script to:

a. Start NAST from a sequence instead of a structure. Change the input file to

6TNA_C3.seq as the input file. Primary sequence files cannot have the

extension .pdb, which is reserved for structure inputs to NAST.

b. Save the output to a new file: T1.pdb.

c. Change the randomSeed value to None (capital N, followed by the lower

case letters o, n, e).

 Starting a NAST simulation from an unfolded state

21

4. Now run the edited script myRunNast.py by typing:

(Windows) \Python26\python myRunNast.py

(Mac OS/Linux) python myRunNast.py

Two files will be generated and saved in this directory, based on the

pdbOutFilename that you specified: T1.pdb and T1.psf.

5. Visualize trace T1.pdb in VMD (See test run exercise – Section 3.4). Remember to

load in the T1.psf file to connect the residues.

If you scroll through the frames of the trajectory, you will notice that in this example,

you started from an unfolded circle. After a few frames, the structure took on a more

RNA-like 3D structure (see figure below). Throughout the course of the simulation,

the secondary structure and tertiary contacts are constrained. Every time the

THE BASICS OF RUNNING NAST

22

simulation is run, the outcome will be different (provided the randomSeed variable

is different) because there is a random component to the assignment of initial

velocities.

3.6 Running a longer NAST simulation and creating initial

files to be used with C2A

In this example, you will explore three other parameters in the Python script for running

NAST (numSteps, randomSeed, and verbose) and learn to use VMD to generate the

initial file needed by C2A.

1. Open a text editor to edit myRunNast.py. (see previous example on starting NAST

from an unfolded state)

2. Make the following changes to myRunNast.py:

a. Change the output file name to “T4.pdb”

b. Change numSteps to 200000

c. Change randomSeed to None

d. Optional: Change verbose to True

In this example, we have increased the maximum number of timesteps for the

molecular dynamics simulation (numSteps). This will increase the conformational

diversity. Another way to achieve this is to repeat the run, but make sure you have

set randomSeed to None so that there is randomness to your simulation. In this

 Running a longer NAST simulation and creating initial files to be used with C2A

23

example, we have done both. Note that if you set randomSeed to a particular value,

the molecular dynamics simulation will be the same (as long as all the other variables

are unchanged as well) since the velocities will be set based on the same seed value.

In this example, we also set verbose to True so that you can track the progress of

the simulation.

If your simulation is taking too long to run, you can kill the job using ctrl-z. The

frames that we generated thus far in the simulation will be saved.

3. Now run the edited script myRunNast.py by typing:

(Windows) \Python26\python myRunNast.py

(Mac OS/Linux) python myRunNast.py

Two files will be generated and saved in this directory, based on the

pdbOutFilename that you specified: T4.pdb and T4.psf.

4. Visualize trace T4.pdb in VMD (See test run exercise – Section 3.4). Remember to

load in the T4.psf file to connect the residues.

5. From VMD, save one of the frames of T4.pdb as T4-last.pdb. Pick a frame that you

will want to add full atomic detail to in a later exercise. It does not necessarily need to

be the last frame of the simulation:

a. Click on the trajectory of interest in the VMD Main Menu to select it.

b. Select File -> Save Coordinates.

THE BASICS OF RUNNING NAST

24

c. In the “Save Trajectory” window that appears, set:

Selected atoms: all

File type: pdb

First: <frame number for the conformation to use with C2A>

Last: <same frame number as for First:>

Click “Save.” When prompted for the file name to save to, enter:

T4-last.pdb

Be sure to specify the .pdb extension.

25

4 The Basics of Running C2A

4.1 Objectives

These exercises are intended for you to:

• Learn how to use C2A to search a reference molecule for fragments that match your

coarse-grained molecule

• Learn how to use C2A to assemble fragment matches into a full atomic model

4.2 Open a command prompt/terminal window

C2A is run from the command prompt/terminal. To launch a command prompt/terminal

window, select:

(Windows) Start -> All Programs -> Accessories -> Command Prompt

(Mac OS) Macintosh HD -> Applications -> Utilities -> Terminal

4.3 Navigate to your examples folder

Within the command prompt/terminal window, navigate to the nast-0.5 examples folder

The exact directory path to this folder will vary, depending on where you saved the files you

downloaded.

