
Simbody™
(The SimTK Multibody Dynamics Toolset)

Requirements for SimTK 1.0
Michael Sherman

Version 1.0, August 19, 2005

Abstract
Here we discuss the requirements for a SimTK core capability for multibody dynamics
(a.k.a. internal/torsion/relative coordinate modeling). This toolset, to be called “Sim-
body,” is intended to be useful in coarse grain molecule modeling, neuromuscular gait
simulation, and many other biologically relevant models. We provide some background
here and then narrow that to specific requirements for Simbody 1.0 to be included as
part of SimTK 1.0.

1 Purpose of this document ... 1
2 Background .. 2

2.1 What is “multibody dynamics”?...............................2
2.1.1 Components of a multibody model3
2 2 A comment on deformable (flexible) bodies..............3 .1.

2.2 What does multibody dynamics do for Simbios?3
3 What do we need in Simbody 1.0? 4
4 What are we leaving out in 1.0? 5
5 Implementation strategy ... 5

5.1 Layered design ...6
5.2 C++, C, Fortran, and CCA interfaces (APIs)............7
5.3 Start with existing code ..7
5.4 Structure to work with SimTK Modeling Layer.......7

6 Testing and validation .. 7
7 Summary .. 7
8 Appendix: Basic multibody theory........................... 8

8.1 Preliminaries...8
8.1.1 Bodies..8
8.1.2 Joints ...8
8.1.3 Forces ..9
8 4 Constraints ..9 .1.

8.2 Kinematics..9
8.3 Dynamics..10
8.4 Equations of motion ...10

8.4.1 Unconstrained systems ...10
8.4.2 Constrained systems ...11

8.5 Modal analysis and implicit integration..................12
8.6 Root finding and optimization................................13

Acknowledgments.. 13
References.. 13

1 Purpose of this document
This document provides background describing the Simbios needs addressed by multibody dynamics, intro-
duces the technology, and the SimTK Multibody Dynamics Toolset which we call “Simbody.” It is intended
as a way to communicate and come to a consensus regarding our plans in this area for SimTK 1.0, and to

 1

guide the development of software which implements these plans. This is not intended, however, as a detailed
software specification or user’s manual.

2 Background
This is general material hopefully providing enough background for the rest of the document to make sense.
Even for those familiar with multibody dynamics, it is probably worth reading to see how we are characteriz-
ing it for the broad uses it will serve for Simbios.

2.1 What is “multibody dynamics”?
Multibody dynamics is the field studying the classical mechanical properties (especially motion) of systems
of bodies interconnected by joints, influenced by forces, and restricted by constraints. The key feature of a
system that makes it suitable for multibody treatment is the observation that the motion is localized, that is, it
is well-described as a set of composite parts which undergo large motion with respect to one another, but are
themselves nearly rigid. Figure 1 shows some examples of the breadth of applicability of multibody dynam-
ics, which has been used effectively to model machines, skeletal motion and gait, coarse-grained biopoly-
mers, and many other systems relevant to a wide variety of scientific and engineering disciplines.

Mechanical U-joint
Protein backbone

Articulated skeleton

Figure 1: Some multibody
systems.

Multibody dynamics is a generalization of several more-familiar modeling methods. It includes as special
cases, for example, systems of point masses represented in Cartesian coordinates (e.g. molecular dynamics

2

models) and systems of freely moving extended bodies (typically, rigid bodies). Multibody dynamics should
be viewed as a basic numerical capability fundamental to any simulation system. It is in the same category as,
say, a linear algebra library, not an end-user application. Simbody will be used by modelers and application
developers as a basic building block. Simbios computational researchers (algorithm inventors) can use Sim-
body as a baseline source of correct answers for debugging and as a point of comparison to demonstrate the
superiority of their new methods.

2.1.1 Components of a multibody model
All mass and geometric features of the system are associated with the bodies (with “Ground” viewed as an
immobile body). Large scale motion is permitted only at joints, whose degrees of freedom (dofs) define gen-
eralized coordinates describing the system configuration in terms of relative translations and orientations of
the bodies they interconnect, and generalized speeds describing the relative motion of those bodies. General-
ized coordinates are sometimes referred to as “internal coordinates,” “relative coordinates,” or “torsion coor-
dinates.”

Forces (more properly generalized forces) include both forces and moments (torques) and may be applied to
bodies or directly along a joint coordinate. Constraints express algebraic restrictions on the allowed values of
the generalized coordinates and speeds. One may reasonably think of constraints as “infinitely strong” forces.

