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1 Introduction 

Before reading this, you should already have read the Simbody and Molmodel User’s Guide 

which you can find here: https://simtk.org/home/simbody, Documents tab. In the tutorial 

there, you learned how to build Simbody Systems out of Subsystems, MobilizedBodies, 

Constraints, and other objects. You can go a very long way doing nothing but that—building 

up Systems out of prewritten parts—but you may reach a point where it is not enough. 

Probably you will need to write specialized force elements. Perhaps you need a Constraint 

that does not correspond to any of the standard constraint types. Or maybe you need to 

model a connection that cannot be represented with the standard MobilizedBody classes. It’s 

not enough to just use the classes provided by the toolkit; you need to write new ones. That 

is what this document will teach you how to do. 

1.1 Extending Simbody 

Let’s begin by reviewing some things you learned in the tutorial. A System is made up of 

Subsystems. Each Subsystem can do any of the following: 

1. Define state variables, which can be categorized into generalized coordinates (q), 

generalized speeds (u), auxiliary variables (z), and discrete variables (d). 

2. Calculate information to be stored in the realization cache of a State object. 

3. Calculate the time derivatives of continuous state variables. 

4. Define constraint equations. 

5. Define event trigger functions and event handlers. 

You will learn how to write new Subsystems that may do any or all of these. This is the most 

general way that you can extend Simbody Systems with custom code. It often isn’t the most 

convenient way, though. If all you want is to define one new constraint type, you shouldn’t 

need to write an entire Subsystem. Simbody provides simpler mechanisms for extending a 

System in common ways. In fact, you have already seen one of them: rather than writing a 

new Subsystem to define an event handler, you simply write an EventHandler or 

EventReporter object, and then add it to the default Subsystem. You also can write custom 

subclasses of Force, Constraint, and MobilizedBody. We will see examples of all of these. 

https://simtk.org/home/simbody
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1.2 Realization Revisited 

As you learned in the Simbody User’s Guide, a State object holds two types of information: 

state variables and cached results. Cached results are stored in the realization cache, which 

is divided up into stages. Before you can access information in the cache, you must first 

make sure the State has been realized to the appropriate stage. For example, it must be at 

Position stage or later to access Cartesian coordinates, and at Velocity stage or later to access 

Cartesian velocities. 

Stages can also be thought about in another way. Every state variable is associated with a 

particular cache stage: 

Variable Stage 

t Time 

q Position 

u Velocity 

z Dynamics 

d any 

 

 (A discrete state variable may be associated with any stage except Empty or Topology. When 

a Subsystem defines a discrete variable, it specifies what stage to associate it with.) 

When a State is being realized to a particular stage, the values calculated and stored in the 

cache can only be those that depend on state variables for that stage or earlier stages. They 

may not depend in any way on state variables associated with later stages. 

Why is this? Because whenever a state variable is modified, the cache is automatically 

reverted back to the stage immediately before the stage associated with that variable. If you 

modify a generalized coordinate q, the cache is reverted back to Time stage. If you modify a 

generalized speed u, the cache is reverted back to Position stage. This ensures that any 

information in the cache which might depend on that variable is discarded. 

Suppose that a Subsystem failed to obey this rule. Suppose that, while realizing a State to 

Position stage, it made use of the generalized speeds. Then, at some later point, the speeds 

were modified. Those cached values would no longer be consistent with the state variables. 
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But because the Position stage cache entries would not be discarded, they would still be 

present in the cache and accessible to anyone who looked for them. 

When you were simply using classes written by other people, you didn’t have to worry about 

this. You simply trusted that information in the cache would always be correct. But now that 

you are preparing to write extensions to Simbody, you need to be aware of it. You need to 

know what promises are made by the System, and you have a responsibility to make sure 

your code does not break them. 

1.3 The First Four Computation Stages 

There are a total of ten computation stages. The later stages were discussed in the User’s 

Guide, but very little mention was made of the first four stages: Empty, Topology, Model, 

and Instance. When running a simulation, there is usually not much reason to think about 

these stages, since all information you are likely to want is associated with one of the later 

stages. But when you are writing extensions to Simbody, these stages are very important. 

