
Documents

 Simbody Advanced

Programming Guide
 Release 2.2

June, 2011

 website: https://simtk.org/home/simbody

Copyright and Permission Notice

Portions copyright (c) 2008-11 Stanford University, Peter Eastman, and Michael Sherman.

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

iii

Acknowledgments

SimTK software and all related activities are funded by the Simbios National Center for

Biomedical Computing through the National Institutes of Health Roadmap for Medical

Research, Grant U54 GM072970. Information on the National Centers can be found at

http://nihroadmap.nih.gov/bioinformatics.

http://simbios.stanford.edu/
http://nihroadmap.nih.gov/bioinformatics

v

Table of Contents

1 INTRODUCTION ... 7

1.1 Extending Simbody .. 7

1.2 Realization Revisited ... 8

1.3 The First Four Computation Stages .. 9

2 CUSTOM FORCES, CONSTRAINTS, AND MOBILIZERS (JOINTS) 11

2.1 A Custom Force ... 11

2.2 A Custom Constraint .. 13

2.3 Simple Constraints ... 17

2.4 A Custom Mobilizer (The Easy Case) ... 20

2.5 A Custom Mobilizer (The Hard Case) ... 22

3 A CUSTOM SUBSYSTEM ... 25

3.1 A First Subsystem .. 25

3.2 A ForceSubsystem .. 27

3.3 Adding Parameters to the Subsystem ... 29

3.4 Creating a State Variable ... 32

3.5 Other Subsystem Features ... 35

3.5.1 Allocating continuous state variables q,u, and z ... 35

3.5.2 Allocating your own cache entries ... 36

3.5.3 Allocating cache entries with ―lazy‖ evaluation ... 36

3.5.4 Creating event handlers .. 37

3.5.5 Defining new constraints .. 38

7

1 Introduction

Before reading this, you should already have read the Simbody and Molmodel User’s Guide

which you can find here: https://simtk.org/home/simbody, Documents tab. In the tutorial

there, you learned how to build Simbody Systems out of Subsystems, MobilizedBodies,

Constraints, and other objects. You can go a very long way doing nothing but that—building

up Systems out of prewritten parts—but you may reach a point where it is not enough.

Probably you will need to write specialized force elements. Perhaps you need a Constraint

that does not correspond to any of the standard constraint types. Or maybe you need to

model a connection that cannot be represented with the standard MobilizedBody classes. It’s

not enough to just use the classes provided by the toolkit; you need to write new ones. That

is what this document will teach you how to do.

1.1 Extending Simbody

Let’s begin by reviewing some things you learned in the tutorial. A System is made up of

Subsystems. Each Subsystem can do any of the following:

1. Define state variables, which can be categorized into generalized coordinates (q),

generalized speeds (u), auxiliary variables (z), and discrete variables (d).

2. Calculate information to be stored in the realization cache of a State object.

3. Calculate the time derivatives of continuous state variables.

4. Define constraint equations.

5. Define event trigger functions and event handlers.

You will learn how to write new Subsystems that may do any or all of these. This is the most

general way that you can extend Simbody Systems with custom code. It often isn’t the most

convenient way, though. If all you want is to define one new constraint type, you shouldn’t

need to write an entire Subsystem. Simbody provides simpler mechanisms for extending a

System in common ways. In fact, you have already seen one of them: rather than writing a

new Subsystem to define an event handler, you simply write an EventHandler or

EventReporter object, and then add it to the default Subsystem. You also can write custom

subclasses of Force, Constraint, and MobilizedBody. We will see examples of all of these.

https://simtk.org/home/simbody

 Realization Revisited

8

1.2 Realization Revisited

As you learned in the Simbody User’s Guide, a State object holds two types of information:

state variables and cached results. Cached results are stored in the realization cache, which

is divided up into stages. Before you can access information in the cache, you must first

make sure the State has been realized to the appropriate stage. For example, it must be at

Position stage or later to access Cartesian coordinates, and at Velocity stage or later to access

Cartesian velocities.

Stages can also be thought about in another way. Every state variable is associated with a

particular cache stage:

Variable Stage

t Time

q Position

u Velocity

z Dynamics

d any

 (A discrete state variable may be associated with any stage except Empty or Topology. When

a Subsystem defines a discrete variable, it specifies what stage to associate it with.)

When a State is being realized to a particular stage, the values calculated and stored in the

cache can only be those that depend on state variables for that stage or earlier stages. They

may not depend in any way on state variables associated with later stages.

Why is this? Because whenever a state variable is modified, the cache is automatically

reverted back to the stage immediately before the stage associated with that variable. If you

modify a generalized coordinate q, the cache is reverted back to Time stage. If you modify a

generalized speed u, the cache is reverted back to Position stage. This ensures that any

information in the cache which might depend on that variable is discarded.

Suppose that a Subsystem failed to obey this rule. Suppose that, while realizing a State to

Position stage, it made use of the generalized speeds. Then, at some later point, the speeds

were modified. Those cached values would no longer be consistent with the state variables.

 The First Four Computation Stages

9

But because the Position stage cache entries would not be discarded, they would still be

present in the cache and accessible to anyone who looked for them.

When you were simply using classes written by other people, you didn’t have to worry about

this. You simply trusted that information in the cache would always be correct. But now that

you are preparing to write extensions to Simbody, you need to be aware of it. You need to

know what promises are made by the System, and you have a responsibility to make sure

your code does not break them.

1.3 The First Four Computation Stages

There are a total of ten computation stages. The later stages were discussed in the User’s

Guide, but very little mention was made of the first four stages: Empty, Topology, Model,

and Instance. When running a simulation, there is usually not much reason to think about

these stages, since all information you are likely to want is associated with one of the later

stages. But when you are writing extensions to Simbody, these stages are very important.

They are where the State gets constructed and configured to hold data. Let’s examine each

one of them.

Empty: This is the stage a newly constructed State object is in before it has been realized. It

contains no information at all, and is not specific to any particular System.

Topology: When a State gets realized to Topology stage, it is configured to become a State

for a particular System. In practice, this usually means allocating space in the cache for

whatever data the System needs to store, and creating Model stage state variables. The

Topology stage is unique in that no state variables may correspond to it. There is no such

thing as a ―Topology stage state variable‖ in a State. Logically, Topology stage ―state

variables‖ are the data members of the System; that is, they are stored with the System not

with the State. The effect on the State when you realize it to Topology stage can only depend

on properties of the System (―topological properties‖), not on the value of any variable in the

State.

Model: When a State is realized to Model stage, its complete set of state variables becomes

fixed. This means that the set of state variables may depend on the value of a Model stage

state variable. For example, Simbody allows rotations to be modeled with either quaternions

or Euler angles. You select which representation to use by calling setUseEulerAngles() on the

SimbodyMatterSubsystem. Your choice is stored in a Model stage discrete state variable. If

 The First Four Computation Stages

10

you select Euler angles, three generalized coordinates will be created for each rotation. If you

select quaternions, there will be four. In general you use Model stage state variables

(typically integers or boolean flags) to choose modeling options that may affect the number

and type of later-stage state variables that are allocated.

This has an important consequence: if you change Model stage variables during a simulation

(typically in an event handler), States created before the change may contain different state

variables than ones created after. More commonly, Model stage variables are used to

configure a System before beginning a simulation, not once the simulation has started.

Instance: At Instance stage, we know which force elements, constraints, and events are

enabled, so the set of cache entries can be finalized. This means that the set of active forces,

constraints, and event handlers may potentially change during a simulation. For example,

Simbody uses an Instance stage variable to record which Constraints are disabled.

Instance stage state variables are often used for real-valued parameters, such as mass,

geometry, spring constants, etc. Instance stage realization is a good time to precalculate

values that won’t change, or will only change during discrete events, not during continuous

integration intervals.