As a practical matter, we consider bodies and joints to be the fundamental features of a multibody system,
together defining the system’s topology which is invariant. A change in the number of bodies, connectivity of
joints, or joint types results in a new multibody system. Forces and constraints, on the other hand, can be
added, changed, and removed from a multibody system without changing its identity. This does not imply
that topology must remain fixed during an investigation, just that a topology change is a more significant
operation than a change in forces or constraints.

2.1.2 A comment on deformable (flexible) bodies
In general, the bodies of a multibody system do not have to be rigid. It is sometimes desirable to allow the
bodies themselves to undergo small internal motions, called deformations. These add a new set of independ-
ent coordinates to the overall system coordinates and speeds, but we distinguish them from the generalized
coordinates and generalized speeds introduced by joints and refer to them instead as deformation coordinates
and deformation rates. Various techniques can be used to determine the appropriate representation of deform-
able bodies. Such bodies can be used, for example, to supply “ring pucker” coordinates for molecules rather
than modeling the mobility of every bond individually. Or, the techniques of structural mechanics can be used
to aggregate large nearly-rigid subsystems into deformable bodies with “assumed mode” linear deformations.

We will not support deformable bodies in SimTK 1.0, but will allow for adding them in the future (e.g. by not
building in an assumption that a body’s center of mass is in a fixed location in the body frame). In the mean-
while it is always possible to model body flexibility by partitioning the body into joint-connected rigid bod-
ies, with internal forces and constraints modeling the deformation behavior.

In current practice, systems of rigid bodies have been extremely useful in many fields while systems of inter-
connected deformable bodies, while intriguing and occasionally useful, have not yet found wide application.

2.2 What does multibody dynamics do for Simbios?
Multibody dynamics is a necessary ingredient for three of the four current Simbios Driving Biological Prob-
lems (DBPs). It is already used routinely in musculoskeletal modeling for investigation of biomechanics of
gait and in design of artificial joints and prosthetics. Scott Delp’s lab makes extensive use of multibody dy-
namics, using a commercial package (SD/FAST). Multibody dynamics is also being used in modeling the
myosin/actin molecular motor in research being done by David Parker in Jim Spudich’s lab, again using
SD/FAST and more recently the SCI package from Oussama Khatib’s lab (which is also proprietary). The
RNA structure DBP uses coarse grained rigid bodies to represent RNA. In addition, both Vijay Pande and

 3

Michael Levitt perform extensive molecular mechanics work using multibody dynamics codes which are
specialized to molecule simulation (usually in the form of Cartesian point-mass models), and Michael Levitt
pioneered the use of internal coordinates for molecule modeling in the 1970’s.

SimTK needs to provide an open-source alternative to SD/FAST that will make this capability available to a
wider audience and also remove some of the limitations imposed by SD/FAST’s 20-year-old technology.
Simbody can serve as a direct replacement for SD/FAST, and we should provide a compatible interface.
Properly designed, a general multibody capability can also be plugged in to existing molecular simulation
frameworks to permit construction of coarse-grained molecular models using conventional force fields. That
is a more substantial effort than a plug-compatible replacement, however, because today’s popular molecular
dynamics codes do not support internal-coordinate dynamics. Simbody 1.0 should be structured to facilitate
this incorporation.

3 What do we need in Simbody 1.0?
Basic capabilities (all operations are fast, O(n) operations unless otherwise stated):

• Given a set of atomic positions for a polymer, and an internal coordinate (multibody) model, find the
set of internal coordinates that best represents the given atomic positions.

• Given a multibody model and values for its generalized (relative) coordinates and speeds, provide the
corresponding spatial locations and velocities (kinematics).

• Given values for generalized coordinates, speeds and accelerations, calculate the internal (joint)
forces which would have produced those accelerations (inverse dynamics).

• Given a set of spatial forces, calculate the equivalent system of forces which act only at the general-
ized coordinates.

• Calculate accelerations in internal coordinates. That is, calculate instantaneous generalized speed time
derivatives. (forward dynamics)

• Support both general model building (specify bodies and joints) and specialized modeling for con-
structing protein and nucleic acid multibody models from, e.g., pdb files.

• Calculate matrices and operators needed for Operational Space Control (kinematic Jacobian, partial
velocities).