They are where the State gets constructed and configured to hold data. Let’s examine each 

one of them. 

Empty: This is the stage a newly constructed State object is in before it has been realized. It 

contains no information at all, and is not specific to any particular System. 

Topology: When a State gets realized to Topology stage, it is configured to become a State 

for a particular System. In practice, this usually means allocating space in the cache for 

whatever data the System needs to store, and creating Model stage state variables. The 

Topology stage is unique in that no state variables may correspond to it. There is no such 

thing as a ―Topology stage state variable‖ in a State. Logically, Topology stage ―state 

variables‖ are the data members of the System; that is, they are stored with the System not 

with the State. The effect on the State when you realize it to Topology stage can only depend 

on properties of the System (―topological properties‖), not on the value of any variable in the 

State. 

Model: When a State is realized to Model stage, its complete set of state variables becomes 

fixed. This means that the set of state variables may depend on the value of a Model stage 

state variable. For example, Simbody allows rotations to be modeled with either quaternions 

or Euler angles. You select which representation to use by calling setUseEulerAngles() on the 

SimbodyMatterSubsystem. Your choice is stored in a Model stage discrete state variable. If 
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you select Euler angles, three generalized coordinates will be created for each rotation. If you 

select quaternions, there will be four. In general you use Model stage state variables 

(typically integers or boolean flags) to choose modeling options that may affect the number 

and type of later-stage state variables that are allocated. 

This has an important consequence: if you change Model stage variables during a simulation 

(typically in an event handler), States created before the change may contain different state 

variables than ones created after. More commonly, Model stage variables are used to 

configure a System before beginning a simulation, not once the simulation has started. 

Instance:  At Instance stage, we know which force elements, constraints, and events are 

enabled, so the set of cache entries can be finalized. This means that the set of active forces, 

constraints, and event handlers may potentially change during a simulation. For example, 

Simbody uses an Instance stage variable to record which Constraints are disabled.  

Instance stage state variables are often used for real-valued parameters, such as mass, 

geometry, spring constants, etc. Instance stage realization is a good time to precalculate 

values that won’t change, or will only change during discrete events, not during continuous 

integration intervals. 
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2 Custom Forces, 

Constraints, and 

Mobilizers (joints) 

Writing your own Subsystem as described in the next chapter provides the most flexibility, 

but there is almost always an easier way. Specifically, most built-in Simbody Subsystem 

manage a collection of ―elements‖ that typically provide a great deal of functionality and 

customizability. The GeneralForceSubsystem, for example, has springs and the like but also 

a fully general ―custom‖ force element that is easy to write. The SimbodyMatterSubsystem 

has built-in constraints and mobilizers (joints) but also provides the ability to write custom 

constraints and custom mobilizers. 

2.1 A Custom Force 

Writing a new Subsystem is the most general way to add custom features to a SimTK System, 

but it is not always the easiest way. Simbody provides special classes for writing common 

types of extensions: custom Forces, custom Constraints, and custom MobilizedBodies 

(meaning a custom joint). We will look at these classes in this chapter and see examples of 

how to use them. 

In this section, we will implement a force that causes all the bodies in a MultibodySystem to 

repel each other. You will remember from the tutorial that Simbody’s 

GeneralForceSubsystem provides a general mechanism for adding arbitrary Force elements 

to a System. Simbody provides a number of Force subclasses that implement common sorts 

of forces: Force::UniformGravity, Force::TwoPointLinearSpring, etc. It also provides a class 

called Force::Custom that can be used to define completely new forces; we’ll use that here. 