To change to another directory, use the command:

 cd <directory path>

On Windows, for example, you downloaded a separate file for the examples. If you put the

examples folder on your Desktop, then to get to the NAST/C2A examples folder, in the

command prompt window, you would type:

THE BASICS OF RUNNING C2A

26

(Windows) cd “c:\Documents and Settings\Your Username\Desktop\nast-

0.5.examples\nast”

where you substitute Your Username with the name of your Windows log-in name.

Note: Quotation marks are required in specifying directory paths within the Windows

command prompt window if the directory path includes spaces.

On Mac OS and Linux, the example files came with the programs and are located in a

subdirectory of the NAST (Mac OS) or nast-0.5 (Linux) folders. So, for example, on the Mac,

if you installed NAST on your Desktop, you would type the following in the terminal

window:

(Mac OS) cd /Users/<user_name>/Desktop/NAST/nast-0.5/examples/nast

4.4 Finding fragment matches

The first step in adding full atomic detail to a coarse-grained model is to search a reference

molecule for matching fragments and create a working library to be used by C2A. As with

NAST, the process is controlled via a Python script.

1. First, change to the directory 6TNA_c2a.

If you are continuing from the NAST examples, you would type the following into

your command prompt/terminal window:

(Windows) cd ..\6TNA_c2a

(Mac OS/Linux) cd ../6TNA_c2a

 Finding fragment matches

27

If you are starting from the examples directory, type the following:

(Windows) cd 6TNA_c2a

(Mac OS/Linux) cd 6TNA_c2a

2. Open a text editor to examine the file ex1.py. DO NOT use Microsoft Word or other

similar programs when editing these files, since they insert formatting instructions

that are not readable by C2A.

You should see a file like that shown below. This file is the script that searches a

reference molecule for fragment matches and creates a working library that will be

used later to C2A. The table below describes each of the 6 parameters for the script

in more detail.

THE BASICS OF RUNNING C2A

28

Parameter

Details

templateTrace

Specifies the name of the PDB file containing
the coarse-grained model. Currently, only
coarse-grained models with a representation
of one-point-per-residue using the C3’ atom
are supported. Remember to put the file name
in single quotes.

fragmentFile

Specifies the name of the text file that defines
the fragments of the coarse-grained model
that need to be matched. See Appendix B for
more details. Remember to put the file name
in single quotes.

NOTE: This file name must be of the format
<molecule-name>-FD.txt.

NOTE: There must be a matching file which
contains the primary sequence and is named
<molecule-name>-primary.txt or
<molecule-name>.seq.

conversionData

Specifies the name of the file that contains
information for converting from one base to
another. This is necessary as the geometric
matches will not necessarily contain the right
sequence of bases. You should never need to
change this. Remember to put the file name in
single quotes.

searchStructureFile

Specifies the name of the PDB file containing
the reference full atomic structure. Remember
to put the file name in single quotes.

nhradius

Specifies a cutoff for searching for non-helical
matches (in Angstroms). This is used to
control the strictness of the match search. If
one of your non-helical fragments results in
zero matches, increase this number.

 Finding fragment matches

29

Parameter

Details

hradius

Specifies a cutoff for searching for helical
matches (in Angstroms). This is used to
control the strictness of the match search. If
one of your helical fragments results in zero
matches, increase this number.

3. Now let’s run the script ex1.py. In the command prompt/terminal window, type:

(Windows) \Python26\python ex1.py

(Mac OS/Linux) python ex1.py

You will see an output that looks like that shown in the figure below. The script

outputs how long it took to find matching fragments for each fragment of the

template coarse-grained model. A warning appears if less than 200 matches are

found.

4. Verify that you have at least 1 match for each fragment. You can do this in one of two

ways:

THE BASICS OF RUNNING C2A

30

a. Scroll through the script output and see if any of the warnings say:

Warning, keeping only 0 options for …

If you see such a warning, then no matches were found for that particular

fragment and you should re-run the script with larger values for nhradius

and/or hradius. If the line below the warning refers to a helix, increase the

hradius value. Otherwise, increase the nhradius value. Try using

increments of 1 Angstrom when increasing these variables.

b. Look at the output files generated by ex1.py. The output file names are of the

format <fragment-identifier>-stats.dat. So in your command

prompt/terminal window, type:

(Windows) dir *-stats.dat

(Mac OS/Linux) ls -l *-stats.dat

Look at the file sizes of each of these files. If any of them are 0, then no

matches were found for that particular fragment and you should re-run the

script with larger values for nhradius and/or hradius. If the name of the

file contains the letter H followed by a number, the fragment with 0 matches

is a helical fragment, therefore you should increase the hradius variable.