• Calculate matrices needed for calculating normal modes in internal coordinates (also needed for im-
plicit integration). (dynamic Jacobian) This is a relatively expensive operation – inherently O(n2) but
may be even worse in the 1.0 release.

• Provide interfaces to Simbody which are callable from C++, C, and Fortran as well as a prototype
CCA “Port” interface.

• Stateless design for compatibility with modeling layer.

• Provide an SD/FAST-compatible interface, both for ease of conversion and to facilitate building tests
which compare Simbody results and performance with the same problem solved with SD/FAST. This
should include most SD/FAST functionality including joint types, application of forces, and addition
of constraints.

• Provide (or at least suggest) numerical methods, not strictly a part of the Simbody toolset, which are
useful for manipulating multibody models. This includes time integration, modal analysis, root find-
ing, initial condition analysis, and solving impulse problems.

• Provide suitable documentation enabling users to use Simbody effectively. Note that all users are
programmers since Simbody is an API (callable library) rather than an application.

4

4 What are we leaving out in 1.0?
• All bodies will be rigid. Deformability, if desired, will be achieved by using multiple rigid bodies in-

terconnected with appropriate joints, constraints, and forces.

• Matrices needed for implicit integration and normal modes may be calculated by numerical differenc-
ing in 1.0, with analytic methods to follow later.

• Model building capability will be limited, in the sense that convenient, domain-specific modeling
building facilities will not be ready. Fully general, “lowest common denominator” model building
will be available, but will require a greater level of multibody knowledge that is ultimately necessary.
As an example, an automated protein-to-torsion-angle model mapping a pdb file directly to a multi-
body model is feasible and useful, but probably will not be done by SimTK 1.0. Instead, early appli-
cation writers may have to parse their own molecules, decide how to split them into bodies, and then
call the basic multibody modeling tools to create the model.

• Constrained systems will use a method which involves factoring a potentially singular matrix whose
size is the number of constraints. This yields an extremely robust solution, but would be a perform-
ance problem in highly constrained systems. This is likely insignificant in most biological systems
but will come up sometimes and improvements are possible.

• Integration with existing applications (e.g. Gromacs) will be absent or incomplete.

• Performance will be suboptimal at first release.

• Wrappers for interpreted languages like Java and Python will not be available in SimTK 1.0. There
will be C, Fortran, and C++ access only. We do intend to support these later.

• SD/FAST emulation will not be perfect, but should be close enough to make transition straightfor-
ward.

5 Implementation strategy
To satisfy the needs of varied Simbios users, Simbody should be implemented in several layers, as shown in
Figure 2.

 5

Models & Applications

5.1 Layered design
The lowest level is a library capable of addressing unconstrained (“tree”) systems as defined by Equation 1 in
the Appendix. This level should understand nothing but body and joint definitions, and provide the ability to
map generalized coordinates and speeds into spatial locations and velocities (kinematics), and to map spatial
forces into joint forces. It should provide operators for calculating the accelerations given user-supplied
forces. The resulting dynamic system is an ODE.

The next layer adds constraints to the above. It will make use of the tree layer to solve the constrained prob-
lem as expressed in Equation 4 in the Appendix. It provides for caller-supplied constraints in addition to the
bottom layer’s caller-supplied forces. The result is an overdetermined DAE, in which the accelerations auto-
matically satisfy the constraints, but where the velocity and position constraints will not be satisfied. This
layer can calculate the constraint errors and return them.

The next layer out is for creating models. This will include at least an SD/FAST-compatible model builder
which can read SD/FAST input files, and a molecule modeler which can construct rigid bodies from grouped
atoms. In many cases modeling is a multi-step process in which Simbody is used to analyze “base” models to
aid in constructing “lumped” models of those same systems.

Unconstrained MBD (ODE)
• Bodies and joints
• Generalized coordinates
• Kinematics: spatial internal con-

versions
• Forward/inverse dynamics
• Stiffness & mass matrix
• Caller-supplied forces/impulses

Constrained MBD (DAE)

Model-builders Solvers
• Polymers • Integrators
• SD/FAST-

compatible
• Root find-

ers/optimizers• Forward/inverse dynamics
• Caller-supplied constraints • Contact mod-

els
• Linear com-

plementarity • Return constraint violations
• Reduced coordinate computations • … • …
• Reduced stiffness & mass matrix

Interfaces (APIs)
• Object-oriented

C++
• ANSI C
• Fortran 77
• CCA

Figure 2: Layered architecture of the SimTK Multibody Dynamics Toolset (Simbody)

6

Related to, but possibly outside of the Simbody toolset, is a collection of solvers. These are generally inde-
pendent, generic numerical methods, but in some cases multibody models are designed to work with particu-
lar solvers.

