
Creating a Customized Actuator

In this exercise, we will create a specific type of linear actuator that implements a spring with

controllable stiffness. The source code and associated files for this exercise are located in the

OpenSim source code repository:

https://simtk.org/svn/opensim/Branches/OpenSim_BuiltOn_SimTK_1_1/OpenSim/Ex

amples/CustomActuatorExample

In Windows Explorer, create a new directory, e.g., C:\Projects\CustomActuatorExample.

Navigate into that directory, right-click, and choose SVN Checkout. For URL of Repository,

enter the above URL. Once you have obtained the example files, launch CMake. Point to the

/CustomActuatorExample directory as the source code location, and create any directory you

wish for the build location. Click Configure. Be sure to point the OpenSim installation property

to the correct location of your OpenSim 2.0 installation folder. By default, the

CMAKE_INSTALL_PREFIX (this flag shows up if you set CMake to show “Advanced View”) is

set to the same directory as your source code. This will ensure that you will not have to move

any associated files to visualize your results in the GUI later on. Click Configure again and then

click Generate. Then close CMake.

When defining a new actuator, you can either start from scratch by deriving from the base class,

CustomActuator, or if your actuator builds on an existing class, you can derive from that class.

In this example we will implement a controllable stiffness spring by deriving from

theLinearActuator class.

1. Actuator Overview

We define an actuator as something that produces loads between two bodies. These could be

torques applied between two bodies along a common axis, forces applied between two points

defined on two different bodies, or some combination of loads applied according to some

geometry and state parameters. The key function of any actuator class is to calculate and apply

loads to its associated bodies based on the state variables at any time step.

2. The LinearActuator class

In this exercise we wish to create a spring with controllable stiffness that acts between two

points located on different bodies. Instead of building this actuator from the generic, pure

virtual class, CustomActuator, we will instead derive our new class from the pre-existing

LinearActuator class. This class will eventually be incorporated into the OpenSim 2.0

distribution, but to serve as an example of how we design our actuator classes we have

implemented and included it within the source material of this example. Figure 1 illustrates the

LinearActuator class. This actuator applies a force between two points fixed on two bodies.

These bodies do not need to be consecutive bodies in a kinematic chain. This class calculates the

magnitude of its force as the product (optimalForce x control value) and uses the convention

that a positive force magnitude acts to increase the distance between points A and B.

Figure 1. Illustration of the LinearActuator

3. The ControllableSpring class

Figure 2 illustrates the ControllableSpring class that we will define. Just like LinearActuator,

ControllableSpring will act between two points fixed on two different bodies. However, the force

magnitude will not simply be calculated as the product of optimal force and control value.

Instead, the spring stiffness will be calculated by k = (optimalForce x control value). We

will also have to define a rest length at which the spring produces no force. The force magnitude

will then be calculated as F = k*(restLength – currentLength).

pA

PB

Body A

Body B

|F| = f(control)

 = optimalForce x control

K = f(control)

 = optimalForce x control

Firgure 2. Illustration of the ControllableSpring

3.1. Defining the ControllableSpring class (ControllableSpring.h)

Open ControllableSpring.h, which contains a partial definition of the ControllableSpring class.

The following instructions will outline ALL the steps for defining the ControllableSpring class.

However, since the file is mostly completed, you will only need to fill in a few key lines that have

been omitted

At the top of the header file we include the header for the base class, call the OpenSim

namespace, and begin defining the class as derived class of LinearActuator.

#include "LinearActuator.h"

namespace OpenSim {

class ControllableSpring : public LinearActuator

{

3.1.1. Defining Properties

Our new actuator will have all of the properties of the LinearActuator class, plus one more for

defining the rest length of the spring.

protected:

 /** rest length of the spring */

 PropertyDbl _propRestLength;

 // REFERENCES

 /** rest length */

 double &_restLength;

3.1.2. The Constructors

Next we define the constructors. The constructors take the same form as the LinearActuator

constructors for consistency. Both the constructor and copy constructor call the setNull method

(to be defined later) which initializes some of the basic elements of the class. The copy

constructor also copies the rest length from the existing ControllableSpring. The default

destructor is used.