Otherwise, it is a non-helical fragment, and you should increase the

nhradius variable.

5. The ex1.py script also created a new file called 6TNA-C3-1N32-subA-0-lib.pkl. The

format of this output is:

“model name” – “reference molecule name” – “model frame id” –lib.pk

The “model name” comes from the templateTrace file name. The “reference

molecule name” comes from the fragmentFile specification.

 Assembling fragments into a model

31

“Model frame id” identifies which frame the library is associated with. In this

example, the templateTrace file only contained one frame (frame 0). However, it

is possible to use a PDB file that contains more than one frame, in which case,

multiple libraries would be generated, each with a different “model frame id,”

starting with 0.

This library is needed by the second step of C2A, which assembles the fragments into

a full atomic structure.

4.5 Assembling fragments into a model

The second step in adding full atomic detail to a coarse-grained model is to assemble the

matching fragments that were found.

1. Open a text editor to examine the file ex2.py. DO NOT use Microsoft Word or other

similar programs to edit or create these files since they insert formatting instructions

that are not readable by C2A.

THE BASICS OF RUNNING C2A

32

You should see a file like that shown above. This file is the script that assembles

fragments from a working library into the full atomic structure. The table below

describes each of the 6 parameters for the script in more detail.

Parameter

Details

fragmentFile

Specifies the name of the text file that defines
the fragments of the coarse-grained model
that need to be matched. See Appendix B for
more details. Remember to put the file name
in quotes.

coarseIn

Specifies the name of the PDB file containing
the coarse-grained model. Remember to put
the file name in quotes.

pieceLib

Specifies the name of the library that contains
the matched fragments. This is one of the
outputs from running the first step of C2A
(using script ex1.py). Remember to put the
file name in quotes.

outName

This is the root name for the output files.
Remember to put the file name in quotes.

n

Specifies the number of full atomic structures
to make

cutoff

Specifies the distance (in Angstroms) that
defines a “collision.” A fragment, if inserted
into the full atomic model, would create a
“collision” if it is closer to another atom than
this cutoff distance and would not be used as
part of the final model.

2. Now let’s run the script ex2.py. In the command prompt/terminal window, type:

 Assembling fragments into a model

33

(Windows) \Python26\python ex2.py

(Mac OS/Linux) python ex2.py

The file test-0.pdb will be created. Load this file into VMD to visualize it (see

detailed instructions under “Your first NAST run”). You may notice some gaps in the

structure. This is the result of full atomic fragments coming from disjointed parts of

the full atomic reference molecule, being assembled together in a new way. The gaps

are large enough to make the structure chemically unrealistic; however, they can

easily be minimized by using a classical molecular dynamics program, like

GROMACS (OpenMM Zephyr provides an easy-to-use interface to GROMACS – see

details in Section 4.7).

https://simtk.org/home/zephyr�

THE BASICS OF RUNNING C2A

34

4.6 Running C2A on the coarse-grained model you generated

with NAST

Now that you’ve learned the basis of running C2A, you can try it on the coarse-grained

model that you generated earlier with NAST (Section 3.6)

1. Copy over the coarse-grained model you saved from the NAST-generated trajectory

(T4-last.pdb). In the command prompt/terminal window, type:

(Windows) copy ..\6TNA_MD\T4-last.pdb .

(Mac OS/Linux) cp ../6TNA_MD/T4-last.pdb .

2. Copy ex1.py to myEx1.py. You will do your edits to myEx1.py. Type:

(Windows) copy ex1.py myEx1.py

(Mac OS/Linux) cp ex1.py myEx1.py

3. Open myEx1.py in a text editor and modify it to use your coarse-grained model. So

set:

templateTrace = ‘T4-last.pdb’

No other parameters will change in this case. You will use the same fragment

definition as 6TNA-C3, since we are still working with the same tRNA molecule, and

the same reference molecule.

4. Now let’s run your edited script myEx1.py. In the command prompt/terminal

window, type:

(Windows) \Python26\python myEx1.py

(Mac OS/Linux) python myEx1.py

 Running C2A on the coarse-grained model you generated with NAST

35

Check for warnings that 0 options were found. If this warning appears, re-run the

script with larger values for nhradius and/or hradius.