11

2 Custom Forces,

Constraints, and

Mobilizers (joints)

Writing your own Subsystem as described in the next chapter provides the most flexibility,

but there is almost always an easier way. Specifically, most built-in Simbody Subsystem

manage a collection of ―elements‖ that typically provide a great deal of functionality and

customizability. The GeneralForceSubsystem, for example, has springs and the like but also

a fully general ―custom‖ force element that is easy to write. The SimbodyMatterSubsystem

has built-in constraints and mobilizers (joints) but also provides the ability to write custom

constraints and custom mobilizers.

2.1 A Custom Force

Writing a new Subsystem is the most general way to add custom features to a SimTK System,

but it is not always the easiest way. Simbody provides special classes for writing common

types of extensions: custom Forces, custom Constraints, and custom MobilizedBodies

(meaning a custom joint). We will look at these classes in this chapter and see examples of

how to use them.

In this section, we will implement a force that causes all the bodies in a MultibodySystem to

repel each other. You will remember from the tutorial that Simbody’s

GeneralForceSubsystem provides a general mechanism for adding arbitrary Force elements

to a System. Simbody provides a number of Force subclasses that implement common sorts

of forces: Force::UniformGravity, Force::TwoPointLinearSpring, etc. It also provides a class

called Force::Custom that can be used to define completely new forces; we’ll use that here.

To use Force::Custom, you must write a subclass of Force::Custom::Implementation. Here is

one that implements our global repulsion force:

class ExampleForce : public Force::Custom::Implementation {

public:

 ExampleForce(SimbodyMatterSubsystem& matter) : matter(matter) {

 }

 A Custom Force

12

 void calcForce(const State& state, Vector_<SpatialVec>& bodyForces,

 Vector_<Vec3>& particleForces, Vector& mobilityForces) const {

 for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) {

 const MobilizedBody& body1 = matter.getMobilizedBody(i);

 for (MobilizedBodyIndex j(0); j < i; j++) {

 const MobilizedBody& body2 = matter.getMobilizedBody(j);

 Vec3 r = body1.getBodyOriginLocation(state)-

 body2.getBodyOriginLocation(state);

 Real distance = r.norm();

 Vec3 force = r/cube(distance);

 bodyForces[i][1] += force;

 bodyForces[j][1] -= force;

 }

 }

 }

 Real calcPotentialEnergy(const State& state) const {

 double energy = 0.0;

 for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) {

 const MobilizedBody& body1 = matter.getMobilizedBody(i);

 for (MobilizedBodyIndex j(0); j < i; j++) {

 const MobilizedBody& body2 = matter.getMobilizedBody(j);

 Vec3 r = body1.getBodyOriginLocation(state)-

 body2.getBodyOriginLocation(state);

 energy -= 1.0/r.norm();

 }

 }

 return energy;

 }

 bool dependsOnlyOnPositions() const {

 return true;

 }

private:

 SimbodyMatterSubsystem& matter;

};

The calcForce() method is called to calculate the force. Notice that it has three different

arguments for storing forces into: bodyForces, particleForces, and mobilityForces. Use

bodyForces to apply Cartesian forces and torques to bodies. That is what we are doing in this

example. You also can use mobilityForces to apply forces directly to individual degrees of

freedom. That is, there is one scalar element corresponding to each generalized speed. A

Force object may apply either or both types of force.

(Currently, particleForces is ignored. That is because Simbody does not yet support particles

as a special case—you can include them as bodies, though. It is expected that they will be

given special handling in a future version, so the interface includes them for forward

compatibility.)

Similarly, calcPotentialEnergy() is called to calculate the potential energy due to the force.

Finally, there is an optional method called dependsOnlyOnPosition(). The default

implementation returns false. If you override it to return true, that enables an optimization

to avoid recalculating the force and energy when a generalized speed or auxiliary state

 A Custom Constraint

13

variable is modified. Since our force depends only on q, not on u or z, we return true. This

will potentially make our simulations run faster.

Here is how to add the custom force to a MultibodySystem:

MultibodySystem system;

SimbodyMatterSubsystem matter(system);

GeneralForceSubsystem forces(system);

Force::Custom(forces, new ExampleForce(matter));

As you see, it works just like any other Force object. We simply create a Force::Custom,

passing an instance of our Implementation class as an argument. You can also write a

―handle‖ class derived from Force::Custom which hides your force implementation class and

provides a nicer API for your force element that acts exactly like built-in force elements do.

See the Doxygen API documentation for Force::Custom for more information.

2.2 A Custom Constraint

Writing a custom Constraint is very similar to writing a custom Force: you create a class that

extends Constraint::Custom::Implementation, then pass an instance to the constructor of a

Constraint::Custom. But before showing an example, I need to give you warning: writing

Constraints is significantly more difficult than writing Forces. It isn’t that the programming

interface is hard. There are several methods to implement, but that’s not a big deal. The

problem is that most constraints just involve a lot of math, and if your Constraint fails to

work correctly, it can be difficult to figure out exactly where you made the mistake.

In principle, constraints are simple. As described in the User’s Guide, a constraint is just an

equation of the form c(d;t,y) = 0. How hard can that be to implement? Actually, there are

some constraints that really are as simple as that, and Simbody offers a special mechanism

that lets you implement them in a truly easy way. We will discuss it in the next section. The

problem is that, in many cases, the constraint function depends in some enormously

complex way on a very large set of state variables.

Consider, for example, a simple Constraint::Rod (also known as a ―distance constraint‖).

This specifies that the distance between points on two different bodies must remain fixed.

The positions of those points depend on the positions and orientations of the two bodies.

And those, in turn, depend on the generalized coordinates for the two bodies and for every

one of their parent bodies back to ground. Trying to actually write the constraint equation

explicitly would be completely impractical.

 A Custom Constraint

14

On its own, that isn’t usually a problem. After all, Simbody will calculate the locations of the

points for you, and it’s easy enough to then calculate the distance between them. But there is

a second issue that complicates matters. Each constraint equation also implies that its time

derivatives are satisfied too. The Rod constraint, for example, generates three equations that

must be satisfied: a position-level constraint equation requiring the distance between two

points to be fixed; a velocity-level constraint equation requiring their relative velocity to be

zero; and an acceleration-level constraint equation requiring their relative acceleration to be

zero. You must implement all of these and make sure they are all consistent with each other.

Again, Simbody can provide all the information you need, but deciding exactly how to put

that information together correctly will take some math!

Constraints can be divided into three categories: holonomic, nonholonomic, and

acceleration-only. A holonomic constraint is one defined at the position level (such as a Rod

constraint). A holonomic constraint equation implies that its two time derivatives be

satisfied as well, as discussed above. A nonholonomic constraint is defined at the velocity

level. An example is Constraint::ConstantSpeed: it sets no restriction on the allowed values

of coordinates, only on how those coordinates change with time. A nonholonomic constraint

equation implies two conditions to satisfy (one at the velocity level and one at the

acceleration level). An acceleration-only constraint equation is defined at the acceleration

level, and implies only a single constraint condition to satisfy.