5.2 C++, C, Fortran, and CCA interfaces (APIs)
Orthogonal to the above are the interfaces available to programmers (APIs). For each layer, we will provide
an object-oriented API for use by C++ programmers, and procedural interfaces callable from C and Fortran
programs.

In addition, if there is time we will provide a prototype of a Common Component Architecture interface to all
or part of Simbody. This entails defining an appropriate Port or Ports, and writing a CCA neoclassic wrapper
in C++ for the Simbody libraries.

5.3 Start with existing code
We will build the new SimTK Multibody Toolset on a foundation of well-written, well-tested, pre-existing,
open source code. We have identified two reasonable possibilities at this point: the IVM module1 written by
Charles Schwieters at the NIH, and the TAO package owned by Arachi and based on software originally de-
veloped in Oussama Khatib’s lab at Stanford.2 The latter is not currently open source, but there is some possi-
bility that its owners will remove the current restrictions so that it can be incorporated in SimTK. We do have
the last open source version of this package (called PrRobot) in SimTK, but it does not have sufficient capa-
bility to serve as a good base for the SimTK Multibody Toolset.

In addition, Kurt Anderson at Rensselaer Polytechnic has proposed his new “POEMS” multibody system as a
core tool for SimTK. This is likely to be a very good implementation, however it is not far enough along yet
to serve as our first “reference” implementation. It could be a great addition or replacement later, however.

5.4 Structure to work with SimTK Modeling Layer
Although Simbody is a computational library rather than a Subsystem, mechanical Subsystems can easily be
built using it. We should build it following SimTK modeling guidelines, most importantly to ensure that the
Simbody libraries are stateless and perform evaluation in identifiable stages. This will also serve to give us
some experience with restructuring existing code to make it stateless. The experience gained can then be
passed on to other SimTK developers who may need to follow the same path.

6 Testing and validation
Compare with PrRobot, SD/FAST and TAO if we can get it. If possible, preserve the existing IVM test cases.
Tests should cover both functionality and problem size, so that we can track performance improvements.

Tests should include a variety of simple models with easily verifiable analytical answers, as well as complex
models constructed independently and compared.

7 Summary
For SimTK 1.0, we need a basic multibody capability which provides a robust replacement for existing
SD/FAST use, as well as the additional flexibility needed for effective modeling of large molecular systems.
This must be accessible to users who work at different levels, from Fortran and C to object-oriented C++. The
structure of the resulting system should be compatible with our proposed modeling approach (e.g., stateless)
and should serve as an example of the approach we are taking to numerical libraries in general, designed with
standardized interfaces defining interchangeable numerical methods.

Simbody 1.0 will address these issues.

 7

8 Appendix: Basic multibody theory
Some readers may find this more-technical discussion helpful in defining the specific approach we have in
mind; others will find it confusing and perhaps somewhat irrelevant and are invited to skip it!

8.1 Preliminaries
Here are some elaborations on the fundamental objects of a multibody system.

8.1.1 Bodies
Fundamentally, a body B is a moving reference frame (called the body frame B), consisting of a reference
point OB and three orthogonal reference directions (unit vectors) xB, yB, zB.* A distinguished body “Ground”
represents the inertial (fixed) reference frame G, providing a global origin O and fixed directions x, y, z. The
measure numbers (numerical values) of the reference directions can be arranged as the columns of a 3×3 or-
thogonal rotation matrix B=[xB yB zB] or G=[x y z]. Thus reference frame B={B, OB} and G={G, O}. The i’th
body is Bi, and by convention B0≡G.

Bodies typically have associated properties expressed in the body frame. These include vectors and stations,
which are point locations, as well as more general geometry. The body frame origin is the station whose
measure numbers when expressed in the body frame are [0,0,0]. Mass properties include the total mass (a
scalar), the center of mass (a station), and an inertia tensor (3×3 symmetric matrix) which expresses rotational
inertia about a particular station. When the inertia tensor is defined about the center of mass it is called the
centroidal inertia.