To use Force::Custom, you must write a subclass of Force::Custom::Implementation. Here is 

one that implements our global repulsion force: 

class ExampleForce : public Force::Custom::Implementation { 

public: 

    ExampleForce(SimbodyMatterSubsystem& matter) : matter(matter) { 

    } 
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    void calcForce(const State& state, Vector_<SpatialVec>& bodyForces,  

            Vector_<Vec3>& particleForces, Vector& mobilityForces) const { 

        for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) { 

            const MobilizedBody& body1 = matter.getMobilizedBody(i); 

            for (MobilizedBodyIndex j(0); j < i; j++) { 

                const MobilizedBody& body2 = matter.getMobilizedBody(j); 

                Vec3 r = body1.getBodyOriginLocation(state)- 

                         body2.getBodyOriginLocation(state); 

                Real distance = r.norm(); 

                Vec3 force = r/cube(distance); 

                bodyForces[i][1] += force; 

                bodyForces[j][1] -= force; 

            } 

        } 

    } 

    Real calcPotentialEnergy(const State& state) const { 

        double energy = 0.0; 

        for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) { 

            const MobilizedBody& body1 = matter.getMobilizedBody(i); 

            for (MobilizedBodyIndex j(0); j < i; j++) { 

                const MobilizedBody& body2 = matter.getMobilizedBody(j); 

                Vec3 r = body1.getBodyOriginLocation(state)- 

                         body2.getBodyOriginLocation(state); 

                energy -= 1.0/r.norm(); 

            } 

        } 

        return energy; 

    } 

    bool dependsOnlyOnPositions() const { 

        return true; 

    } 

private: 

    SimbodyMatterSubsystem& matter; 

}; 

 

The calcForce() method is called to calculate the force. Notice that it has three different 

arguments for storing forces into: bodyForces, particleForces, and mobilityForces. Use 

bodyForces to apply Cartesian forces and torques to bodies. That is what we are doing in this 

example. You also can use mobilityForces to apply forces directly to individual degrees of 

freedom. That is, there is one scalar element corresponding to each generalized speed. A 

Force object may apply either or both types of force. 

(Currently, particleForces is ignored. That is because Simbody does not yet support particles 

as a special case—you can include them as bodies, though. It is expected that they will be 

given special handling in a future version, so the interface includes them for forward 

compatibility.) 

Similarly, calcPotentialEnergy() is called to calculate the potential energy due to the force.  

Finally, there is an optional method called dependsOnlyOnPosition(). The default 

implementation returns false. If you override it to return true, that enables an optimization 

to avoid recalculating the force and energy when a generalized speed or auxiliary state 
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variable is modified. Since our force depends only on q, not on u or z, we return true. This 

will potentially make our simulations run faster. 

Here is how to add the custom force to a MultibodySystem: 

MultibodySystem system; 

SimbodyMatterSubsystem matter(system); 

GeneralForceSubsystem forces(system); 

Force::Custom(forces, new ExampleForce(matter)); 

 

As you see, it works just like any other Force object. We simply create a Force::Custom, 

passing an instance of our Implementation class as an argument. You can also write a 

―handle‖ class derived from Force::Custom which hides your force implementation class and 

provides a nicer API for your force element that acts exactly like built-in force elements do. 

See the Doxygen API documentation for Force::Custom for more information. 

2.2 A Custom Constraint 

Writing a custom Constraint is very similar to writing a custom Force: you create a class that 

extends Constraint::Custom::Implementation, then pass an instance to the constructor of a 

Constraint::Custom. But before showing an example, I need to give you warning: writing 

Constraints is significantly more difficult than writing Forces. It isn’t that the programming 

interface is hard. There are several methods to implement, but that’s not a big deal. The 

problem is that most constraints just involve a lot of math, and if your Constraint fails to 

work correctly, it can be difficult to figure out exactly where you made the mistake. 

In principle, constraints are simple. As described in the User’s Guide, a constraint is just an 

equation of the form c(d;t,y) = 0. How hard can that be to implement? Actually, there are 

some constraints that really are as simple as that, and Simbody offers a special mechanism 

that lets you implement them in a truly easy way. We will discuss it in the next section. The 

problem is that, in many cases, the constraint function depends in some enormously 

complex way on a very large set of state variables. 