Let’s take a look at an example. Here is a custom constraint that requires the distance

between two bodies’ origins to remain fixed. This is, of course, just a special case of the more

general built-in Rod constraint. So this isn’t a very useful class, but it is a fairly easy one to

understand, so it makes a good example.

class ExampleConstraint : public Constraint::Custom::Implementation {

public:

 ExampleConstraint(MobilizedBody& b1, MobilizedBody& b2, Real distance) :

 Implementation(b1.updMatterSubsystem(), 1, 0, 0), distance(distance) {

 body1 = addConstrainedBody(b1);

 body2 = addConstrainedBody(b2);

 }

 Implementation* clone () const {

 return new ExampleConstraint(*this);

 }

 void realizePositionErrors(const State& state, int mp,

 Real* perr) const {

 Vec3 r1 = getBodyOriginLocation(state, body1, true);

 Vec3 r2 = getBodyOriginLocation(state, body2, true);

 perr[0] = ((r1-r2).normSqr()-distance*distance)/2;

 }

 A Custom Constraint

15

 void realizePositionDotErrors(const State& state, int mp,

 Real* pverr) const {

 Vec3 r1 = getBodyOriginLocation(state, body1, true);

 Vec3 r2 = getBodyOriginLocation(state, body2, true);

 Vec3 r = r2-r1;

 Vec3 v1 = getBodyVelocity(state, body1, true)[1];

 Vec3 v2 = getBodyVelocity(state, body2, true)[1];

 Vec3 v = v2-v1;

 pverr[0] = dot(v, r);

 }

 void realizePositionDotDotErrors(const State& state,

 int mp, Real* paerr) const {

 Vec3 r1 = getBodyOriginLocation(state, body1, true);

 Vec3 r2 = getBodyOriginLocation(state, body2, true);

 Vec3 r = r2-r1;

 Vec3 v1 = getBodyVelocity(state, body1, true)[1];

 Vec3 v2 = getBodyVelocity(state, body2, true)[1];

 Vec3 v = v2-v1;

 Vec3 a1 = getBodyAcceleration(state, body1, true)[1];

 Vec3 a2 = getBodyAcceleration(state, body2, true)[1];

 Vec3 a = a2-a1;

 paerr[0] = dot(a, r) + dot(v, v);

 }

 void applyPositionConstraintForces(const State& state, int mp,

 const Real* multipliers, Vector_<SpatialVec>& bodyForcesInA,

 Vector& mobilityForces) const {

 Vec3 r1 = getBodyOriginLocation(state, body1, true);

 Vec3 r2 = getBodyOriginLocation(state, body2, true);

 Vec3 r = r2-r1;

 Vec3 force = multipliers[0]*r;

 addInStationForce(state, body2, Vec3(0), force, bodyForcesInA);

 addInStationForce(state, body1, Vec3(0), -force, bodyForcesInA);

 }

private:

 ConstrainedBodyIndex body1, body2;

 Real distance;

};

There’s a lot to discuss here, so let’s begin at the beginning. The constructor takes two bodies

to constrain and the required distance between them. Notice the three integers that get

passed to the superclass constructor. Those are the numbers of holonomic, nonholonomic,

and acceleration-only constraint equations defined by this class. We are creating a single

holonomic constraint equation, so we pass 1, 0, 0. Note that although there is a single

constraint equation here, we are going to have to implement three routines—the equation

itself and its first and second time derivatives.

The constructor calls addConstrainedBody() to register the MobilizedBodies the constraint

acts on. This is an important optimization, since the cost of enforcing a constraint depends

on the number of bodies involved (directly or indirectly). By telling Simbody what bodies are

 A Custom Constraint

16

constrained, you allow it to avoid calculations for degrees of freedom that have no effect on

the constraint.

This optimization has a very profound impact on how you write constraints. If you look at

the example above, you will notice that none of the calculation routines ever reference a

MobilizedBody object, a MultibodySystem, or a SimbodyMatterSubsystem. Instead,

Constraint::Custom::Implementation defines its own methods that you use instead, like

getBodyOriginLocation() and getBodyVelocity(). These methods refer to bodies with a

ConstrainedBodyIndex, not a MobilizedBodyIndex. If you don’t see a method you need,

don’t figure out a clever loophole that lets you use SimbodyMatterSubsystem or

MobilizedBody methods—that will not work correctly! Instead, post a question to the

Simbody help forum at https://simtk.org/home/simbody, Advanced tab, Public Forums.

After you call addConstrainedBody() to register all of the constrained bodies, Simbody

identifies an ―ancestor body‖, which is the nearest common ancestor shared by all the

constrained bodies. This allows it to define a ―constrained system‖, consisting of the

constrained bodies and all of their parents going back to the ancestor body. Often this will

only be a small fraction of the bodies in the full System, but all the other bodies are

guaranteed to have no impact on whether the constraint is satisfied. This can save a huge

amount of computation. When you call getBodyOriginLocation(), it actually returns the

location in the ancestor body’s reference frame, not in the ground frame. But that doesn’t

really matter—in your code you just treat the ancestor as though it were ground.

Now look at the methods that implement the constraint. This is a holonomic constraint, so it

involves three constraint equations. There is a virtual method corresponding to each one:

realizePositionErrors(), realizePositionDotErrors(), and realizePositionDotDotErrors().

Each one calculates the error in the appropriate constraint equation. In this case, the

position level equation is (rr–d2)/2=0, the velocity level equation is vr=0, and the

acceleration level equation is ar+vv=0. Each equation is just the time derivative of the

previous one, and that is an absolute requirement! Note that you can’t just produce some

equivalent equation (like leaving out the 2 in the first equation here) because it is really the

error term that we are returning and that is never zero. That is, the code returns only the left

hand side of these equations and it is that left hand side that must be properly differentiated.

That said, there are still many sets of equations that define the same constraint—for

example, we could have used the actual distance |r|–d as the position level error, rather than

https://simtk.org/home/simbody

 Simple Constraints

17

the difference of squares. That has some advantages, but simplicity of exposition is not

among them!

In addition to calculating the constraint errors, we also need to calculate the constraint

forces that should be applied at each time step to maintain the constraint. Simbody

automatically calculates the Lagrange multipliers corresponding to each constraint and

passes them to applyPositionConstraintForces(). We use them to calculate the force to apply

to each body. (If you aren’t familiar with Langrange multipliers, they are a little beyond the

scope of this document, but you can easily find descriptions of them online. For our

purposes, just think of them as the constraint forces that need to get generated in order to

satisfy the constraint at the acceleration level.) We call addInStationForce(), which is a

convenience method to apply a linear force at a specific point on a specific body. It works out

the correct force and torque to apply, and adds them to the Vector of SpatialVecs.

Creating a nonholonomic or acceleration-only constraint is very similar. For a nonholonomic

constraint, there are three virtual methods to implement: realizeVelocityErrors(),

realizeVelocityDotErrors(), and applyVelocityConstraintForces(). For an acceleration-only

constraint, there are two methods: realizeAccelerationErrors() and

applyAccelerationConstraintForces(). Constraint::Custom::Implementation also has

methods corresponding to each of the standard stages (realizeTopology(), realizeModel(),

etc.), which can be overridden exactly as in a Subsystem. This allows you to define custom

state variables and cache entries, which is useful if you want your constraint to depend on

adjustable parameters.

2.3 Simple Constraints

Some constraints really are simple. Sometimes it is easy to write a function of the state

variables that you want to constrain. In these cases, Simbody provides special classes that let

you implement new constraints with very little work.

There are three special cases for which Simbody offers simple constraint classes. The first is

a holonomic constraint that can be written as a simple function of the generalized

coordinates: c(q) = 0. This class is called Constraint::CoordinateCoupler, since it defines a

coupling between some set of coordinates.

The second is a nonholonomic constraint that can be written as a simple function of the

generalized coordinates and generalized speeds: c(q; u) = 0. This class is called

 Simple Constraints

18

Constraint::SpeedCoupler. Although the constraint equation may involve coordinates, it is

strictly a constraint on the speeds. It considers q to be fixed as suggested by the ―;‖ above,

and manipulates u to satisfy the equation given the current value of q.