/* _restLength reference must be initialized in the initialization list */

ControllableSpring(std::string aBodyNameA="", std::string aBodyNameB="") :

 LinearActuator(aBodyNameA, aBodyNameB),

 _restLength(_propRestLength.getValueDbl())

{

 setNull();

}

/* The copy constructor must also copy the _restLength since the base class

** version doesn't know about it. */

ControllableSpring(const ControllableSpring &aControllableSpring) :

 LinearActuator(aControllableSpring),

 _restLength(_propRestLength.getValueDbl())

{

 setNull();

 _restLength = aControllableSpring.getRestLength();

}

/* use the default destructor */

virtual ~ControllableSpring() {};

3.1.3. Setup Methods

We will define two private member methods that are used during construction to initialize the

ControllableSpring instance. First, setupProperties() is used to setup the properties of the

ControllableSpring from values read in from a XML file. The only property added in this class is

the rest length.

/* define private utilities to be used by the constructors. */

private:

void setupProperties()

{

 _propRestLength.setName("rest_length");

 _propRestLength.setValue(1.0);

 _propRestLength.setComment("The equilibrium length of the spring.");

 _propertySet.append(&_propRestLength);

}

Next we define setNull(), which is called when a ControllableSpring object is constructed. It

calls setupProperties() and sets some other basic elements of the actuator class, such as its type

(“ControllableSpring”) and its number of states.

void setNull()

{

 setType("ControllableSpring");

 setupProperties();

 setNumStateVariables(0);

}

3.1.4. Get and Set Methods

Since the rest length was defined as a private member variable, we must define some public

methods to get and set its value.

public:

// REST LENGTH

void setRestLength(double aLength) { _restLength = aLength; };

double getRestLength() const { return _restLength; };

3.1.5. computeForce()

The computeForce() method is the heart of any actuator class. It is called by OpenSim to

calculate and apply any loads associated with the actuator. The computeForce() method is

defined to be pure virtual in the CustomActuator base class, so any derived classes must define

its behavior. LinearActuator has already defined its own implementation of computeForce(),

but we will redefine it here so that ControllableSpring behaves like a spring instead of like an

ideal actuator. This method begins by checking that the model and bodies are defined.

void computeForce(const SimTK::State& s) const

{

 // make sure the model and bodies are instantiated

 if (_model==NULL) return;

 const SimbodyEngine& engine = getModel().getSimbodyEngine();

 if(_bodyA ==NULL || _bodyB ==NULL)

 return;

Next, it determines the locations of the application points in both the body and ground frames

by doing some transformations. _pointA and _pointB, as well as the bool _pointsAreGlobal,

are defined in the LinearActuators base class.

/* store _pointA and _pointB positions in the global frame. If not

 ** alread in the body frame, transform _pointA and _pointB into their

 ** respective body frames. */

 SimTK::Vec3 pointA_inGround, pointB_inGround;

 if (_pointsAreGlobal)

 {

 pointA_inGround = _pointA;

 pointB_inGround = _pointB;

 engine.transformPosition(s, engine.getGroundBody(), _pointA,

*_bodyA, _pointA);

 engine.transformPosition(s, engine.getGroundBody(), _pointB,

*_bodyB, _pointB);

 }

 else

 {

 engine.transformPosition(s, *_bodyA, _pointA,

engine.getGroundBody(), pointA_inGround);

 engine.transformPosition(s, *_bodyB, _pointB,

engine.getGroundBody(), pointB_inGround);

 }

Now we find the vector pointing from point B to point A expressed in the ground frame and then

decompose it into its magnitude and direction.

// find the dirrection along which the actuator applies its force

 SimTK::Vec3 r = pointA_inGround - pointB_inGround;

 SimTK::UnitVec3 direction(r);

 double length = sqrt(~r*r);

To compute the magnitude of the force, we first must know the spring stiffness. Since we want

stiffness to be the product of optimalForce and control value, we simply use the

computeActuation() method from the base class, which outputs exactly this calculation.

double stiffness = computeActuation(s);

Now we find the magnitude of the force from the stiffness and the deflection of the spring. We

then form the force vector.

