Introduction

Advances in biomedical imaging have resulted in
an abundance of data describing the form of
biological structures across an enormous range of
physical scales, from molecules to entire organ
systems. Interpretation of this vast quantity and
variety of data is greatly enhanced by the
construction of 3D geometric models that allow
one to measure and visualize key features of
biological structures. Common biomedical image
processing operations include registration of
multiple images, segmentation of structures of
interest, visualization of the data, measurements

of structural features, and construction of 3D
models of anatomical and biological structures.
Slicer [4] is a free, open-source, extensible and
customizable application which contains a number
of automated image processing algorithms.
However, it lacks many standard tools for manual
segmentation, which are needed in almost all
research settings. We developed four algorithms to
facilitate the implementation of manual tools that
will boost Slicer’s utility in biomedical research.

Figure 1. 3D geometric models of complex biological
structures [2][1].

Methods

Slicer 2.6 was developed using Tcl 8.4.5/Tk 8.4.5 and
Microsoft Visual C++ .NET 2003 in Windows XP. We
developed algorithms for the following tasks:

1.Inserting intermediate control points in user-
defined control polygons

2.Selecting and moving points by automatic
proximity detection

3.Real-time cardinal spline interpolation of a user-
defined polygon

4, Automatic sampling of points from a cardinal
spline for model construction

From Biomedical Images to Geometric Models

Chand T.John? Scott L. Delp’

'Departments of Mechanical Engineering, Bioengineering, and Orthopaedic Surgery

‘Department of Computer Science

Algorithm 1

In Insert mode, when the user clicks at an arbitrary
point M in space, we insert the point M into the
control polygon between the closest control point
Q to M, and the neighbor of Q which is closest to M.

Figure 2. Two points are inserted into a control polygon
with high curvature. A self-intersection occurs after the
second point is added.

Algorithm 2

To mimic standard drawing programs, after each
mouse motion, we compute the distance from the
mouse location to each edge of the control
polygon. If the mouse is close to any edge, we set
the mode to Move. Otherwise we set the mode to
Select.

Mouse pointer location

AN

Edge Control point

Control point

Figure 3. The perpendicular distance from the
mouse location to each line segment of the
control polygon is computed using only one
non-integer variable.

Algorithm 3

As the user plots control points, we interpolate a
Catmull-Rom spline through those points [3]. Each
end derivative is computed by reflecting the
neighboring control point’s derivative vector about
the end edge’s perpendicular bisector.

/4 P2’
P =?

NI

Pl =7 queb
P, P. P. P,
PO’ ‘ ' P1 PSI ‘ ' P4’

Figure 4. End derivatives are computed by reflection.

Algorithm 4

Once the user has finished plotting a control
polygon, we sample d points from each cubic curve
segment of the cardinal spline in addition to the
original control points. Here d is the sampling
density chosen by the user. These points are used
for constructing a 3D model. Each curve has a
parametric representation B(t), where t ranges from

0 to 1. For a particular cubic curve, we compute the
points B(1/(d+1)), B(2/(d+1)), ..., B(d/(d+1)).

Figure 5. A cardinal spline sampled with density d = 3.
The large circles indicate the original control points,
while the small circles indicate the sampled points.

Summary

Algorithms 1 and 4 both work under normal
conditions, where contours are drawn with only
gentle variations in curvature between adjacent
control points, as is the case for most structures
segmented in biomedical images. Algorithm 2
works well for all practical purposes. Algorithm 3
performs well overall but does have curvature
problems at the endpoints. This can be improved
by checking whether the computed end derivative
satisfies some curvature constraint and negating
the vector if it does not. All of the presented
algorithms are efficient enough to avoid any
experience of computational delay for the user.

References

[1] A.S. Arnold, S. Salinas, D. J. Asakawa, S. L. Delp.
Computer Aided Surgery, 5:108-119, 2000.

[2] M.Bern, J.Chen, H.C.Wong. RECOMB:118-132,
2005.

[3] G. Farin. Curves and Surfaces for CAGD, 5th ed.,
Academic Press, 2002.

[4] http://slicer.org

Acknowledgements

This work was supported by an NIH Predoctoral
Fellowship. Thanks to Allison Arnold, Thor Besier,
Silvia Blemker, Christie Draper, Kate Holzbaur, Luis
Ibanez, Ron Kikinis, Bill Lorensen, Steve Pieper, Will
Schroeder,and Nathan Wilson.