The third case is a holonomic constraint that explicitly specifies the behavior of one

generalized coordinate as a function of time: qi = f(t). This class is called

Constraint::PrescribedMotion, since the motion of one coordinate is explicitly prescribed in

advance.

Each of these classes requires you to provide a function of some set of state variables. This is

done with the Function_<T> class. A Function object defines scalar or vector function of m

arguments. That is, it provides a method with the following signature:

T calcValue(const Vector& x) const;

Function is a templatized class, with the output type as a template parameter. Most useful

are types Real and short vector types like Vec3. All of the Constraint classes require a

Function_<Real>, for which there is a typedef abbreviation Function. So calcValue() will

return a Real.

Suppose we want a constraint that requires two generalized coordinates to always be equal

to each other. This is done with a Constraint::CoordinateCoupler that enforces c(q) = q1-q2 =

0. Here is a Function class that implements c(q):

class ConstraintFunction : public Function {

 Real calcValue(const Vector& x) const {

 return x[0]-x[1];

 }

 Real calcDerivative(const Array_<int>& derivComponents,

 const Vector& x) const {

 if (derivComponents.size() == 1)

 return derivComponents[0] == 0 ? 1 : -1;

 return 0;

 }

 int getArgumentSize() const {

 return 2;

 }

 int getMaxDerivativeOrder() const {

 return std::numeric_limits<int>::max();

 }

};

The implemention of calcValue() is simple: it just returns the difference between its two

arguments. Since Function is templatized only on the type of the output value, not the

number of input arguments, we also must implement getArgumentSize() to return the

expected number of input arguments (2 in this case).

 Simple Constraints

19

A Function class also must implement calcDerivative() to calculate the partial derivatives of

the function. This takes a Array_<int> (behaves like std::vector<int>), which lists all

arguments with respect to which to take the derivative. If the array is of length 1 (that is, a

first derivative), we return either 1 or -1, depending on whether a derivative with respect to

the first or second argument is requested. If the array length is greater than 1 (a second

derivative or higher), we return 0.

A Function need not calculate all possible derivatives, since usually only the first few orders

are required. It just needs to implement getMaxDerivativeOrder() to report the highest order

derivative it can calculate. In this example there is no limit to which ones we can calculate

(all derivatives higher than first order are 0), so we return the maximum possible integer

value. The Functions used for constraints must support derivatives up to second order.

Here is how we add the Constraint to a System:

Array_<MobilizedBodyIndex> coordBody(2);

Array_<MobilizerQIndex> coordIndex(2);

coordBody[0] = body1.getMobilizedBodyIndex();

coordBody[1] = body2.getMobilizedBodyIndex();

coordIndex[0] = MobilizerQIndex(0);

coordIndex[1] = MobilizerQIndex(0);

Constraint::CoordinateCoupler constraint(matter, new ConstraintFunction(),

 coordBody, coordIndex);

In addition to telling the CoordinateCoupler what function to use, we also must tell it which

coordinates to pass as arguments. For each coordinate, we specify the MobilizedBody it

belongs to and the index of that coordinate for the MobilizedBody. In this example, we

constrain the first coordinate of body1 to always equal the first coordinate of body2.

This example could actually be made even simpler. Simbody provides Function subclasses

for common function types, such as linear functions, polynomials, and splines.

Function::Linear represents a linear function of its arguments. For two arguments, for

example, the function is f(x, y) = Ax+By+C. You provide the coefficients. We want (A, B, C) =

(1, -1, 0), so we create the constraint as follows:

Vector coefficients(3);

coefficients[0] = 1;

coefficients[1] = -1;

coefficients[2] = 0;

Constraint::CoordinateCoupler constraint(matter,

 new Function::Linear(coefficients), coordBody, coordIndex);

Now we don’t even need to write our own Function subclass! This is a Constraint that truly

is easy to implement.

 A Custom Mobilizer (The Easy Case)

20

x y

2.4 A Custom Mobilizer (The Easy Case)

Simbody also allows you to create new types of generalized coordinate joints, which are

called ―mobilizers‖ in Simbody terminology. Mobilizers are always instantiated at the time

they are used to attach a body into the growing tree of bodies. Consequently there is no

standalone mobilizer object; it always appears as a subclass of MobilizedBody which

includes a Body and the mobilizer that attaches it to its parent body.

The ability to write a custom mobilizer is

an extremely powerful feature and is

unique to Simbody among multibody

codes that we know of. It is particularly

useful in biology where joints can be

expected to undergo very complex motion

not well-described by standard ―pure‖

mechanical engineering joints like pin

and ball joints. For example, the figure to

the right shows a knee which has only a

single degree of freedom but exhibits

coupled rotational and translational

motion. A custom mobilizer can model

this with a single generalized coordinate

and no constraints, with performance

comparable to a simple Pin joint.

There is some good news and some bad news about this. First the bad news: in the general

case, writing a custom MobilizedBody is even more difficult than writing a custom

Constraint. Now the good news: as with Constraints, Simbody provides a class that lets you

implement some, but not all, MobilizedBody types in a fairly easy way.

This time we’ll start with the easy case. MobilizedBody::FunctionBased allows you to create

new MobilizedBodies that have the following properties:

1. There is a fixed number of generalized coordinates q and the same number of

generalized speeds u for this mobilizer.

 A Custom Mobilizer (The Easy Case)

21

2. There is a one-to-one correspondence between generalized coordinate derivatives

and generalized speeds. That is, dqi/dt = ui for each coordinate of the mobilizer (that

is, q u for this mobilizer).

3. The motion of the body can be described with six functions of the generalized

coordinates, where three of them return translations along fixed axes, and the other

three return rotation angles around fixed axes.

As an example, let’s create a MobilizedBody with two generalized coordinates: a translation

along X and a rotation around Y. I’m not sure exactly what a joint like that would be useful

for, but I’ll leave that up to you to decide! Let’s see how to implement it.

First, we need six Functions. Two of them will be linear functions (for the X translation and

Y rotation), and the other four will be constant functions that always return 0.

Vector coefficients(2);

coefficients[0] = 1;

coefficients[1] = 0;

Array_<const Function*> functions(6);

functions[0] = new Function::Constant(0, 0);

functions[1] = new Function::Linear(coefficients);

functions[2] = new Function::Constant(0, 0);

functions[3] = new Function::Linear(coefficients);

functions[4] = new Function::Constant(0, 0);

functions[5] = new Function::Constant(0, 0);

Notice that the linear functions are the second and fourth entries in the array. The first three

functions return the rotation angles and the last three return the translations. By default, the

axes are X, Y, and Z respectively, but you can modify them to have translations along

arbitrary directions and rotations around arbitrary axes.

Next we need to tell Simbody what coordinates to pass to each function. We want to pass the

first generalize coordinate to function 1, the second one to function 3, and no coordinates at

all to the other functions. We create an Array_<int> (like std::vector<int>) for each function

listing the coordinates to pass to it:

Array_<Array_<int> > coordIndices(6);

coordIndices[1].push_back(0);

coordIndices[3].push_back(1);

Now we can go ahead and create our custom MobilizedBody:

MobilizedBody::FunctionBased customBody(parent, body, 2, functions, coordIndices);

 A Custom Mobilizer (The Hard Case)

22

There are several other constructors that let you specify other options, such as the axes to

use and the inboard and outboard transforms. Note that in general you can pass multiple

coordinates into each function or you can pass the same coordinate into each function to

create coupled rotational and translational motion driven by a common coordinate.

A common use of MobilizedBody::FunctionBased is to create joints based on experimental

data. Consider the human knee shown above, for example. It has only one degree of

freedom, but it rotates and translates in a complex way as a function of that degree of

freedom. You can simply take experimental data describing the motion of a real knee, fit a

set of splines to that data, and then use those splines to define a custom MobilizedBody.