 // find the force magnitude and set it. then form the force vector

 double forceMagnitude = (_restLength - length)*stiffness;

 setForce(s, forceMagnitude);

 SimTK::Vec3 force = forceMagnitude*direction;

The last operation computeForce() performs is to apply the equal and opposite point forces to

the two bodies.

// appy equal and opposite forces to the bodies

 applyForceToPoint(*_bodyA, _pointA, force);

 applyForceToPoint(*_bodyB, _pointB, -force);

}

3.1.6. Finish the class definition and close the namespace

//==

}; // END of class ControllableSpring

} //Namespace

//==

//==

3.2. Using the ControllableSpring (toyLeg_example.cpp)

Open the toyLeg_example.cpp file. This file implements a main() program that builds a toy leg

model that is driven by a LinearActuator (Figure 3). The model is built up in the sequence

ground->linkage1->linkage2->block with pin joints between all the segments. The block is

constrained to move only in the vertical direction. A LinearActuator called “piston” acts

between the distal end of linkage1 and the center of the block. We will modify the main routing

to replace the piston actuator with a variable stiffness spring.

Figure 3. toyLeg example

3.2.1. Ready toyLeg.cpp to be able to use the ControllableSpring

Add the ControllableSpring class to the included files as shown below. Look in the Visual C++
Solution Explorer to find the Actuators_examples project. Right click is and select build in
order to rebuild toyLeg_example.cpp and to force the first build of ControllableSpring.h.

#include "LinearActuator.h"

#include "ControllableSpring.h"

#include <OpenSim/OpenSim.h>

using namespace OpenSim;

using namespace SimTK;

3.2.2. Add a ControllableSpring to the model

Find the line after the piston is added to the model. At this location, create a

ControllableSpring, set it up to have identical geometry to the piston, and add it to the model.

osimModel.addForce(piston);

 //+++

F

// Add ControllableSpring between the first linkage and the second

block

 //+++

 ControllableSpring *spring = new ControllableSpring;

 spring->setName("spring");

 spring->setBodyA(block);

 spring->setBodyB(&ground);

 spring->setPointA(pointOnBodies);

 spring->setPointB(pointOnBodies);

 spring->setOptimalForce(2000.0);

 spring->setPointsAreGlobal(false);

 spring->setRestLength(0.8);

 osimModel.addForce(spring);

3.2.3. Modify the control values given to the actuator

Comment out the line defining the control values for the piston. Below it add a series of control

values that will be applied to the spring.

// defing the control values for the piston

 //double controlT0[1] = {0.982}, controlTf[1] = {0.978};

 // define the control values for the spring

 double controlT0[1] = {1.0}, controlT1[1] = {1.0},

controlT2[1] = {0.25}, controlT3[1] = {.25},

controlT4[1] = {5};

3.2.4. Point the controls to the spring

After the definition of control1, modify the setName call to apply control1 to the spring instead

of the actuator.

ControlLinear *control1 = new ControlLinear();

 control1->setName("spring");//change this from 'piston' to 'spring'

3.2.5. Point the control set to the new control values

Comment the section that sets the controlSet values to the piston controls and then point

controlSet to the spring controls you just defined.

// set control values for the piston

 /*controlSet->setControlValues(t0, controlT0);

 controlSet->setControlValues(tf, controlTf);*/

 // set control values for the spring

 controlSet->setControlValues(t0, controlT0);

 controlSet->setControlValues(4.0, controlT1);

 controlSet->setControlValues(7.0, controlT2);

 controlSet->setControlValues(10.0, controlT3);

 controlSet->setControlValues(tf, controlT4);

3.2.6. Save the resulting motion as a different file

Change the Save Results section in order to print the resulting toyLeg kinematics under a new

file name.

3.2.7. Build and Run

Build the Actuator_examples project again, then build the INSTALL project. Navigate to

the install directory and find the executable file, toyLeg_example.. Before running this

executable, you must set you must ensure that the <OpenSim2.0_intall_dir>/bin directory

appears at the front of your PATH. After running the excutable, you can now use the GUI to

open the model toyLeg.osim and load the motionfile you renamed. Upon visualizing the motion

you should see the block oscillate at different magnitudes and frequencies as the spring stiffness

is varied over time.

