A Manual Editor for Model Creation from Medical Images

Chand T. John
Scott L. Delp

December 3, 2005

Abstract

Advances in biomedical imaging and in the speed and use of computational methods in attacking
biological problems have led to a proliferation of image data across an enormous range of physical scales.
Processing of data is a necessary step in every field of biology and medicine in which images are a source
of information. A plethora of automated and semi-automated registration and segmentation techniques
have been developed by researchers for biomedical image processing. However, these techniques are often
developed to work in one specialized context, and no general automated techniques work well in all fields
that require the use of biomedical images. Thus, adequate tools for manually processing image data are
an absolute must for any software package that attempts to provide image processing tools to researchers
across a wide range of disciplines. I will describe one such software package, the 3D Slicer, and the
manual segmentation and registration tools it contains to complement its automated algorithms. The
3D Slicer is free, open-source, cross-platform, and easily extensible and customizable to any developer’s
or user community’s needs. In particular I will describe the features I added to its manual image editor
that provide basic manual segmentation capabilities on par with existing commercial software catering
to the same user community.

1 Introduction

Biomedical images have proliferated throughout many fields of biological research, ranging from molecular
dynamics to musculoskeletal modeling to virtual endoscopy. Magnetic resonance imaging (MRI) and com-
puterized tomography (CT) are used to produce volumetric images of macroscale anatomical features such
as musculoskeletal tissue, brain tumors, and whole organs and organ systems. Cryo-electron microscopy
(cryo-EM) is used to produce 3D shape descriptions of molecules. A variety of imaging techniques are used
to produce geometric data describing biological structures.

Following acquisition, many fields have similar needs with regard to processing this geometric data.
Common operations in many fields include registration of multiple image data sets to form a single, correctly
aligned data set; segmentation of structures of interest from within the data; wisualization of the data;
measurements within the data; and construction of 8D models of structures extracted from the data. A
number of context-specific computer implementations have been produced to facilitate the extraction of 3D
geometric models from volumetric biomedical images. Image segmentation has received extensive attention
for the last three decades by computer vision, computer graphics, and medical researchers, but even the
best techniques often serve only as a starting point for developing a proper segmentation technique for
a given type of image data, and extensive manual assistance is still needed to augment an automatically
generated segmentation, and most techniques work well only in very limited contexts. Model construction
methods also have received some attention, and need to be fast and accurate to be useful to non-programmer
users. Software is also needed to manipulate data volumes and models: modification of meshes and Boolean
operations are common volume manipulation tasks.

However, the differences in needs for different biomedical research groups has led to the formation of
unique, specialized image-to-model pipelines. No single software package exists that is used in all areas of
biomedical image processing, even though so many vastly different fields share similar needs. For example,
the Surgical Planning Lab (SPL) in Brigham and Women’s Hospital (BWH) at Harvard University uses semi-
automatic segmentation with pixel-level accuracy and the marching cube algorithm to construct 3D meshes

from segmentation, while the Neuromuscular Biomechanics Lab (NMBL) at Stanford University uses manual
segmentation, subpixel accuracy, and a Delaunay-based lofting algorithm from sampled cardinal splines to
construct 3D meshes. Even within a single research lab, one can find individual researchers who piece together
their own software pipeline using whatever tools they happen to find available. Individuals will often use
commercial packages such as 3D DOCTOR from Able Software, BodyBuilder from Vicon Motion Systems,
Matlab from MathWorks, or Geomagic Studio from Raindrop Geomagic to put together a software pipeline
from individual pieces. This fragmented use of image-to-model pipeline software has led to difficulties in
sharing data between researchers, and requires new researchers to have to spend extensive time and effort in
constructing their own image-to-model pipeline to conduct their own research. There is a great need for a
single software pipeline to unify the needs of researchers across many fields of biomedical image processing,
so that researchers can spend less energy developing robust software, can share data with ease, and can port
their data to other applications tailored to their own specific needs.