If you are interested in a deeper understanding of custom mobilizers for biological and other

complex joints, see this paper:

A. Seth, M.A. Sherman, P. Eastman, S.L. Delp, ―Minimal formulation of joint motion for

biomechanisms,‖ Nonlinear Dynamics, vol. 62, no. 1, pp. 291-303, 2010.

You can find this paper on the Simbody Documents page, or a link to the journal article on

the Simbody Publications page.

2.5 A Custom Mobilizer (The Hard Case)

Many mobilizers can be implemented within the framework provided by

MobilizedBody::FunctionBased, but not all. For example, if you want to represent a rotation

with a quaternion, it will not work because that joint wouldn’t satisfy the q u condition we

described above. Instead, you need to use MobilizedBody::Custom.

Here is a simple example of a custom MobilizedBody. Its behavior is identical to

MobilizedBody::Translation: three generalized coordinates which are interpreted as

displacements along the X, Y, and Z axes respectively. So it is not actually a useful class, but

it makes a good example, since it is one of the simplest of all MobilizedBodies to implement.

class CustomTranslation : public MobilizedBody::Custom::Implementation {

public:

 CustomTranslation(SimbodyMatterSubsystem& matter) :

 Implementation(matter, 3, 3, 0) {

 }

 Implementation* clone() const {

 return new CustomTranslation(*this);

 }

 Transform calcMobilizerTransformFromQ(const State& s, int nq,

 const Real* q) const {

 return Transform(Vec3(q[0], q[1], q[2]));

 }

 A Custom Mobilizer (The Hard Case)

23

 SpatialVec multiplyByHMatrix(const State& s, int nu,

 const Real* u) const {

 return SpatialVec(Vec3(0), Vec3(u[0], u[1], u[2]));

 }

 void multiplyByHTranspose(const State& s, const SpatialVec& F, int nu,

 Real* f) const {

 Vec3::updAs(f) = F[1];

 }

 SpatialVec multiplyByHDotMatrix(const State& s, int nu,

 const Real* u) const {

 return SpatialVec(Vec3(0), Vec3(0));

 }

 void multiplyByHDotTranspose(const State& s, const SpatialVec& F, int nu,

 Real* f) const {

 Vec3::updAs(f) = Vec3(0);

 }

 void setQToFitTransform(const State&, const Transform& X_FM, int nq,

 Real* q) const {

 Vec3::updAs(q) = X_FM.p();

 }

 void setUToFitVelocity(const State&, const SpatialVec& V_FM, int nu,

 Real* u) const {

 Vec3::updAs(u) = V_FM[1];

 }

};

We pass three integers to the superclass constructor: the number of generalized speeds (3),

the number of generalized coordinates (3), and the number of those coordinates that

correspond to rotation angles (0).

The first method we need to implement is calcMobilizerTransformFromQ(). This is a

straightforward method: given the list of generalized coordinates for this MobilizedBody, it

calculates the mobilizer transform. In this example we simply take the three coordinates as

the X, Y, and Z components of a translation:

return Transform(Vec3(q[0], q[1], q[2]));

This vector gives the origin of the mobilizer’s M frame (on the MobilizedBody) as a vector

from the origin of its F frame (on the parent body), expressed in the F frame. See the

Simbody Tutorial for definitions of these frames, which are common to all mobilizers.

Next comes a group of four related methods: multiplyByHMatrix(),

multiplyByHTranspose(), multiplyByHDotMatrix(), and multiplyByHDotTranspose(). The

H matrix maps the generalized speeds u into the spatial velocity V introduced by the

mobilizer: V = Hu. (A spatial velocity is a 2-vector of 3-vectors: V[0] is the angular velocity

vector; V[1] is the linear velocity vector.) We need to provide methods to multiply by H (to

convert u to V) and HT (which is also necessary). We also need to provide methods that

multiply by the time derivative of this matrix, i.e., H and H
T

. In this example H

 A Custom Mobilizer (The Hard Case)

24

conveniently does not change with time, so the latter two routines just return zero for all

components.

Finally, there are two methods that ―best fit‖ q and u based on a Transform or spatial

velocity. These implement the standard MobilizedBody methods of the same names.

This MobilizedBody has a simple one-to-one relationship between generalized coordinates

and generalized speeds, such that dq/dt = u. If this were not true, we would have to

implement three additional methods: multiplyByNMatrix(), multiplyByNTranspose(), and

multiplyByNDotMatrix(). The N matrix transforms the generalized speeds u into the

derivatives of the generalized coordinates: dq/dt = Nu. The default implementations of

these methods assume N is an identity matrix, so you only need to implement them when

that is not true.

Like Constraints, MobilizedBody::Custom::Implementation has virtual methods you can

implement to define new state variables, customize the appearance of the body, and various

other things. See the API reference documentation for details.

 A First Subsystem

25

3 A Custom Subsystem

A Subsystem is Simbody’s most general element type. A System will typically contain a small

number of Subsystems. The System’s job is to dole out work to the Subsystems in a

predefined order, and to permit Subystems to access one another’s state variables and cache

entries in a controlled fashion. Subsystems are not nested; they are a flat partitioning of the

System’s work. Typically a concrete System object will insist that certain types of Subsystems

be present. MultibodySystem, for example, requires a SimbodyMatterSubsystem and a set of

ForceSubsystems.

It is unusual to need a new Subsystem—be sure to check first whether you can achieve the

results you want with custom forces, custom constraints, or custom mobilizers as discussed

in the previous chapter. You may want to discuss your problem on the Simbody forum to see

how others have tackled similar issues. But if you do need to make your own Subsystem,

read on.

3.1 A First Subsystem

In this chapter, we will write a custom Subsystem. We will build it up in pieces, starting from

the simplest possible Subsystem: one that does nothing at all.

#include "Simbody.h"

#include "SimTKcommon/internal/SubsystemGuts.h"

using namespace SimTK;

class ExampleSubsystemImpl : public Subsystem::Guts {

public:

 Subsystem::Guts* cloneImpl() const {

 return new ExampleSubsystemImpl();

 }

};

class ExampleSubsystem : public Subsystem {

public:

 ExampleSubsystem(MultibodySystem& system) {

 adoptSubsystemGuts(new ExampleSubsystemImpl());

 system.adoptSubsystem(*this);

 }

};

To understand this code, you first need to know that a Subsystem is actually defined by two

different classes. Subsystem defines the ―public interface‖ to it—those properties that most

people access most of the time. There also are many properties related to the

 A First Subsystem

26

implementation, which most users of the Subsystem do not care about most of the time. To

keep the interface clean, these properties are split off into a separate class called

Subsystem::Guts. An object of this type is created automatically for each Subsystem and can

be accessed by calling getSubsystemGuts() on it.

To define a new type of Subsystem, you must create a subclass of each of these classes. The

Subsystem subclass defines the public API, while the Subsystem::Guts subclass defines the

implementation.

Now let’s look at the example above. We define a class called ExampleSubsystemImpl that

will provide our implementation. Since our Subsystem doesn’t currently do anything, there

isn’t much to implement. The only method it is required to implement is cloneImpl(). There

are many others which it can implement, and we will see some of those later. But all the

others are only required if you need to provide certain features in your Subsystem.

ExampleSubsystem is equally simple. It defines only a constructor:

ExampleSubsystem(MultibodySystem& system) {

 adoptSubsystemGuts(new ExampleSubsystemImpl());

 system.adoptSubsystem(*this);

}

The Subsystem we are planning to create will work only with MultibodySystems, so we

require one as a constructor argument. The constructor creates an ExampleSubsystemImpl,

registers it by calling adoptSubsystemGuts(), and adds itself to the System.