Singular bodies are those whose centroidal inertia has a zero diagonal element. Bodies consisting of a single
point mass (such as an atom) have a centroidal inertia of exactly zero. Bodies consisting of only collinear
point masses (such as two bonded atoms) have a single zero inertia diagonal, meaning that they have no iner-
tia about their common axis. Bodies with three or more atoms, not all collinear, have non-singular inertia
matrices. Massless bodies are also singular.

Deformable bodies, not included in 1.0, are represented the same way but introduce deformations about the
body frame. This causes stations and directions which are constant for rigid bodies (e.g., center of mass) to
have state dependence for flexible bodies. However, the deformations are always expressed with respect to a
rigid body frame associated with the body. That is, every deformable body is built on an underlying rigid
body in whose frame its deformations are expressed.

8.1.2 Joints
Joints connect a pair of distinct bodies (and remember that Ground is a body) and define the relative motion
(degrees of freedom or “dofs”) allowed between those bodies. The parameterization of these dofs is a set of
generalized coordinates q representing the joint configuration, and generalized speeds u representing the joint
motion.

The three fundamental joint types are sliding, torsion, and orientation. A sliding joint (syn: prismatic joint)
provides a single degree of freedom representing translation along a defined axis, and adds a single coordi-
nate with units of length to the system’s set of generalized coordinates. A torsional joint (syn: pin joint) pro-
vides a single degree of freedom representing rotation about a defined axis and adds a single generalized
coordinate with angular units. An orientation joint (syn: ball joint, spherical joint) permits unrestricted rela-
tive orientation between its pair of bodies, that is, three degrees of freedom and at least three corresponding
generalized coordinates (for dynamics these require a four-element quaternion).

* We will always follow a right-handed convention so that zB=xB × yB.

8

All other joint types can be viewed as compositions of the three basic types. For example, a Cartesian joint is
a composition of three sliding joints with orthogonal axes and thus permits unrestricted relative translation
(three degrees of freedom) between its bodies. A free joint is a composition of a Cartesian joint and an orien-
tation joint and permits six degrees of freedom (completely unrestricted motion) between its bodies. A free
joint serves to introduce free bodies into the system and simply provides a convenient reference frame and
corresponding coordinates with which to express their motion. Note that, like any other joint, a free joint can
be placed between any two bodies—it does not have to connect a body to ground. This allows very conven-
ient relative coordinates to be used for collections of independent bodies. For example, one can express a
protein domain that carries its local waters and ions along with it when it is moved kinematically.

More complex joints can be built up from joints and constraints. A “screw joint” for example can be com-
posed of a coaxial sliding and torsion joint, providing one translational and one rotational coordinate, plus a
(holonomic) constraint enforcing a defined relationship (the screw’s “pitch”) between the time derivatives of
these coordinates.

[Note: explore whether complex joints can be created directly as joints via a more elaborate joint transition
matrix. This could permit a single degree of freedom joint that behaved like a knee, for example.]

8.1.3 Forces
By forces we mean “generalized forces” which includes both forces and torques (moments). Force vectors
can be applied to the multibody system at any body station and moment vectors can be applied to any body
(or implemented as pairs of forces). Scalar forces or torques can also be applied directly to joint axes, that is,
directly along the generalized coordinates. All systems of forces can be reduced to an equivalent set acting
only on at the joint coordinates, and Simbody will provide an operation which performs this conversion.

Forces can be functions of time, configuration, or velocity. They may be local effects or result from spatially
distributed fields or a constant gravitational field, or act pairwise between distant stations (e.g. atoms) in the
system. Forces which depend only on time and configuration are called conservative forces, and are the gra-
dient of some potential function. Non-conservative forces may depend on velocities as well.

8.1.4 Constraints
Constraints may represent arbitrary restrictions on the generalized coordinates and generalized speeds, and
linear restrictions on accelerations. Constraints arise, for example, if the body/joint connectivity graph con-
tains a loop. Each independent constraint removes one degree of freedom from the system. In this sense con-
straints are the complement of joints, whose generalized speeds each add one degree of freedom to the
system. And in fact any n-dof joint can be represented instead as a free joint plus 6–n constraints.

Constraints among the moving bodies of a physical system act by introducing non-working internal forces
and moments. These forces act exactly as do the applied forces described above—they can act on bodies or
along joint axes, and as with applied forces they can always be reduced to a system of forces acting along the
joint axes.