However, biomedical researchers and computer scientists are now attempting to solve this problem.
Spearheaded by the National Alliance for Medical Image Computing (NA-MIC), the 3D Slicer is being
introduced as a freely available, cross-platform, open-source, extensible and customizable software package
for use by researchers across a wide range of fields. The package is currently in use primarily by brain
researchers, but users from a vast array of other fields also use and develop modules for Slicer. The 3D
Slicer was originally developed in 1997 by David Gering at MIT as a unification of the visualization and
image-guided surgery software existing in SPL. Since then its use, development, and robustness has grown
tremendously. Individual developers can develop and add their own modules to Slicer. However, much of
the work done since its original implementation has been on semi-automatic and automatic segmentation of
data. Little effort was put into developing its manual segmentation tools, even though a large majority of the
segmentation done today requires substantial manual input. From January to August of 2005, I developed a
new manual image editor that has made Slicer a more practical tool for clinical researchers. I will describe
the features I added to create this new image editor. All of my software changes have been incorporated
into NA-MIC’s upcoming release, Slicer 2.6.

2 Basic Slicer Architecture

Slicer is organized as a combination of C++, used for the computation and graphics, and Tcl/Tk, used
for controlling C++ objects and managing windows. Slicer consists of its base code and its modules. The
base code cannot be removed from Slicer, but any module can be added or removed simply by adding or
removing a directory containing the Tcl and C++4 code for the module, as long as one pays attention to any
dependencies between the module and other modules. The C++ code of Slicer uses VTK, a freely available
open-source library of graphics functions and structures, built on top of OpenGL.

Slicer consists of three main windows: the Menu window, the Viewer window, and the Tk console. The
Menu window contains six panels: Data, Volumes, Models, Alignment, Editor, and ModelMaker. Each panel
contains one or more tabs. The image editor I will describe is part of the Editor panel’s Details tab. The
editor is activated through the Editor panel’s Effects tab.

3 Drawing Program Functionality

Slicer’s original manual image editor contained a basic functionality for drawing and modifying control
polygons. The user could click or drag the mouse to plot control points over an image slice. The user
could also select and move any number of existing points. However, the drawing, selecting, and moving
of points was a hassle, since switching between the Draw, Select, and Move modes required the user to
manually click the button for the desired mode. Hence, to draw a polygon, select a few control points, and
move those points, the user would have to click Draw, plot the points, click Select, select the desired points,
click Move, and then move the desired points. The speed and comfort with which these basic operations
can be performed increased greatly when this functionality was replaced with a behavior more like that of
commercial drawing programs.

I implemented an automatic proximity detection algorithm for real-time switching between the Select
and Move modes, so that the user can avoid having to repeatedly click on the Select and Move buttons to

switch modes during editing. If the current mode is Draw, then no automatic switching occurs because the
user must be allowed to plot points at any location on an image at any time. But if the current mode is
Select or Move, the automatic proximity detection algorithm will switch from Select to Move mode when the
mouse pointer is “near” a set of selected control points. If the control key is pressed on the keyboard, Slicer
will stay in Select mode at all times, thus allowing the user to select groups of points with ease, as in any
standard drawing program. The proximity detection algorthm works as follows. The input parameters are
the mouse pointer position (X,Y); the coordinates (z;,y;) of the N selected points; and a nearness threshold
r, which is set equal to 3 in the current implementation of Slicer. Assuming the current mode is either Select
or Move, the algorithm updates the mode based on the input parameters.

SetMode (X, Y, x[1..N], y[1..N],)
IF N < 1 THEN
Mode := Select
IF N = 1 THEN
IF |X - x[1]| <= r AND |Y - y[1]| <= r THEN
Mode := Move
ELSE
Mode := Select
IF N > 1 THEN
r2 :=r *r
FORi :=1TO0ON-1
L := PointSegDistSq (X, Y, x[il, yl[i], x[i + 11, y[i + 11)
IF L <= r2 THEN
Mode := Move
Exit this procedure
Mode := Select

The PointSegDistSq function call computes the squared distance between a point (X,Y’) and the line
segment with endpoints (x[é], y[i]) and (z[i +1], y[i +1]). The algorithm is described in the “Distance to Ray
or Segment” section of [4].