You can now create an ExampleSubsystem and add it to a System exactly as you would any

other Subsystem:

MultibodySystem system;

SimbodyMatterSubsystem matter(system);

ExampleSubsystem example(system);

Notice that the ExampleSubsystem is created as just a local variable. It will disappear as

soon as that variable goes out of scope. The ExampleSubsystemImpl is the true persistent

object. For this reason, you should never add fields to a Subsystem subclass or try to store

information in it. Instead, store all information in the Subsystem::Guts subclass. A

Subsystem object is merely a glorified pointer to it.

One other point is worth mentioning before we go on. Notice that we had to include an extra

header file:

#include "SimTKcommon/internal/SubsystemGuts.h"

 A ForceSubsystem

27

Why was this necessary? In the past, it has always been enough to just include Simbody.h,

which includes all the header files you need. Usually, that is true. It includes all the headers

that most people need most of the time. But it does not include headers that are needed only

when writing extensions to SimTK. Those must be included separately.

3.2 A ForceSubsystem

Now let’s make our Subsystem actually do something. We’re going to implement in a

Subsystem the same ―mutual repulsion‖ capability we created in the previous chapter using a

custom force element; if this is all you need to do you should definitely use a custom force,

not a whole Subsystem! However, the example will serve nicely to illustrate the mechanics of

building a Subsystem.

So once again we’re going to cause all the MobilizedBodies in the System to repel each other

with a force proportional to 1/r2:

#include "Simbody.h"

#include "simbody/internal/ForceSubsystemGuts.h"

using namespace SimTK;

class ExampleSubsystemImpl : public ForceSubsystem::Guts {

public:

 ExampleSubsystemImpl() : ForceSubsystem::Guts("Example", "1.0") {

 }

 Subsystem::Guts* cloneImpl() const {

 return new ExampleSubsystemImpl();

 }

 int realizeSubsystemDynamicsImpl(const State& state) const {

 const MultibodySystem& system = MultibodySystem::downcast(getSystem());

 const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();

 Vector_<SpatialVec>& forces = system.updRigidBodyForces(state,

 Stage::Dynamics);

 for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) {

 const MobilizedBody& body1 = matter.getMobilizedBody(i);

 for (MobilizedBodyIndex j(0); j < i; j++) {

 const MobilizedBody& body2 = matter.getMobilizedBody(j);

 Vec3 r = body1.getBodyOriginLocation(state)-

 body2.getBodyOriginLocation(state);

 Real distance = r.norm();

 Vec3 force = r/cube(distance);

 forces[i][1] += force;

 forces[j][1] -= force;

 }

 }

 return 0;

 }

 A ForceSubsystem

28

 Real calcPotentialEnergy(const State& state) const {

 const MultibodySystem& system = MultibodySystem::downcast(getSystem());

 const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();

 double energy = 0.0;

 for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) {

 const MobilizedBody& body1 = matter.getMobilizedBody(i);

 for (MobilizedBodyIndex j(0); j < i; j++) {

 const MobilizedBody& body2 = matter.getMobilizedBody(j);

 Vec3 r = body1.getBodyOriginLocation(state)-

 body2.getBodyOriginLocation(state);

 energy -= 1.0/r.norm();

 }

 }

 return energy;

 }

};

class ExampleSubsystem : public ForceSubsystem {

public:

 ExampleSubsystem(MultibodySystem& system) {

 adoptSubsystemGuts(new ExampleSubsystemImpl());

 system.addForceSubsystem(*this);

 }

};

The first thing to notice is that we are using different parent classes: ForceSubsystem and

ForceSubsystem::Guts. ForceSubsystem is a subclass of Subsystem defined by Simbody,

which you should use for any Subsystem that applies forces to bodies. This ensures that

Subsystems will be realized in the proper order, and also defines a calcPotentialEnergy()

method in which you can calculate your force’s contribution to the potential energy of the

system. Also notice that we add the Subsystem to the System by calling

addForceSubsystem(), instead of adoptSubsystem() like we did in the previous example.

We have added a method to ExampleSubsystemImpl, realizeSubsystemDynamicsImpl().

This will be called each time a State is being realized to Dynamics stage. There are similar

methods for all the other stages. Each one has a default implementation that does nothing,

so you only have to implement the ones you need.

Very little of the code in this method should look unfamiliar. We begin by calling

getSystem() to get a reference to the System this Subsystem is part of, and use

MultibodySystem’s downcast() method which verifies that we have the expected type of

System before returning a reference to it:

const MultibodySystem& system = MultibodySystem::downcast(getSystem());

We look up its SimbodyMatterSubsystem, then call updRigidBodyForces() to get a writeable

reference to the vector of spatial forces acting on the bodies:

 Adding Parameters to the Subsystem

29

Vector_<SpatialVec>& forces = system.updRigidBodyForces(state, Stage::Dynamics);

Now we have a pair of nested loops over each pair of bodies. We calculate the displacement

between them, use that to calculate a force, and add it to the appropriate entries in the

vector.

There is a very similar method called calcPotentialEnergy(). This method is defined by

ForceSubsystem::Guts. When someone calls calcPotentialEnergy() on a MultibodySystem, it

loops over each of its ForceSubsystems, calls calcPotentialEnergy() on each one, and returns

the sum of their potential energies.

Note that the above routines are very similar to the ones we wrote for a custom force in the

previous chapter, but we have additional bookkeeping to do here.

3.3 Adding Parameters to the Subsystem

The force we implemented in the last section resembles Coulomb repulsion: lots of charged

bodies all repelling each other. Wouldn’t it be useful if you could change the strength of the

force (to represent changing the charge on each body)? Of course, you could just edit the

source code and recompile, but what if you want to run lots of simulations, each with a

different strength for the force? It would be much easier if you could set the strength

programmatically.

Here is a version that allows that:

class ExampleSubsystemImpl : public ForceSubsystem::Guts {

public:

 ExampleSubsystemImpl() : ForceSubsystem::Guts("Example", "1.0"),

 defaultForceStrength(1.0) {

 }

 Subsystem::Guts* cloneImpl() const {

 return new ExampleSubsystemImpl();

 }

 Adding Parameters to the Subsystem

30

 int realizeSubsystemDynamicsImpl(const State& state) const {

 const MultibodySystem& system = MultibodySystem::downcast(getSystem());

 const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();

 Vector_<SpatialVec>& forces = system.updRigidBodyForces(state,

 Stage::Dynamics);

 for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) {

 const MobilizedBody& body1 = matter.getMobilizedBody(i);

 for (MobilizedBodyIndex j(0); j < i; j++) {

 const MobilizedBody& body2 = matter.getMobilizedBody(j);

 Vec3 r = body1.getBodyOriginLocation(state)-

 body2.getBodyOriginLocation(state);

 Real distance = r.norm();

 Vec3 force = defaultForceStrength*r/cube(distance);

 forces[i][1] += force;

 forces[j][1] -= force;

 }

 }

 return 0;

 }

 Real calcPotentialEnergy(const State& state) const {

 const MultibodySystem& system = MultibodySystem::downcast(getSystem());

 const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();

 double energy = 0.0;

 for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) {

 const MobilizedBody& body1 = matter.getMobilizedBody(i);

 for (MobilizedBodyIndex j(0); j < i; j++) {

 const MobilizedBody& body2 = matter.getMobilizedBody(j);

 Vec3 r = body1.getBodyOriginLocation(state)-

 body2.getBodyOriginLocation(state);

 energy -= defaultForceStrength/r.norm();

 }

 }

 return energy;

 }

 void setDefaultForceStrength(Real strength) {

 defaultForceStrength = strength;

 invalidateSubsystemTopologyCache();

 }

 Real getDefaultForceStrength() const {

 return defaultForceStrength;

 }

private:

 Real defaultForceStrength;

};

class ExampleSubsystem : public ForceSubsystem {

public:

 ExampleSubsystem(MultibodySystem& system) {

 adoptSubsystemGuts(new ExampleSubsystemImpl());

 system.addForceSubsystem(*this);

 }

 void setDefaultForceStrength(Real strength) {

 updImpl().setDefaultForceStrength(strength);

 }

 Real getDefaultForceStrength() const {

 return getImpl().getDefaultForceStrength();

 }

 Adding Parameters to the Subsystem

31

private:

 ExampleSubsystemImpl& updImpl() {

 return dynamic_cast<ExampleSubsystemImpl&>(updRep());

 }

 const ExampleSubsystemImpl& getImpl() const {

 return dynamic_cast<const ExampleSubsystemImpl&>(getRep());

 }

};

First look at ExampleSubsystemImpl. We have added a field called defaultForceStrength.