Consider, for example, a simple Constraint::Rod (also known as a ―distance constraint‖). 

This specifies that the distance between points on two different bodies must remain fixed. 

The positions of those points depend on the positions and orientations of the two bodies. 

And those, in turn, depend on the generalized coordinates for the two bodies and for every 

one of their parent bodies back to ground. Trying to actually write the constraint equation 

explicitly would be completely impractical. 
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On its own, that isn’t usually a problem. After all, Simbody will calculate the locations of the 

points for you, and it’s easy enough to then calculate the distance between them. But there is 

a second issue that complicates matters. Each constraint equation also implies that its time 

derivatives are satisfied too. The Rod constraint, for example, generates three equations that 

must be satisfied: a position-level constraint equation requiring the distance between two 

points to be fixed; a velocity-level constraint equation requiring their relative velocity to be 

zero; and an acceleration-level constraint equation requiring their relative acceleration to be 

zero. You must implement all of these and make sure they are all consistent with each other. 

Again, Simbody can provide all the information you need, but deciding exactly how to put 

that information together correctly will take some math! 

Constraints can be divided into three categories: holonomic, nonholonomic, and 

acceleration-only. A holonomic constraint is one defined at the position level (such as a Rod 

constraint). A holonomic constraint equation implies that its two time derivatives be 

satisfied as well, as discussed above. A nonholonomic constraint is defined at the velocity 

level. An example is Constraint::ConstantSpeed: it sets no restriction on the allowed values 

of coordinates, only on how those coordinates change with time. A nonholonomic constraint 

equation implies two conditions to satisfy (one at the velocity level and one at the 

acceleration level). An acceleration-only constraint equation is defined at the acceleration 

level, and implies only a single constraint condition to satisfy. 

Let’s take a look at an example. Here is a custom constraint that requires the distance 

between two bodies’ origins to remain fixed. This is, of course, just a special case of the more 

general built-in Rod constraint. So this isn’t a very useful class, but it is a fairly easy one to 

understand, so it makes a good example. 

class ExampleConstraint : public Constraint::Custom::Implementation { 

public: 

    ExampleConstraint(MobilizedBody& b1, MobilizedBody& b2, Real distance) :  

            Implementation(b1.updMatterSubsystem(), 1, 0, 0), distance(distance) { 

        body1 = addConstrainedBody(b1); 

        body2 = addConstrainedBody(b2); 

    } 

    Implementation* clone () const { 

        return new ExampleConstraint(*this); 

    } 

    void realizePositionErrors(const State& state, int mp,   

            Real* perr) const { 

        Vec3 r1 = getBodyOriginLocation(state, body1, true); 

        Vec3 r2 = getBodyOriginLocation(state, body2, true); 

        perr[0] = ((r1-r2).normSqr()-distance*distance)/2; 

    } 
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    void realizePositionDotErrors(const State& state, int mp,   

            Real* pverr) const { 

        Vec3 r1 = getBodyOriginLocation(state, body1, true); 

        Vec3 r2 = getBodyOriginLocation(state, body2, true); 

        Vec3 r = r2-r1; 

        Vec3 v1 = getBodyVelocity(state, body1, true)[1]; 

        Vec3 v2 = getBodyVelocity(state, body2, true)[1]; 

        Vec3 v = v2-v1; 

        pverr[0] = dot(v, r); 

    } 

 

    void realizePositionDotDotErrors(const State& state,  

            int mp,  Real* paerr) const { 

        Vec3 r1 = getBodyOriginLocation(state, body1, true); 

        Vec3 r2 = getBodyOriginLocation(state, body2, true); 

        Vec3 r = r2-r1; 

        Vec3 v1 = getBodyVelocity(state, body1, true)[1]; 

        Vec3 v2 = getBodyVelocity(state, body2, true)[1]; 

        Vec3 v = v2-v1; 

        Vec3 a1 = getBodyAcceleration(state, body1, true)[1]; 