PointSegDistSq (X, Y, xi, yi, xf, yf)
DistSq := Infinity
(vx, vy) := (xf - xi, yf - yi)
(wx, wy) := (X - xi, Y - yi)
cl := (vx, vy) dot (wx, wy)
IF c1 <= 0 THEN
DistSq := | (wx, wy)|~2
RETURN DistSq
c2 := |(vx, vy)|~2
IF c2 <= c1 THEN
(ux, uy) = X - xf, Y - yf)
DistSq := | (ux, uy)|~2
RETURN DistSq
b := (float)cl / (float)c2
(pbx, pby) := (int)((xi, yi) + b * (vx, vy) + (0.5, 0.5))
(dx, dy) := (X - pbx, Y - pby)
DistSq = |(dx, dy)|~2
RETURN DistSq

One important note is that all of the points above have integer screen coordinates. The use of square
roots when computing distances is avoided by squaring quantities such as r. Floating point values are
only used in the two lines where the variable b appears. The overall use of integers and simple arithmetic
operations wherever possible makes this proximity detection algorithm perform very well in real-time, where
these computations must be repeated each time the user moves the mouse pointer. In Slicer, changing the

mode variable’s value automatically deactivates the previous mode’s button and activates the new mode’s
button on the effects tab, so that the user knows when it is okay to move or select points based on which
button is activated.

Another simple but useful drawing program-like functionality is that clicking the left mouse button while
in Select (and not Move) mode will deselect all control points. This eliminates the need for the user to
explicitly click the Deselect All button in the Menu window. The Deselect All operation is now in the Edit:
menu in the Menu window.

4 Inserting Intermediate Points

BodyBuilder [1] contains one important polygon editing operation that Slicer lacked: the ability to insert
points between existing control points to allow the user to manually refine a polygon. The implementation
of this feature posed a challenge: when the user clicks in an arbitrary location on an image, how do we know
where in the polygon to insert this point? One solution would be to ask the user to select the two points in
between which the new point will be inserted, but this would make the task of simply inserting a point too
laborious for the user. After all, BodyBuilder does not require any extra input from the user.

I implemented a proximity-based insertion algorithm as follows. The inputs are the mouse click location
M and the current, potentially empty control polygon being drawn by the user. Note that one property of
the control polygon is whether it is open (like a polyline) or closed (like a polygon).

1. If there are less than two control points in the polygon, add the new point M to the end of the control
polygon.

2. If there are two points in the polygon, add M between the two points.

Now assume there are at least three points in the control polygon.

=~ W

Find the nearest control point) to the mouse click location M.

5. Let L and R be the control points preceding and succeeding () in the polygon. If @) is the first point
in the polygon, L will be set equal to the last point in the polygon, and if @ is the last point in the
polygon, R will be set equal to the first point in the polygon.

6. Compute the (integer) squared distances Dy, and Dg from @ to L and R respectively.

7. If @ is the first point in the polygon, then if Dy < Dg, then if the polygon is closed, add M to the
end of the polygon (because it is easier to add to the end of the polygon than to the beginning in the
implementation), or if the polygon is open, add M to the beginning of the polygon since the first point
is closer to M than the last point. If @ is the first point, but Dy > Dpg, then add M as the point
immediately after @ in the polygon.

8. If @ is not the first point in the polygon, then regardless of whether the curve is open or closed, simply
add M as the point preceding @ if Dy < Dpg, or add M as the point after @ if Dy > Dpg.