Why ―default‖? Because in the next section we will introduce a state variable for storing the

force strength, and the value stored in the Subsystem will simply be the default value for

newly created States. We have added a pair of accessor methods for getting and setting it,

and modified the force and energy calculation to use it.

There is one line that needs explanation. In setDefaultForceStrength(), we call

invalidateSubsystemTopologyCache(). The default force strength is stored in the Subsystem.

That means it is a topological property (logically a Topology stage ―state variable‖).

Whenever you modify a topological property, it is very important that you call this method.

It marks that topology has changed, and all existing States need to be realized from Topology

stage onward. That way if you try to use an old State object without recalculating, you will

get an error.

You might wonder why this is necessary. If a topological change actually affects the data

stored in a State (such as the set of cache entries), obviously old States will no longer be

valid, but why does it matter for a simple change to the force constant?

The answer is that it is especially important for changes like this, because that is the only

way to catch a variety of errors. A topological change should only ever be made before the

start of a simulation, not in the middle. Otherwise, a saved State from earlier in the

simulation (created based on an old value of the force constant) could easily get passed to a

routine that would try to analyze it based on the new value. This is a very insidious sort of

bug, because there is no way to detect it by looking at the State object itself. Calling

invalidateSubsystemTopologyCache() ensures that all such errors will be caught.

If this seems restrictive, don’t worry. There’s an easy solution, which we’ll see in the next

section: if you want to be able to change something in the middle of a simulation, make it a

state variable instead of a topological property.

 Creating a State Variable

32

The changes to ExampleSubsystem are very simple. We added two accessor methods, which

just invoke the corresponding methods of ExampleSubsystemImpl. For convenience, note

that we created two methods for looking up the ExampleSubsystemImpl:

ExampleSubsystemImpl& updImpl() {

 return dynamic_cast<ExampleSubsystemImpl&>(updRep());

}

const ExampleSubsystemImpl& getImpl() const {

 return dynamic_cast<const ExampleSubsystemImpl&>(getRep());

}

Since we will be accessing it many times, this saves us from having to write a dynamic_cast

every time.

3.4 Creating a State Variable

We really want to be able to change the force strength at any time, not just before starting a

simulation. To do that, it needs to be stored in a state variable. The following example shows

how to do it. (Some methods are omitted to avoid repeating code you have already seen.)

class ExampleSubsystemImpl : public ForceSubsystem::Guts {

public:

 ...

 int realizeSubsystemTopologyImpl(State& state) const {

 forceStrengthIndex = allocateDiscreteVariable(state, Stage::Dynamics,

new Value<Real>(defaultForceStrength));

 return 0;

 }

 int realizeSubsystemDynamicsImpl(const State& state) const {

 const MultibodySystem& system = MultibodySystem::downcast(getSystem());

 const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();

 Vector_<SpatialVec>& forces = system.updRigidBodyForces(state,

 Stage::Dynamics);

 Real forceStrength = getForceStrength(state);

 for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) {

 const MobilizedBody& body1 = matter.getMobilizedBody(i);

 for (MobilizedBodyIndex j(0); j < i; j++) {

 const MobilizedBody& body2 = matter.getMobilizedBody(j);

 Vec3 r = body1.getBodyOriginLocation(state)-

 body2.getBodyOriginLocation(state);

 Real distance = r.norm();

 Vec3 force = forceStrength*r/cube(distance);

 forces[i][1] += force;

 forces[j][1] -= force;

 }

 }

 return 0;

 }

 Creating a State Variable

33

 void setForceStrength(State& state, Real strength) const {

 Value<Real>::updDowncast(updDiscreteVariable(state,

 forceStrengthIndex) = strength;

 }

 Real getForceStrength(const State& state) const {

 return Value<Real>::downcast(getDiscreteVariable(state,

 forceStrengthIndex));

 }

private:

 Real defaultForceStrength;

 mutable DiscreteVariableIndex forceStrengthIndex;

};

Let’s start by looking at realizeSubsystemTopologyImpl(). The first thing to notice is that,

unlike realizeSubsystemDynamicsImpl(), it receives a non-const reference to the State.

Topology and Model are the only stages where the State can be modified during realization

(such as by defining new state variables).

That may seem strange. Isn’t the whole point of realization to modify the State and store new

information in it? The answer is that all cache entries are mutable. They are exactly what the

name suggests: a cache. The state variables are the true information. The cache entries can

always be regenerated based on them. So a const State reference still allows you to modify

the cache, but not the state variables. Logically nothing has changed when the cache is filled

in—you could delete the whole thing and regenerate it any time from the information in the

state variables.

Now look at what happens when we realize Topology stage:

forceStrengthIndex = allocateDiscreteVariable(state, Stage::Dynamics,

new Value<Real>(defaultForceStrength));

We call allocateDiscreteVariable() on the State to create a new discrete variable. There are

three arguments: the state, the stage that should be invalidated when this variable’s value is

changed, and a Value object to hold the actual value, with a default value given. We specify

Dynamics stage, since that is the earliest stage whose computations depend on this variable.

Notice that Value is a template. A discrete state variable can hold any type of value, even a

large data structure. It is not restricted to just real values the way continuous state variables

are.

The return value from allocateDiscreteVariable() is an index, which we will use whenever we

want to access the value. We store that index in a mutable field of ExampleSubsystemImpl.

 Creating a State Variable

34

I hope you just cried out in horror at that last sentence? If not, please reread it and think

carefully about why it’s such a shocking statement! A System (including all its Subsystems)

is supposed to be immutable during a simulation. All mutable information is supposed to go

into the State. And here we are, realizing a State object... and we modified a field of the

Subsystem? Didn’t we just violate that design principle? And what will happen when we

realize a different State, and write a new value to the field?

In any other situation, you would be completely correct. Topology stage is the only time

when we are allowed to modify the System during realization. And not just any change; only

properties that are calculated as a result of realizing the State during realizeTopology().

Indices are calculated for the state variables and cache entries as they are allocated, and we

need to store them for future reference.

But what happens when we realize another State? Won’t the indices get overwritten with

new values? That’s where Topology stage is special. Remember, there are no Topology stage

variables in a State. What happens in realizeTopology() can depend only on topological

properties of the System, which means you will get exactly the same indices every time it is

called (unless you modify a topological property, in which case your previously created

States will become invalid anyway.) Mutable fields in a System (or in a Subsystem that is

part of a System) are like Topology-stage cache variables—they are calculated but add no

new information. Everything they depend on is present as Topology-stage ―state variables‖,

i.e. non-mutable data members of System and Subsystem objects. You can recalculate them

any time and you’ll always get the same values.

But wait a minute—what about Model stage? You can also allocate state variables then. Does

that mean it’s also alright to store indices in the System while realizing Model stage?