        Vec3 a2 = getBodyAcceleration(state, body2, true)[1]; 

        Vec3 a = a2-a1; 

        paerr[0] = dot(a, r) + dot(v, v); 

    } 

 

    void applyPositionConstraintForces(const State& state, int mp,  

            const Real* multipliers, Vector_<SpatialVec>& bodyForcesInA,  

            Vector& mobilityForces) const { 

        Vec3 r1 = getBodyOriginLocation(state, body1, true); 

        Vec3 r2 = getBodyOriginLocation(state, body2, true); 

        Vec3 r = r2-r1; 

        Vec3 force = multipliers[0]*r; 

        addInStationForce(state, body2, Vec3(0), force, bodyForcesInA); 

        addInStationForce(state, body1, Vec3(0), -force, bodyForcesInA); 

    } 

private: 

    ConstrainedBodyIndex body1, body2; 

    Real distance; 

}; 

 

There’s a lot to discuss here, so let’s begin at the beginning. The constructor takes two bodies 

to constrain and the required distance between them. Notice the three integers that get 

passed to the superclass constructor. Those are the numbers of holonomic, nonholonomic, 

and acceleration-only constraint equations defined by this class. We are creating a single 

holonomic constraint equation, so we pass 1, 0, 0. Note that although there is a single 

constraint equation here, we are going to have to implement three routines—the equation 

itself and its first and second time derivatives. 

The constructor calls addConstrainedBody() to register the MobilizedBodies the constraint 

acts on. This is an important optimization, since the cost of enforcing a constraint depends 

on the number of bodies involved (directly or indirectly). By telling Simbody what bodies are 
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constrained, you allow it to avoid calculations for degrees of freedom that have no effect on 

the constraint. 

This optimization has a very profound impact on how you write constraints. If you look at 

the example above, you will notice that none of the calculation routines ever reference a 

MobilizedBody object, a MultibodySystem, or a SimbodyMatterSubsystem. Instead, 

Constraint::Custom::Implementation defines its own methods that you use instead, like 

getBodyOriginLocation() and getBodyVelocity(). These methods refer to bodies with a 

ConstrainedBodyIndex, not a MobilizedBodyIndex. If you don’t see a method you need, 

don’t figure out a clever loophole that lets you use SimbodyMatterSubsystem or 

MobilizedBody methods—that will not work correctly! Instead, post a question to the 

Simbody help forum at https://simtk.org/home/simbody, Advanced tab, Public Forums. 

After you call addConstrainedBody() to register all of the constrained bodies, Simbody 

identifies an ―ancestor body‖, which is the nearest common ancestor shared by all the 

constrained bodies. This allows it to define a ―constrained system‖, consisting of the 

constrained bodies and all of their parents going back to the ancestor body. Often this will 

only be a small fraction of the bodies in the full System, but all the other bodies are 

guaranteed to have no impact on whether the constraint is satisfied. This can save a huge 

amount of computation. When you call getBodyOriginLocation(), it actually returns the 

location in the ancestor body’s reference frame, not in the ground frame. But that doesn’t 

really matter—in your code you just treat the ancestor as though it were ground. 

Now look at the methods that implement the constraint. This is a holonomic constraint, so it 

involves three constraint equations. There is a virtual method corresponding to each one: 

realizePositionErrors(), realizePositionDotErrors(), and realizePositionDotDotErrors(). 

Each one calculates the error in the appropriate constraint equation. In this case, the 

position level equation is (rr–d2)/2=0, the velocity level equation is vr=0, and the 

acceleration level equation is ar+vv=0. Each equation is just the time derivative of the 

previous one, and that is an absolute requirement! Note that you can’t just produce some 

equivalent equation (like leaving out the 2 in the first equation here) because it is really the 

error term that we are returning and that is never zero. That is, the code returns only the left 

hand side of these equations and it is that left hand side that must be properly differentiated. 