This algorithm uses only integers and no floating point numbers throughout. This insert operation works
well when the control polygon does not contain large fluctuations in curvature between adjacent control
points. Typically, this poses no problems since most polygons are drawn with control points that closely
approximate smooth shape boundaries without sharp pronounced edges. But when the user inserts points
somewhat carelessly, the location of point insertion in the polygon can be counterintuitive. More intelligent
ways of inserting points based on a point-to-curve distance calculation, or based on an assumption about
the overall round nature of a polygon, could yield better results. See Figure 1 for an example polygon which
can produce counterintuitive behavior during point insertion.

Figure 1: (Left) A control polygon drawn in Slicer. (Center) The result of inserting a point into the
polygon. (Right) The result of inserting another point, colored yellow, which caused the polygon to have
a self-intersection; we know the algorithm placed this point between the wrong pair of points since such a
topological change to the polygon should never occur during segmentation.

5 Cardinal Splines and Sampling

BodyBuilder interpolates every control polygon with a cardinal spline in real time [1]. Sampling such a spline
with arbitrary precision allows the user to send as much or as little geometric detail about each contour to
the model construction algorithm in BodyBuilder. I implemented real-time interpolation of control polygons
with cardinal splines and sampling of cardinal splines with arbitrary precision (up to pixel-level accuracy)
into Slicer’s manual image editor.

A cubic Bézier curve is a smooth polynomial curve determined by four points By, B, B2, and Bs. Each
point on the curve has a unique parameter value ¢ between 0 and 1, inclusive. The point with parameter
value t is computed using a recursive interpolation algorithm called the de Casteljau algorithm, which works
by computing the first-order intermediate points

By(t) = (1—1t)By+tB;
Bi(t) = (1—1t)B; +tBy
Bi(t) = (1-1t)By+1tBs,
the second-order intermediate points
B2(t) = (1—1)*By+2t(1 —t)B; + 1By
Bi(t) = (1—1)2By+2t(1 —t)By +t*Bs,

and finally the desired point, which is third-order (hence the name cubic Bézier curve):
B(t) = (1 —1)3>By + 3t(1 — t)?B; + 3t*(1 — t) By + t> Bs. (1)

Suppose we are given a control point P; which is neither the first nor the last point on a control polygon
with at least three control points. Then P; is attached to two points P;_; and P;4;1 by edges of the polygon.
To interpolate a cardinal spline through these points, we treat P;_; and P; as endpoints of one cubic Bézier
curve, and treat P; and P;;; as endpoints of another cubic Bézier curve. But this only gives us two points
for each of the two Bézier curves—recall that we need four points to fully determine a cubic Bézier curve. So,
we impose an additional constraint on the derivative of the curve at each control point P;:

P} = (Piy1 — Pim1)/2. (2)

Now by differentiating equation 1, we obtain the equations
B'(0) = 3(B;— By)
B'(1) = 3(Bs— Bo)

for a particular cubic Bézier curve with control points By, B1, By, and Bs. Thus if we have the derivative
of a curve at By and at Bs, then we can determine the other two control points By and Bs. Equation 2
gives us the derivative at each curve’s endpoints. We could actually pick any constant in the denominator
in equation 2. We picked 2 to be the denominator, which makes our cardinal splines a popular type of curve
known as a Catmull-Rom spline.

This gives us a way to compute pieces of the interior of a cardinal spline. But what about the curve
joining the first and second control points, or the curve joining the last and second-to-last control points?
Suppose we are interpolating a cubic Bézier curve through the first and second control points of the polygon.
Then we want to compute points By, By, B2, and Bs such that B(t) represents this cubic curve. The problem
is, if we let the first control point be Py and the second control point be P, there is no control point preceding
Py from which to obtain constraints like in equation 2. We propose the following solution: let the derivative
P} at Py be the reflection of the derivative vector P at P; over the edge PyP;:

P(;:Q(P{'(PO_Pl)

[Po — P1|?) (Fo—P1) = B,

We resolve the analogous problem for the last two control points Py_; and Py_s in the same way, so

Py o (Pn-1— Pn_2)
[Pn-1— Pn—2l

Finally, if the curve is closed, then we must draw another cubic Bézier curve between Py_1 and Py. But here
we can compute Py _; using Py_o and Py as the previous and next control points; and we can compute P}
using Py_1 and P; as the previous and next control points, thereby completely determining a cubic Bézier
curve connecting Py_1 and Fp.