Also verify that the T4-last-1N32-subA-0-lib.pkl file was created by listing the

contents of the directory:

(Windows) dir

(Mac OS/Linux) ls

5. Now set up the files to run step 2 of C2A. Copy ex2.py to myEx2.py. You will do

your edits to myEx2.py. Type:

(Windows) copy ex2.py myEx2.py

(Mac OS/Linux) cp ex2.py myEx2.py

6. Open myEx2.py in a text editor and modify it to use your coarse-grained model and

the new working library. Also, change the output root name. So set:

coarseIn = ‘T4-last.pdb’

pieceLib = open(‘T4-last-1N32-subA-0-lib.pkl’)

outName=’T4-FA’

7. Now let’s run your edited script myEx2.py. In the command prompt/terminal

window, type:

(Windows) \Python26\python myEx2.py

(Mac OS/Linux) python myEx2.py

8. Visualize the output file T4-FA-0.pdb within VMD.

9. You may wish to make more than one full atomic structure from your coarse-grained

template by increase the value of n. Because of the random component in selecting

and assembling matches, it is preferable to generate many full atomic structures (~5-

10), as some may be better than others.

THE BASICS OF RUNNING C2A

36

4.7 Modifying C2A-generated full atomic files for use with

Amber96 force field

The PDB files generated by C2A are not compatible with the Amber96 force field, used

within the molecular dynamics program GROMACS and OpenMM Zephyr, a program built

on top of GROMACS. You can modify the output full atomic file to be used by these

programs by using the fixpdbforgromacs.py script. For the previous exercise with a full

atomic output file named T4-FA-0.pdb, you would type:

(Windows)

\Python26\python fixpdbforgromacs.py T4-FA-0.pdb T4-FA-0-mod.pdb

(Mac OS/Linux)

python fixpdbforgromacs.py T4-FA-0.pdb T4-FA-0-mod.pdb

Note that you provide the input file name, followed by the name for the new modified file.

You can later use the OpenMM Zephyr program with your T4-FA-0-mod.pdb file to

minimize the chemically unrealistic gaps in the C2A output structure.

37

5 Generating Input Files for

NAST and C2A

5.1 Overview

Both NAST and C2A require a number of input files. NAST requires input files for the

primary sequence and for the secondary structure and optionally a file for the tertiary

contacts. C2A requires a fragment definition file, describing the structure in terms of

helices, loops, junctions and ends. These required files can all be generated automatically if

you have a BPSEQ format.

In this chapter, you will learn about .bpseq files and how to generate the NAST and C2A files

from them. Specific details about the input files themselves can be found in Appendices A

(NAST input files) and B (C2A input file).

5.2 The BPSEQ file format

The BPSEQ file format is a simple text file that describes structural information. It contains

one line for each base in the molecule. Each row contains three columns. The first column

specifies the sequence position, starting at one. The second column lists the base using its

one-letter notation. The third column lists the position number of the base with which is

paired. If the base is unpaired, the third column is zero.

Structures in the BPSEQ file format can be obtained from websites, such as the Comparative

RNA Web site and project (http://www.rna.ccbb.utexas.edu/DAT/) and RNA STRAND

(http://www.rnasoft.ca/strand/).

http://www.rna.ccbb.utexas.edu/DAT/�
http://www.rnasoft.ca/strand/�

GENERATING INPUT FILES FOR NAST AND C2A

38

5.3 Generating NAST and C2A files from BPSEQ files

The instructions below explain how to generate the initial files needed for NAST and C2A

from a BPSEQ file. After you obtain these initial files, you can test your familiarity with the

process by generating a coarse grain model from them and then adding in the full atomic

detail.

1. Go to RNA STRAND (http://www.rnasoft.ca/strand/) and download the BPSEQ file

for PDB_00005:

a. Enter PDB_00005 in the search box and click “Search RNA STRAND ID.”

You should be taken to a page that looks like that shown in the figure below.

b. Click on the instructions “click to expand/contract all tables” near the top to

bring up a table of information to the right of the webpage.

http://www.rnasoft.ca/strand/�

 Generating NAST and C2A files from BPSEQ files

39

c. Select “Bpseq” from the “Format” drop-down menu. Then click on “View the

RNA sequence and secondary structure for molecule PDB_00005.” You will

see a webpage that looks like that in the figure below.

GENERATING INPUT FILES FOR NAST AND C2A

40

d. Cut and paste the results into a file named PDB_00005.bpseq. The file name

must have the extension .bpseq.