The answer is a very emphatic NO! What happens during Model stage can depend on state

variables, so you might get different indices for different States. Instead, create a data

structure to hold any indices that will be calculated at Model stage. Then at Topology stage,

allocate a cache entry to hold an instance of that structure. That way, all the indices

calculated at Model stage will be stored in the State, not the System.

 Other Subsystem Features

35

Now look at how we access the state variable:

void setForceStrength(State& state, Real strength) const {

 Value<Real>::updDowncast(updDiscreteVariable(state,

 forceStrengthIndex)) = strength;

}

Real getForceStrength(const State& state) const {

 return Value<Real>::downcast(getDiscreteVariable(state,

 forceStrengthIndex));

}

We invoke updDiscreteVariable() to get a writable reference to an AbstractValue object, or

getDiscreteVariable() to get a const reference. We then ask the concrete Value type to verify

that we have the expected kind of value, then cast the result to the appropriate type.

Finally, realizeSubsystemDynamicsImpl() and calcPotentialEnergy() need to be modified to

use the value stored in the state variable. This is trivial: we just call getForceStrength(), then

use that value instead of the default value.

3.5 Other Subsystem Features

There are many other things a Subsystem can do. Some are trivial to implement, while

others are rarely used, so rather than discuss extended examples of each one, we will simply

go through them quickly in this section. You can get much more information by looking in

the API reference documentation by class or method name.

3.5.1 Allocating continuous state variables q,u, and z

Allocating continuous state variables is similar to allocating discrete ones, but simpler. You

invoke allocateQ(), allocateU(), or allocateZ() on the State to allocate a contiguous block of

state variables. Each of these methods takes a Vector containing the initial values of the state

variables to allocate. The length of the Vector determines how many variables will be

allocated. The return value is the index of the start of the block within the Vector of state

variables for that Subsystem. For example, if you allocate a block of q’s by writing

qindex = allocateQ(state, initialValues);

then you would look up the value of the first one by calling

value = getQ(state)[qindex];

If you allocate continuous state variables, you will usually also want to implement

realizeSubsystemAccelerationImpl() to calculate their derivatives. You set them by calling

updQDot(), updUDot(), and updZDot() on the State. For q’s you also need to provide second

 Other Subsystem Features

36

time derivatives via updQDotDot(). Those are often, but not always, the same as udots. The

qdot, udot, zdot, and qdotdot values are actually cache entries created and managed

automatically by the State as a result of the allocation of the corresponding continuous

variables.

3.5.2 Allocating your own cache entries

If a Subsystem needs to create a ―discrete‖ cache entry, that works almost exactly like

creating a discrete state variable. You call allocateCacheEntry() to create it, and

getCacheEntry() or updCacheEntry() to access a value. However, a cache entry is associated

with two stages: the earliest stage at which it can be realized (evaluated), and the latest stage

at which it will be realized. The ―earliest‖ stage is the highest stage of any state variable on

which the cache entry’s value depends. If any state variable at that stage or lower is

modified, the cache entry is invalidated automatically. The ―latest‖ stage is a promise that if

a State has been realized to that stage or later then you can depend on the cache entry’s value

being valid. For example, a cache entry holding the value of an expensive calculation that

depends on Position variables (e.g. q’s) but isn’t normally needed until Dynamics stage can

be declared with earliest=Position and latest=Dynamics. It should then be evaluated during

realize(Dynamics), after which it will be presumed valid, and it will be automatically

invalidated if any Position-affecting state variable (or earlier stage variable) is modified.

3.5.3 Allocating cache entries with “lazy” evaluation

It is useful to set the ―latest‖ stage to Stage::Infinity, meaning that no promise is being made

that the cache value will ever be realized. You can do that with allocateCacheEntry() but it is

more clear if you use allocateLazyCacheEntry(). In either case the cache entry is ―lazy‖ in the

sense that it will only be realized if someone asks for its value. The first time after the

―earliest‖ stage has been realized that someone asks for the value must cause realization to

happen. After that the value is available for free. The method isCacheValueRealized() can be

used to check whether the value has been calculated, and the method

markCacheValueRealized() is used to mark the cache value valid any time between stage

―earliest‖ and stage ―latest‖. These methods should be used as follows, for a cache entry CE

whose value type is CEType and whose CacheEntryIndex is CEIndex.

1. Allocate your lazy cache entry something like this:
 CEIndex = allocateLazyCacheEntry(state,stage,new Value<CEType>());

 Other Subsystem Features

37

2. Write a realizeCE() method structured like this:

 void realizeCE(const State& s) const {

 if (isCacheValueRealized(s,CEIndex))

 return;

 // calculate the cache entry, update with updCacheEntry()

 markCacheValueRealized(s,CEIndex);

 }

3. Write a getCE() method structured like this:
 const CEType& getCE(const State& s) const {

 realizeCE(s); // make sure CE has been calculated

 return Value<CEType>::downcast(getCacheEntry(s,CEIndex));

 }

4. Write an updCE() method like this:
 CEType& updCE(const State& s) const {

 return Value<CEType>::updDowncast(updCacheEntry(s,CEIndex));

 }

Note that all the above routines are const, even though they may modify the cache entry’s

value; that’s because cache entries are always mutable since, as discussed above, they do not

contain any new information.

3.5.4 Creating event handlers

Another feature of Subsystems is the ability to define event handlers. This is not a widely

used feature, because it is usually easier to use the EventHandler and EventReporter classes.

But sometimes you might prefer to have a Subsystem do its own event handling, especially if

the events are closely related to other functions of the Subsystem.

To define a scheduled event or scheduled report, the Subsystem should call

createScheduledEvent() when realizing Instance stage. This allocates a globally unique event

ID that is thereafter used to refer to that event. Next, you need to implement one or both of

the two methods calcTimeOfNextScheduledEvent() and calcTimeOfNextScheduledReport().

These methods return the next time at which any events or reports will occur, and the IDs of

all events/reports that will occur at that time. Finally, you need to implement one or both of

the methods handleEvents() and reportEvents(). These are called when an event/report

occurs, and are given the IDs of all events/reports that occurred.

To define a triggered event or triggered report, call createTriggeredEvent() when realizing

Instance stage. This returns both an event ID and an index into the Vector of trigger function

values. When realizing the appropriate stage, you should calculate the value of the trigger

function, then store it in the State by calling

 Other Subsystem Features

38

state.updEventsByStage(getMySubsystemIndex(), stage)[eventIndex] = value;

You then implement handleEvents() to handle the event when it occurs.

3.5.5 Defining new constraints

Another function Subsystems can perform is to define constraints. Once again, doing this

directly from a Subsystem is rarely the easiest way. In the previous chapter, we saw an easier

way to define constraints using the custom constraint feature of the

SimbodyMatterSubsystem.

A constraint equation may be applied to coordinates, velocities, or accelerations. When

realizing Instance stage, call allocateQErr() to create a constraint on coordinates,

allocateUErr() to create a constraint on velocities, and allocateUDotErr() to create a

constraint on accelerations. The actual quantities you will calculate and store in the State are

the ―constraint errors‖. Every constraint is defined by an equation of the form c(d;t,y) = 0.

You calculate the value of the function c(d;t,y), and Simbody then tries to keep it equal to 0.

You set the constraint errors when realizing the appropriate stages by calling updQErr(),

updUErr(), and updUDotErr().

It is quite difficult to handle constraints correctly and we highly recommend that you not do

this from your own Subsystems but instead take advantage of the Constraint facility that is

part of the SimbodyMatterSubsystem, which provides built-in constraints as well as highly

flexible custom constraints. See the previous chapter for more information and be sure to

take advantage of the Simbody forum at https://simtk.org/home/simbody to discuss with

expert users the best approach to solving your problem.

https://simtk.org/home/simbody