For polygons with two control points, the entire cardinal spline we interpolate through the points will
just be the line segment joining the two points. For polygons with one or zero control points, we do not
interpolate anything.

Once a cardinal spline interpolating the control polygon is computed, it is rendered by rendering its
individual cubic Bézier curves. Each cubic Bézier curve is rendered by repeated subdivision into small
enough subcurves, each of which in turn can be approximated by line segments. The inputs into the
algorithm are the four control points of a cubic curve, all with floating point precision (not integers). The
recursive subdivision is essentially the de Casteljau algorithm with parameter value ¢ = 0.5. A curve is
considered to be approximately a line segment when the squared distance between the end control points of
the curve is less than or equal to 4.

PJ/\/—12(> (Pn—1— Py_2) — Py_s.

DrawCubicCurve (BO, B1, B2, B3)
D03 := |B3 - BO|"2
IF D03 <= 4.0 THEN
DrawLineSegment ((int)BO, (int)B3)

ELSE
BO1 := 0.5 * (BO + B1)
B11l := 0.5 * (B1 + B2)
B21 := 0.5 * (B2 + B3)
BO2 := 0.5 * (BO1 + B11)
B12 := 0.5 * (B11 + B21)

B0O3 := 0.5 * (BO2 + B12)
DrawCubicCurve (BO, BO1, B02, B03)
DrawCubicCurve (B03, B12, B21, B3)

The DrawLineSegment procedure rasterizes a line segment between two points on the image with integer
screen coordinates. We stress that a cardinal spline is modified exactly corresponding to how its underlying
control polygon is modified: if a point is added to the polygon, we recompute the whole spline. If a point is
deleted, we again update the whole spline. If a point is moved, we still update the whole spline in real time.
The algorithm has posed no speed issues. However, as is the case with many polynomial curves, fluctuations
in curvature between adjacent control points can lead to wild behavior in the shape of the curve, and even

mild curvature fluctuations can lead to undesirable behavior at the ends of a cardinal spline. A simple
solution to these endpoint issues may be to simply compute derivatives Pj and Py _; using the technique
described above for closed curves, and to use these derivatives in computing the curve connecting P, and
P, and the curve connecting Py_o and Py_1. A more fundamentally sound improvement to these issues
may be to use implicit curves (level sets) to model these contours instead of parametric curves. Implicit
curves yield far greater flexibility and generality of shape with simple equational representation. Methods
for creating 3D finite element meshes from imaging data using implicit surfaces have already been developed
[5].

The user must specify an integer sampling density d > 0 for the cardinal spline. The algorithm for
sampling points from a cardinal spline works by sampling d points from each cubic Bézier curve segment of
the spline, in addition to the already existing control points in the control polygon. So if d = 0, the only
sampled points are the original control points themselves. Given a value for d, for each cubic curve segment
described by a parametric function B(t), the algorithm uses the de Casteljau algorithm to compute the points
B(1/(d+1)),B(2/(d +1)),...,B(d/(d + 1)). This sampling algorithm works well in practice. The main
advantages of the algorithm are simplicity and speed, while the main disadvantage is that high-curvature
areas will be undersampled and low-curvature areas will be oversampled. An adaptive curvature-based
sampling algorithm would yield more balanced results.

One controversy among image processing researchers is whether to allow polygons and splines to have
subpixel accuracy, or to simply label structures by labeling pixels. NA-MIC’s Slicer users typically label
structures at the pixel level and may have no need for spline contours at all. However, NMBL researchers
typically plot spline contours with subpixel-level accuracy. Making software to optimally satisfy both types
of manual segmentation remains a challenge.