That said, there are still many sets of equations that define the same constraint—for 

example, we could have used the actual distance |r|–d as the position level error, rather than 

https://simtk.org/home/simbody
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the difference of squares. That has some advantages, but simplicity of exposition is not 

among them! 

In addition to calculating the constraint errors, we also need to calculate the constraint 

forces that should be applied at each time step to maintain the constraint. Simbody 

automatically calculates the Lagrange multipliers corresponding to each constraint and 

passes them to applyPositionConstraintForces(). We use them to calculate the force to apply 

to each body. (If you aren’t familiar with Langrange multipliers, they are a little beyond the 

scope of this document, but you can easily find descriptions of them online. For our 

purposes, just think of them as the constraint forces that need to get generated in order to 

satisfy the constraint at the acceleration level.) We call addInStationForce(), which is a 

convenience method to apply a linear force at a specific point on a specific body. It works out 

the correct force and torque to apply, and adds them to the Vector of SpatialVecs. 

Creating a nonholonomic or acceleration-only constraint is very similar. For a nonholonomic 

constraint, there are three virtual methods to implement: realizeVelocityErrors(), 

realizeVelocityDotErrors(), and applyVelocityConstraintForces(). For an acceleration-only 

constraint, there are two methods: realizeAccelerationErrors() and 

applyAccelerationConstraintForces(). Constraint::Custom::Implementation also has  

methods corresponding to each of the standard stages (realizeTopology(), realizeModel(), 

etc.), which can be overridden exactly as in a Subsystem. This allows you to define custom 

state variables and cache entries, which is useful if you want your constraint to depend on 

adjustable parameters. 

2.3 Simple Constraints 

Some constraints really are simple. Sometimes it is easy to write a function of the state 

variables that you want to constrain. In these cases, Simbody provides special classes that let 

you implement new constraints with very little work. 

There are three special cases for which Simbody offers simple constraint classes. The first is 

a holonomic constraint that can be written as a simple function of the generalized 

coordinates: c(q) = 0. This class is called Constraint::CoordinateCoupler, since it defines a 

coupling between some set of coordinates. 

The second is a nonholonomic constraint that can be written as a simple function of the 

generalized coordinates and generalized speeds: c(q; u) = 0. This class is called 
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Constraint::SpeedCoupler. Although the constraint equation may involve coordinates, it is 

strictly a constraint on the speeds. It considers q to be fixed as suggested by the ―;‖ above, 

and manipulates u to satisfy the equation given the current value of q. 

The third case is a holonomic constraint that explicitly specifies the behavior of one 

generalized coordinate as a function of time: qi = f(t). This class is called 

Constraint::PrescribedMotion, since the motion of one coordinate is explicitly prescribed in 

advance. 

Each of these classes requires you to provide a function of some set of state variables. This is 

done with the Function_<T> class. A Function object defines scalar or vector function of m 

arguments. That is, it provides a method with the following signature: 

T calcValue(const Vector& x) const; 

Function is a templatized class, with the output type as a template parameter. Most useful 

are types Real and short vector types like Vec3. All of the Constraint classes require a 

Function_<Real>, for which there is a typedef abbreviation Function. So calcValue() will 

return a Real. 

Suppose we want a constraint that requires two generalized coordinates to always be equal 

to each other. This is done with a Constraint::CoordinateCoupler that enforces c(q) = q1-q2 = 

0. Here is a Function class that implements c(q): 

class ConstraintFunction : public Function { 

    Real calcValue(const Vector& x) const { 

        return x[0]-x[1]; 

    } 

    Real calcDerivative(const Array_<int>& derivComponents,  

            const Vector& x) const { 

        if (derivComponents.size() == 1) 

            return derivComponents[0] == 0 ? 1 : -1; 

        return 0; 

    } 

    int getArgumentSize() const { 

        return 2; 

    } 

    int getMaxDerivativeOrder() const { 

        return std::numeric_limits<int>::max(); 

    } 

}; 

 

The implemention of calcValue() is simple: it just returns the difference between its two 

arguments. Since Function is templatized only on the type of the output value, not the 

number of input arguments, we also must implement getArgumentSize() to return the 

expected number of input arguments (2 in this case). 
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A Function class also must implement calcDerivative() to calculate the partial derivatives of 

the function. This takes a Array_<int> (behaves like std::vector<int>), which lists all 

arguments with respect to which to take the derivative. If the array is of length 1 (that is, a 

first derivative), we return either 1 or -1, depending on whether a derivative with respect to 

the first or second argument is requested. If the array length is greater than 1 (a second 

derivative or higher), we return 0. 