8.2 Kinematics
This refers to the mapping between generalized coordinates and speeds and their spatial counterparts. For
example, given values for the generalized coordinates, one should be able to obtain (cheaply) positions and
orientations for bodies and spatial (Cartesian) locations of any stations (e.g. atoms). In the other direction, one
should be able to apply spatial forces and calculate the equivalent set of joint axis forces that would produce
the same motion. Energy calculations can thus be performed using only kinematics.

Kinematic results available in SimTK 1.0 should be sufficient to permit the solution of kinematic problems
such as finding the set of generalized coordinates which best approximates a given set of spatial locations.
Such problems arise, for example, when fitting a reduced-coordinate molecular model to a set of atom posi-

 9

tions determined with X-ray crystallography. More generally, there is a broad assortment of useful initial
condition analyses which must be performed prior to the start of a dynamic analysis, and these are based on
kinematic calculations.

8.3 Dynamics
Dynamics refers to the relationship between forces and motion. There are two flavors: forward dynamics, in
which forces are known and motion calculated, and inverse dynamics where motion is known and forces are
to be calculated. Various combinations of known and unknown forces and motions are possible. Simbody
should support both of these operations and provide access to the basic O(n) operators that manipulate the
associated quantities.

Note that Simbody itself focuses on instantaneous dynamics, that is, the relationship between forces and ac-
celerations at a particular time and state. This capability is designed to be used in conjunction with numerical
methods, primarily numerical integrators, to advance the time and state. These numerical methods exist inde-
pendently of Simbody, however we will coordinate efforts to make sure that suitable methods are available
and work smoothly together.

8.4 Equations of motion
Given the above description, we can write down the system of equations defining a multibody system. These
are written in terms of the nq generalized coordinates q and nu generalized speeds u, which arise from the
presence of joints. Generalized speeds are more fundamental than generalized coordinates. The number of
degrees of freedom n introduced by the joints is always n=nu, while nq ≥ n because of quaternions. Note that n
is the unconstrained system degrees of freedom, the net dofs after constraints will be n–m where m is the
number of independent constraints.

It should be emphasized that this is a formal description, and that it would be extremely inefficient to set up
and solve the equations in the form they are presented below. The techniques of multibody dynamics provide
the solution of these equations without ever requiring their explicit formation.

A few conventions: We use n and subscripted n’s to count quantities related to coordinates (degrees of free-
dom) and m and subscripted m’s to count constraints. We use overdot to represent differentiation with respect
to time.

8.4.1 Unconstrained systems
In a system with no constraints, the equations of motion are

),,()(

)(
uqtuq

uqq
fM
Q

=
=

&

&

)b1(
)a1(

Here M is an n×n, symmetric, positive definite mass matrix which captures all the inertial properties of the
system in its current configuration, and f is the set of n forces and torques acting along the joint axes which is
equivalent to all the forces and moments applied to the system along with coriolis and gyroscopic terms and
gravity. Q is an nq×n (=nq×nu) invertible mapping between generalized speeds and generalized coordinate
derivatives (in practice this is used to convert angular velocities to quaternion derivatives). Note that equation
(1b) is just Newton’s second law F=ma written backwards, as is the strange custom among multibody dy-
namicists!

Formally, we can solve for the accelerations with u&

 fM 1−=u&)2(

10

By formally we mean, “don’t take this literally”! There is always special structure to M that can be exploited
such that the accelerations can be calculated directly in O(n) time, while a literal matrix inversion would take
O(n3) time and be prohibitive for large systems.

As an example, consider the special case of a molecular system modeled with na point mass atoms and Carte-
sian coordinates. M is then a diagonal matrix of dimension 3na×3na with the atomic masses (each repeated
three times) arrayed along the diagonal. The q’s are the Cartesian coordinates, and the u’s are the Cartesian
velocities so nq=nu, Q is an identity matrix, and uq =& . f is simply the Cartesian forces acting on each coordi-
nate of each atom, typically resulting from taking the gradient of the potential energy function. This repre-
sents a set of 3na uncoupled scalar equations for the Cartesian accelerations of each atom.

In a more general multibody system M will be dense as a result of coupling produced by the internal coordi-
nates. Use of quaternions for orientation results in there being more q’s than u’s and Q is no longer identity.
However, equation (2) provides the solution for the accelerations in this case just as well, and the special
structure of multibody systems permits a solution in O(n) time regardless of the amount of coupling in M.