6 Unapply and Reapply Logic

A major feature missing in the original implementation of Slicer’s manual editor was the ability to go back
and re-edit contours that have already been applied. It is common for researchers to draw approximate
contours on all slices of data quickly, and then go back and refine each contour. Although Slicer already had
the ability to allow users to mark or unmark individual pixels or groups of pixels as part of a labelmap, it
did not store the control points of the original polygons drawn by the user to generate the labelmap in the
first place. Thus, there was a strong need for an undo feature, or rather, an “unapply” feature.

I implemented the unapply feature to have the following functionality: the user draws up to twenty
polygons manually on each slice, and when the user clicks the Unapply button in the Menu window (without
moving to a different image slice), one of the polygons on that slice is made editable (i.e., is unapplied).
Slicer will in fact scroll through the polygons one at a time, each time Unapply is clicked on that image
slice. Currently, up to 200 slices of image data may be segmented. Soon these limitations will be removed
by reimplementing the stack data with STL vectors instead of fixed-size C-style arrays.

The data structure for managing these polygons is called vtkStackOfPolygons. A vtkStackOfPolygons
object contains a fixed-size array of 200 vtkPolygonList objects and 200 Boolean variables indicating whether
each of these vtkPolygonList objects has ever had a polygon stored in it. Each vtkPolygonList contains a
fixed-size array of 20 vtkPoints (polygon) objects, along with the following integer parameters for each of
these 20 polygons: sampling density, closedness, preshape, label, and order.

When the Unapply button is clicked, the following algorithm is executed.

Unapply)

Delete all points in PolyDraw

s := CurrentSliceNumber ()

IF CurrentSlice != s THEN
poly := Stack.GetFirstRetrievablePolygon(s)
Set current draw color to poly’s color
n := poly.GetNumberOfPoints()
FORi :=0TO0On-1

Add ith point in poly to PolyDraw

CurrentSlice := s

PolyNum := Stack.GetFirstRetrievePosition(s)
UnapplyNum := PolyNum

ELSE

The
was
the

PolyNum := Stack.GetNextRetrievePosition(s, PolyNum)
IF PolyNum != -1 THEN

UnapplyNum := PolyNum

poly := Stack.GetPolygon(s, PolyNum)

Set current draw color to poly’s color

n := poly.GetNumberOfPoints()

FOR i :=0TO0On -1

Add ith point in poly to PolyDraw

algorithm first checks whether the user has moved to a new slice since the last time Apply or Unapply
clicked. If the user is on a new slice, or if the user just started segmenting and is clicking Unapply for
first time (even before Apply was clicked), then the algorithm will retrieve the first nonempty polygon

in the vtkPolygonList array for that slice and make that polygon editable by setting PolyDraw to equal it.
If the user has already clicked Apply or Unapply on this slice without doing so on any other slice since then,

the

algorithm will retrieve the next polygon in the vtkPolygonList array for that slice (allowing the user to

scroll through each of the applied polygons on a slice by repeatedly clicking Unapply). If there is only one
polygon applied on that slice, then that polygon will remain selected no matter how many times Unapply
is clicked. If no polygons exist on the slice, nothing will be retrieved and PolyDraw will remain unchanged.
Some important variables are:

1.
2.

4.

Stack: the vtkStackOfPolygons object used to store all polygons drawn by the user

PolyNum: initial value -1; the index of the polygon on which the Unapply and Apply algorithms are
currently focusing

CurrentSlice: initial value -1; number of the slice on which the Unapply and Apply algorithms are
currently focusing

UnapplyNum: initial value -1; the index of the polygon to be replaced when Apply is clicked next

When the Apply button is clicked, the following algorithm is executed.