A Function need not calculate all possible derivatives, since usually only the first few orders 

are required. It just needs to implement getMaxDerivativeOrder() to report the highest order 

derivative it can calculate. In this example there is no limit to which ones we can calculate 

(all derivatives higher than first order are 0), so we return the maximum possible integer 

value. The Functions used for constraints must support derivatives up to second order. 

Here is how we add the Constraint to a System: 

Array_<MobilizedBodyIndex> coordBody(2); 

Array_<MobilizerQIndex> coordIndex(2); 

coordBody[0] = body1.getMobilizedBodyIndex(); 

coordBody[1] = body2.getMobilizedBodyIndex(); 

coordIndex[0] = MobilizerQIndex(0); 

coordIndex[1] = MobilizerQIndex(0); 

Constraint::CoordinateCoupler constraint(matter, new ConstraintFunction(),  

        coordBody, coordIndex); 

 

In addition to telling the CoordinateCoupler what function to use, we also must tell it which 

coordinates to pass as arguments. For each coordinate, we specify the MobilizedBody it 

belongs to and the index of that coordinate for the MobilizedBody. In this example, we 

constrain the first coordinate of body1 to always equal the first coordinate of body2. 

This example could actually be made even simpler. Simbody provides Function subclasses 

for common function types, such as linear functions, polynomials, and splines. 

Function::Linear represents a linear function of its arguments. For two arguments, for 

example, the function is f(x, y) = Ax+By+C. You provide the coefficients. We want (A, B, C) = 

(1, -1, 0), so we create the constraint as follows: 

Vector coefficients(3); 

coefficients[0] =  1; 

coefficients[1] = -1; 

coefficients[2] =  0; 

Constraint::CoordinateCoupler constraint(matter, 

        new Function::Linear(coefficients), coordBody, coordIndex); 

 

Now we don’t even need to write our own Function subclass!  This is a Constraint that truly 

is easy to implement. 
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2.4 A Custom Mobilizer (The Easy Case) 

Simbody also allows you to create new types of generalized coordinate joints, which are 

called ―mobilizers‖ in Simbody terminology. Mobilizers are always instantiated at the time 

they are used to attach a body into the growing tree of bodies. Consequently there is no 

standalone mobilizer object; it always appears as a subclass of MobilizedBody which 

includes a Body and the mobilizer that attaches it to its parent body. 

The ability to write a custom mobilizer is 

an extremely powerful feature and is 

unique to Simbody among multibody 

codes that we know of. It is particularly 

useful in biology where joints can be 

expected to undergo very complex motion 

not well-described by standard ―pure‖ 

mechanical engineering joints like pin 

and ball joints. For example, the figure to 

the right shows a knee which has only a 

single degree of freedom but exhibits 

coupled rotational and translational 

motion. A custom mobilizer can model 

this with a single generalized coordinate 

and no constraints, with performance 

comparable to a simple Pin joint. 

There is some good news and some bad news about this. First the bad news: in the general 

case, writing a custom MobilizedBody is even more difficult than writing a custom 

Constraint. Now the good news: as with Constraints, Simbody provides a class that lets you 

implement some, but not all, MobilizedBody types in a fairly easy way. 

This time we’ll start with the easy case. MobilizedBody::FunctionBased allows you to create 

new MobilizedBodies that have the following properties: 

1. There is a fixed number of generalized coordinates q and the same number of 

generalized speeds u for this mobilizer. 
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2. There is a one-to-one correspondence between generalized coordinate derivatives 

and generalized speeds. That is, dqi/dt = ui for each coordinate of the mobilizer (that 

is, q u for this mobilizer). 