Windows users: If you are using WordPad, you will be required to specify

a document type. Choose “Text Document.” This will save the file in the

needed format, but it will append .txt to the end of your file name. To remove

the .txt, go to your command prompt window and navigate to the directory

where you saved the file:

(Windows) cd <directory>

Then, copy the file to a new name ending with .bpseq. For example, if the

WordPad file was saved as PDB_00005.bpseq.txt, then you would type:

(Windows) copy PDB_00005.bpseq.txt PDB_00005.bpseq

Mac OSX TextEdit users: If you are using TextEdit, you will first need to

create a blank file from the terminal window with the .bpseq extension.

 Generating NAST and C2A files from BPSEQ files

41

TextEdit is not able to create pure text files, although it can edit them. To

create the blank text file, type:

(Mac OS) touch PDB_00005.bpseq

Open PDB_00005.bpseq in TextEdit and paste in the data. Save the file.

2. Create a new directory for PDB_00005 within the NAST examples folder and move

your PDB_00005.bpseq file into it.

a. Navigate back to the examples/nast folder. If you are continuing from the

C2A exercises, this should just be one directory level higher so you would

type:

(Windows) cd ..

(Mac OS / Linux) cd ..

b. Make a new folder called PDB_00005 (that’s 4 zeros!)

(Windows) mkdir PDB_00005

(Mac OS / Linux) mkdir PDB_00005

c. Put your PDB_00005.bpseq file into this new PDB_00005 directory.

3. Go to the new directory from within your command prompt/terminal window:

(Windows) cd PDB_00005

(Mac OS / Linux) cd PDB_00005

4. In the new PDB_00005 directory, generate the input files needed for NAST and C2A

by typing:

(Windows) \Python26\python ..\parseBPseq.py PDB_00005

(Mac OS / Linux) python ../parseBPseq.py PDB_00005

GENERATING INPUT FILES FOR NAST AND C2A

42

In specifying the file name, you do not include the .bpseq extension.

After the script completes, you should have three new files in the directory:

PDB_00005-helix.txt, PDB_00005.seq, and PDB_00005-FD.txt. To check the

contents of your directory, type the following into your command prompt/terminal

window:

(Windows) dir

(Mac OS / Linux) ls

The current version of parseBPseq.py cannot handle tertiary contacts in the .bpseq file (it

will create a one-pair-long helix). You must specify tertiary contacts by writing your own

tertiary contact file.

You can now use these files to build a coarse grain model and add full atomic detail. Try this

out on your own!

43

6 Appendix A:

NAST Input Files

NAST requires a primary sequence file and a secondary structure file. It can optionally take

a tertiary contacts file. The format for all these files are described below.

6.1 Primary sequence file

File name format: Must NOT end with the extension .pdb, which is reserved for reading

structures into NAST

Format:

• One residue per line

• Only options are: A, U, C, G

(Technically, NAST can handle any type of residue, including modified residues.

However, C2A can only handle the regular bases, which have to be capitalized –

modified bases are often represented with lower case letters, like g. If you intend to

use the output of NAST with C2A, you are limited to regular bases.)

• For a break in the sequence (e.g., more than one strand), use TER

Example:

A
G
C
U
TER
A
G
C
U

44

See also 6TNA_C3.seq (in the NAST examples folder under examples/nast/6TNA_MD/).

6.2 Secondary structure file

Format:

• Two lines per helix, one blank line separating helices

• The numbers represent residues based on their position in the sequence, with

numbering starting at 1.

• Paired residues line up vertically

In the example 1 below, there are 2 helices. In the first, residue 1 lines up with 20; 2 with 19;

3 with 18; and 4 with 17. In the second helix, residue 6 lines up with 15; 7 with 14; and 8

with 13.

Example 1:

1 2 3 4
20 19 18 17

6 7 8
15 14 13

See also 6TNA_helix.txt (in the NAST examples folder under examples/nast/6TNA_MD/) .

In this file a series of three periods (…) can be used to indicate a range, so the above example

could have between written as follows:

Example 2:

1 … 4
20 … 17

6 … 8
15 … 13

 Tertiary contacts

45

This format is useful for allowing you to describe bulges, as shown in Example 3. Here, 1

pairs with 20; 19 is a bulge residue (not paired with anything); 2 pairs with 18 and so on.

Example 3:

1 2 … 4
20 18 … 16

6.3 Tertiary contacts

Format:

• One line per tertiary contact

• The numbers represent residues based on their position in the sequence, with

numbering starting at 1.

• A tertiary contact is essentially a spring that connects the two specified residues.