Apply O
s := CurrentSliceNumber ()
IF CurrentSlice != s THEN
CurrentSlice := s
PolyNum := -1
UnapplyNum := -1
IF UnapplyNum != -1 THEN

Stack.RemovePolygon(s, UnapplyNum)

PolyNum := Stack.GetNextInsertPosition(s, PolyNum)

IF

PolyNum = -1 THEN
Exit this procedure since slice s polygon list is full

Stack.SetPolygon(s, PolyNum, density, closed, preshape, label)
UnapplyNum := -1

IF

ClearPointsBeforeApply == "Yes" THEN
Clear current slice’s labelmap

NumApply := Stack.GetNumApplyable(s)
FOR q := 0 TO NumApply - 1

p := index of qth applyable polygon in Stack on slice s
poly := qth applyable polygon in Stack on slice s
n := poly.GetNumberOfPoints()
IF n > O THEN
Add pixels for poly to slice s of current labelmap

IF DeletePointsAfterApply == "Yes" THEN
Delete all points in PolyDraw

ELSE
Deselect all points in PolyDraw

If the last time Unapply or Apply was clicked was on a different slice, then we simply add the PolyDraw
polygon to the polygon list for the current slice. If the 20 slots in the polygon list for the current slice are
already full, we give up trying to add this polygon to the list and the algorithm halts. If we were successful,
then we update the rendering of the labelmap for the current slice by including the newly applied polygon
into the labelmap computation. If we already clicked Unapply on the current slice, we actually remove the
unapplied polygon and replace it with the newly applied polygon. This allows the user to unapply, edit, and
reapply any polygon on any slice at any time, since the user can already scroll through the already-applied
polygons on any slice at any time by repeatedly clicking Unapply.

7 Edit Operations

Most Microsoft Windows programs contain three editing features upon which users rely to correct editing
mistakes or efficiently repeat certain editing operations: cut, copy, and paste. The situation is no different
for Slicer users. A user may want to make multiple copies of one polygon and paste them onto multiple slices
instead of hand-drawing contours on each individual slice. A user may want to remove a polygon from one
slice and paste it on another. Some users may even be accustomed to using the cut operation in lieu of the
delete all operation as a safe way of being able to recover any information that was mistakenly deleted.

Initially Slicer contained a single polygon, PolyDraw, which stored the control points of the current
(potentially empty) polygon being drawn by the user. To implement the cut, copy, and paste operations,
I created another polygon object, CopyPoly, that would temporarily store a control polygon. The basic
algorithms for the cut, copy, and paste algorithms are given below.

Copy ()
Delete all points in CopyPoly
Add all points in PolyDraw to CopyPoly

Cut ()

Delete all points in CopyPoly

Add all points in PolyDraw to CopyPoly
Delete all points in PolyDraw

Paste()
Delete all points in PolyDraw
Add all points in CopyPoly to PolyDraw

These operations can always be performed by clicking on the appropriate buttons in the Effects tab’s
Edit: menu. Shortcut keys have also been implemented for these operations: Control4+X for cut, Control4+C
for copy, and Control+V for paste, consistent with typical applications. Unfortunately, Slicer only responds
to these shortcut keys when the Viewer window is the currently active window, and so its operation can be
a bit confusing to users who are not aware of this fact. This problem applies to other features in Slicer as
well and needs to be corrected.

The four other operations in the Edit: menu already existed in Slicer as individual buttons: select all,
deselect all, delete selected, and delete all.

8 Other Additions

When exporting segmentation data to other applications for smooths surface construction, finite element
meshing, and simulation, it is useful to have the points sampled from all splines drawn by the user on
all slices, combined into a single point cloud. Programs such as Geomagic Studio can take this data and

construct a NURBS surface interpolating the points. I have implemented a feature to allow exporting of such
data after the user has constructed a labelmap. The output file name has an extension ”.pts” and simply
lists every point plotted by the user on every slice, plus all of the additional points sampled from the spline
contours, one point per slice. The points are listed in RAS coordinates.