8.4.2 Constrained systems
Constraints introduce unknown, non-working forces and torques into the system. Constraints are introduced,
for example, if there are topological loops created by the set of bodies and joints. The constraint forces are
additional unknowns (along with accelerations). We call these unknowns Lagrange multipliers and represent
them as a vector λ. These are mapped to joint forces with a coupling matrix A and thus modify acceleration
Equation 1b like this:

bA

AfM
=

−=
u
u
&

& λT

)b3(
)a3(

where Am×n=A(t,q,u) and bm×1=b(t,q,u), m is the number of constraints and n=nu is the number of generalized
speeds. Equation 3 has n+m equations in n+m unknowns so can be solved for the accelerations that satisfy
the constraint equations.* The solution of this system makes use of the unconstrained result from Equation 2.
Note that because we can directly solve for u and eliminate λ, this is still just an ordinary differential equa-
tion, with .

&
),,(uqtuu && = †

Equation 3 was written in terms of linear constraints on the accelerationsu . However, in most cases con-
straints are known only at the configuration level, that is, as (nonlinear) algebraic relationships which must
hold among the q’s or among quantities fully determined by the q’s. A constraint like “these two atoms must
be a certain distance apart at all times” would be an example. In other cases the constraints may be expressed
at the velocity level as restrictions on u. In these cases we differentiate the constraints once or twice until we
have corresponding acceleration constraints, and then use them in Equation 3.

&

Following this procedure yields correct accelerations, but with approximate numerical integration of those
accelerations the original position or velocity constraints will not remain satisfied over time. In practice, any
constraints that are not actively enforced will gradually drift apart during a dynamic simulation. To address
this, we must keep the original algebraic constraints in the problem and solve them along with the ODE in
Equation 3. That results in a system of mixed differential and algebraic equations, known as a DAE. The
complete system then looks like this:

* In general the constraint matrix A can be singular, so there may be no solution, or an unlimited number of solutions, in
which case least squares solutions for λ are typically used.
† Knocking Equation 3 around a little, one can verify that Cuuu &&& += 0 , where , , and

, with superscript “+” the conventional notation for pseudoinverse. Again, this is a formal
solution—it would be prohibitively expensive to solve the way it is written here.

fM 1
0

−=u& λT1AM−−=Cu&

)()(0
T1 bAAAM −= +− u&λ

 11

0),(

T

=
=
=

−=

=

qt
u
u
u

uq

g
cV
bA

AfM
Q

&

&

&

λ

)e4(
)d4(
)c4(
)b4(
)a4(

where V=V(t,q) is an mv×n matrix, c=c(t,q) is mv×1, and g is mp×1 nonlinear constraints involving t and q.
(We’re assuming only linear constraints on velocities here, although that is not strictly necessary.) This is an
overdetermined system since there are more equations than unknowns. Equations 4abc is an ODE that can be
solved for coordinate derivatives which can be integrated using any suitable ODE method to produce a
dynamic trajectory for q and u. Equations 4de are used at each step to evaluate how well the resulting trajec-
tory satisfies the constraints, and a wealth of methods that have been developed to solve overdetermined
DAEs can then be applied to ensure constraint satisfaction.

uq &&,

3 For Simbody 1.0, we should support at least the
technique known as coordinate projection, which is very accurate and reliable in practice.4

For those familiar with molecular simulation, the SHAKE procedure is an example of an approach to enforc-
ing a position constraint such as that represented in 4e. SHAKE performs a projection guaranteeing that a
molecular trajectory will preserve certain known bond lengths.

It is worth mentioning that in the common case where the only constraints are provided at the position level
via equation 4e, equation 4d comes from differentiating 4e, and 4c from further differentiation of 4d. In that
case (ignoring quaternions) we have q∂∂=== gGVA .

8.5 Modal analysis and implicit integration
In this section we discuss the related needs of modal analysis (that is, normal modes in internal coordinates)
and implicit integration. Both of these require that the system equations of motion be differentiated with re-
spect to the generalized coordinates and speeds. That is we want to calculate the dynamic, internal coordinate
Jacobian

 ⎥
⎦

⎤
⎢
⎣

⎡
∂∂∂∂
∂∂∂∂

=⎥
⎦

⎤
⎢
⎣

⎡
=

uuqu
uqqq

uuuq

quqq

&&

&&

JJ
JJ

J (5)

Modal analysis is typically done with all speeds set to zero, so only the submatrix Juq is of interest. If q is
such that the system is stable (at a local energy minimum), then the eigenvalues of this matrix are the normal
modes of the system about that equilibrium point and the corresponding eigenvectors are the modal basis (that
is, they represent the coordinated motion involved in each of the normal modes).