This interaction is specified in four columns:

o First two columns are the two residues in the tertiary contact

o Column 3 is the spring-preferred distance in nm

o Last column is the spring strength in kJ/nm2

In the example below, there are two tertiary contacts. The first row specifies the

contact between residues 8 and 14. The spring-preferred distance is 1.3 nm and the

spring strength is 200 kJ/nm2. The distance value of 1.3 nm represents the

approximate distance between the C3’ atoms of two base-paired residues. The spring

strength of 200 kJ/nm2 has been determined to work best in our experiments. To

constrain the desired distance more stringently (for example, if using known

distances from crystal structures), increase this value (for example, try 500). If you

want the tertiary contact distance to be more flexibly distributed around the

46

specified distance, decrease this value (for example, try 50). The second row specifies

a similar contact between residues 15 and 48.

Example:

8 14 1.3 200
15 48 1.3 200

See also 6TNA_contacts.txt (in the NAST examples folder under

examples/nast/6TNA_MD/) .

47

7 Appendix B: C2A

Fragment Definition File

C2A requires a fragment definition file, which is described below.

File name format: Must end with -FD.txt

Example:

H1 1:7,66:72 10

H2 10:13,22:25 10

H3 27:31,39:43 10

H4 49:53,61:65 10

L1 H2 10

L2 H3 10

L3 H4 10

J1 H1:5,H2:5 10

J2 H2:3,H3:5 10

J3 H3:3,H4:5 10

E1 H1:3+4 10

Format:

- Helices:

o Helix fragment definitions must start with the letter H

o The first range of number (Residue1:Residue2) lists the residues that make up

the 5’ end of the helix

48

o The second range of numbers (Residue3:Residue4) lists the residues that

make up the 3’ end of the helix

o The last number specifies the number of choices to be used in the fragment

assembly

o In the example above, the line H1 1:7,66:72 10 instructs C2A that:

H1 is the first helix.

1:7 means that the 5' end of the helix is made up of residues 1 through 7.

66:72 means the 3' end of the helix is made up of residues 66 to 72. That is 66

pairs with 7, etc.

10 represents the number of choices to be used in the fragment assembly

protocol. Here, the 10 best fragments will be the only choices for H1.

- Loops:

o Loop definitions must start with the letter L

o The middle entry specifies where the loop is located

o The last value is the number of choices to be used in the fragment assembly

protocol

o In the example above, the line L1 H2 10 instructs C2A that:

L1 is the identifier for the loop.

L1 is the loop at the end of H2.

10 once again represents the number of choices for the assembly protocol.

- Junctions:

o Junctions must start with the letter J

o The second entry specifies what the 5’ end of the junction is connected to

o The third entry specifies what the 3’ end of the junction is connected to

o The last value is the number of choices to be used in the fragment assembly

protocol

 Tertiary contacts

49

o In the example above, the line J1 H1:5,H2:5 10 instructs C2A that:

J1 is the identifier for this junction.

H1:5 means that the junction is connected on the 5' end to the 5' half of helix

H1.

H2:5 means that the junction is connected on the 3' end to the 5' half of helix

H2.

10 represents the number of choices for the fragment assembly protocol.

- Ends:

o Ends must start with the letter E

o The second entry specifies where the end is connected to and in which

direction it extends

o The last entry is the number of choices to be used in the fragment assembly

protocol

o In the example above, the line E1 H1:3+4 10 instructs C2A that:

E1 is the indentifier.

H1:3 means that the end is connected to the 3' half of helix H1.

+4 means that the end extends from the helix by four residues counting up (if

it were counting down, it would be -4)
10 represents the number of choices for the fragment assembly protocol

	Overview
	Nucleic Acid Simulation Toolkit (NAST)
	Coarse to Atomic (C2A)

	Prerequisites
	The Basics of Running NAST
	Objectives
	Open a command prompt/terminal window
	Navigate to your examples folder
	Your first NAST run
	Starting a NAST simulation from an unfolded state
	Running a longer NAST simulation and creating initial files to be used with C2A

	The Basics of Running C2A
	Objectives
	Open a command prompt/terminal window
	Navigate to your examples folder
	Finding fragment matches
	Assembling fragments into a model
	Running C2A on the coarse-grained model you generated with NAST
	Modifying C2A-generated full atomic files for use with Amber96 force field

	Generating Input Files for NAST and C2A
	Overview
	The BPSEQ file format
	Generating NAST and C2A files from BPSEQ files

	Appendix A: NAST Input Files
	Primary sequence file
	Secondary structure file
	Tertiary contacts

	Appendix B: C2A Fragment Definition File