9 Power User Functionality

The new image editor provides enough shortcut keys so that “power users” can segment large amounts of
data with relative ease. The user can typically keep one hand on the keyboard and one hand on the mouse.
The following shortcut keys have been implemented:

1. UP ARROW: Apply
2. DOWN ARROW: Switch between Draw, Select/Move, and Insert modes
LEFT ARROW: Scroll to previous slice

-~ W

RIGHT ARROW: Scroll to next slice

ot

CONTROL++A: Select all points
DELETE: Delete selected points
CONTROL++D: Delete all points
CONTROL+X: Cut polygon

© »®» N @

CONTROL++C: Copy polygon
10. CONTROL+V: Paste polygon

In normal circumstances, then, the user can start on the first slice, draw and edit a contour, press the up
arrow key to apply the contour, and then press the right arrow key to scroll to the next slice, and repeat.
The left arrow key can be used to come back to earlier slices for re-editing.

10 Problems with Current Slicer Architecture

As mentioned before, one implementation challenge is to optimally accommodate the software needs for
both pixel-level accuracy and subpixel accuracy for segmentation. There are also other issues we are still
only becoming aware of regarding different practices among different research groups. Also, as users request
additional features, the user interface becomes increasingly more complex. At the same time, users want
simplicity of use. It takes some compromises and some cleverness of design to reconcile these two opposing
demands. In addition, the diverse needs of Slicer’s large user community lead to the addition of different
types of features for different groups that can conflict with other groups’ needs or desires.

There are also problems with Slicer’s current organization on the developer side. For one, the C++ code
is inherently difficult to debug in the conventional ways. The most effective way is to wrap output statements
with Debug and GlobalWarningDisplay statements:

DebugOn() ;
GlobalWarningDisplayOn() ;

vtkDebugMacro(<< outputString);

GlobalWarningDisplayOff();
Debug0ff () ;

10

Slicer’s Tcl code is considerably easier to debug since one can always run Slicer and step through hypo-
thetical Tcl code inside the Tk console window itself. However, some programmers feel that Tcl is a difficult
language to debug in since the most effective method is to step through the code manually.

11 Conclusion

To satisfy the growing needs of the user base and improve the developer experience, Slicer needs a major
architectural reorganization. Some expected improvements coming to Slicer 3.0 include the use of VTK
widgets, which will greatly expand the basic graphical tools and capabilities of Slicer. These changes will
not appear in Slicer 2.6, however. Overall, Slicer is expected to be the tool of choice for image processing
needs across all biomedical fields. Its open distribution and large user and developer base, combined with
the ease of learning to use it and develop with it, make it a powerful tool for researchers across all image
processing fields. The ability to easily plug in new ITK-based image processing algorithms using the vtkITK
module allows researchers to readily test any algorithms they have implemented in ITK. The image editor
itself needs several improvements as well, as mentioned in the individual sections earlier.

12 Acknowledgements

Thanks to Allison Arnold, Thor Besier, Silvia Blemker, Christie Draper, and Kate Holzbaur in the Neu-
romuscular Biomechanics Lab at Stanford who provided valuable input on the essential ingredients needed
for an image-to-model software pipeline. Nathan Wilson provided detailed information about his own Tcl-
wrapped VTK-based modeling software for cardiovascular biomechanics. Thanks to Steve Pieper for the
help he continues to provide in all aspects of Slicer development. Ron Kikinis provided important informa-
tion and advice on the needs of the Slicer user community. Bill Lorensen, Will Schroeder, and Luis Ibanez
provided further suggestions and encouragement for this work.

This work was supported by an NIGMS biocomputation predoctoral training fellowship. Stanford’s NIH-
funded Center for Biomedical Computation (Simbios) supported travel to UCSD and MIT for NA-MIC
meetings.

References
[1] BodyBuilder manual.
[2] G. Farin. Curves and Surfaces for CAGD, 5th ed., Academic Press, 2002.
[3] http://slicer.org
[4] http://softsurfer.com/Archive/algorithm _0102/algorithm_0102.htm

[5] Y. Zhang, C. Bajaj, B. Sohn. 3D Finite Element Meshing from Imaging Data, Computer Methods in
Applied Mechanics and Engineering (CMAME) on Unstructured Mesh Generation, 194, 48-49, 5083-
5106, 2005.

11