Given the system equations of motion, note that one can easily obtain an approximation to J by perturbing the
state variables (this is called a finite difference approximation to J). Simbody 1.0 should, at a minimum, sup-
port that method. However, it is both inaccurate and extremely expensive to compute. Finite differencing
loses about half the available precision, and requires O(n) calculations of the system accelerations to form an
n×n matrix. In molecular dynamics straightforward force calculations are typically O(n2), so this can mean the
Jacobian calculation is a prohibitive O(n3). In any case the force calculations are very expensive and doing
O(n) of them to get a half-accurate Jacobian is not a very good deal. Analytical methods exist which allow Juq
to be calculated from the spatial force derivatives (energy Hessian), to full accuracy and in much less time,
with the total calculation being O(n2). Note that this is within a constant factor of optimal for filling in a ma-
trix with n2 elements.

If possible, Simbody 1.0 should include a good modern method for calculating J analytically, but if that can’t
be done it should at least provide an interface designed to support such a calculation in the next release.

12

For implicit integration the required matrix is the full J (with nonzero velocities) rather than just Juq. How-
ever, that is not much worse. Calculating the Juq submatrix is by far the most difficult part since it involves
the Hessian of the potential forces and (formally) the partial derivative of the mass matrix inverse with re-
spect to the q’s.

8.6 Root finding and optimization
The needed computations here depend on the kind of problems being solved. They typically require Jacobians
of various calculations with respect to the generalized coordinates and speeds. J as defined above can be very
useful for minimizations involving search for equilibria. For satisfying constraints, the partial derivatives of
the constraint equations 4de are required. Simbody 1.0 should provide access to these matrices, which are
needed internally anyway.

Root finding problems can be difficult when the coordinates are constrained, so it is convenient to define a
new set of fully-independent coordinates. In particular, Simbody 1.0 should do this at least for the case where
the only constraints are the quaternion normalization conditions. It is easy to create a localized 3-coordinate
representation for orientation about a current set of q’s which will remain valid even for large perturbations.
Reduced sets of coordinates for more general constraints may have limited validity ranges and have to be
recalculated periodically during a root finding or optimization run.

Acknowledgments
I thank Dan Rosenthal for patiently teaching me everything I know (plus much more which I promptly forgot)
about the fascinating field of multibody dynamics, and Linda Petzold for teaching me what little I know about
the equally fascinating field of numerical integration and specifically how to solve Equation 4.

This work was funded by the National Institutes of Health through the NIH Roadmap for Medical Research,
Grant U54 GM072970. Information on the National Centers for Biomedical Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics.

References

1 Schwieters, CD; Clore, GM. Internal Coordinates for Molecular Dynamics and Minimization in Structure Determina-
tion and Refinement. J. Magnetic Resonance 152:288-302 (2001).
2 Chang, KS; Khatib, O. Efficient Algorithm for Extended Operational Space Inertia Matrix. Proc. of the 1999 IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (1999).
3 Ascher, UM; Chin, H; Petzold, LR; Reich, S. Stabilization of constrained mechanical systems with DAEs and invariant
manifolds. Mechanics of Structures and Machines 23(2):135-157 (1995).
4 Eich, E. Convergence results for a coordinate projection method applied to mechanical systems with algebraic con-
straints. SIAM J. on Numerical Analysis 30(5):1467-1482 (1993).

 13

http://nihroadmap.nih.gov/bioinformatics

	Purpose of this document
	Background
	What is “multibody dynamics”?
	Components of a multibody model
	A comment on deformable (flexible) bodies

	What does multibody dynamics do for Simbios?

	What do we need in Simbody 1.0?
	What are we leaving out in 1.0?
	Implementation strategy
	Layered design
	C++, C, Fortran, and CCA interfaces (APIs)
	Start with existing code
	Structure to work with SimTK Modeling Layer

	Testing and validation
	Summary
	Appendix: Basic multibody theory
	Preliminaries
	Bodies
	Joints
	Forces
	Constraints

	Kinematics
	Dynamics
	Equations of motion
	Unconstrained systems
	Constrained systems

	Modal analysis and implicit integration
	Root finding and optimization

	Acknowledgments
	References