3. The motion of the body can be described with six functions of the generalized 

coordinates, where three of them return translations along fixed axes, and the other 

three return rotation angles around fixed axes. 

As an example, let’s create a MobilizedBody with two generalized coordinates: a translation 

along X and a rotation around Y. I’m not sure exactly what a joint like that would be useful 

for, but I’ll leave that up to you to decide! Let’s see how to implement it. 

First, we need six Functions. Two of them will be linear functions (for the X translation and 

Y rotation), and the other four will be constant functions that always return 0. 

Vector coefficients(2); 

coefficients[0] = 1; 

coefficients[1] = 0; 

Array_<const Function*> functions(6); 

functions[0] = new Function::Constant(0, 0); 

functions[1] = new Function::Linear(coefficients); 

functions[2] = new Function::Constant(0, 0); 

functions[3] = new Function::Linear(coefficients); 

functions[4] = new Function::Constant(0, 0); 

functions[5] = new Function::Constant(0, 0); 

 

Notice that the linear functions are the second and fourth entries in the array. The first three 

functions return the rotation angles and the last three return the translations. By default, the 

axes are X, Y, and Z respectively, but you can modify them to have translations along 

arbitrary directions and rotations around arbitrary axes. 

Next we need to tell Simbody what coordinates to pass to each function. We want to pass the 

first generalize coordinate to function 1, the second one to function 3, and no coordinates at 

all to the other functions. We create an Array_<int> (like std::vector<int>) for each function 

listing the coordinates to pass to it: 

Array_<Array_<int> > coordIndices(6); 

coordIndices[1].push_back(0); 

coordIndices[3].push_back(1); 

 

Now we can go ahead and create our custom MobilizedBody: 

MobilizedBody::FunctionBased customBody(parent, body, 2, functions, coordIndices); 
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There are several other constructors that let you specify other options, such as the axes to 

use and the inboard and outboard transforms. Note that in general you can pass multiple 

coordinates into each function or you can pass the same coordinate into each function to 

create coupled rotational and translational motion driven by a common coordinate. 

A common use of MobilizedBody::FunctionBased is to create joints based on experimental 

data. Consider the human knee shown above, for example. It has only one degree of 

freedom, but it rotates and translates in a complex way as a function of that degree of 

freedom. You can simply take experimental data describing the motion of a real knee, fit a 

set of splines to that data, and then use those splines to define a custom MobilizedBody. 

If you are interested in a deeper understanding of custom mobilizers for biological and other 

complex joints, see this paper: 

A. Seth, M.A. Sherman, P. Eastman, S.L. Delp, ―Minimal formulation of joint motion for 

biomechanisms,‖ Nonlinear Dynamics, vol. 62, no. 1, pp. 291-303, 2010. 

You can find this paper on the Simbody Documents page, or a link to the journal article on 

the Simbody Publications page. 

2.5 A Custom Mobilizer (The Hard Case) 

Many mobilizers can be implemented within the framework provided by 

MobilizedBody::FunctionBased, but not all. For example, if you want to represent a rotation 

with a quaternion, it will not work because that joint wouldn’t satisfy the q u  condition we 

described above. Instead, you need to use MobilizedBody::Custom. 

Here is a simple example of a custom MobilizedBody. Its behavior is identical to 

MobilizedBody::Translation: three generalized coordinates which are interpreted as 

displacements along the X, Y, and Z axes respectively. So it is not actually a useful class, but 

it makes a good example, since it is one of the simplest of all MobilizedBodies to implement. 

class CustomTranslation : public MobilizedBody::Custom::Implementation { 

public: 

    CustomTranslation(SimbodyMatterSubsystem& matter) :  

            Implementation(matter, 3, 3, 0) { 

    } 

    Implementation* clone() const { 

        return new CustomTranslation(*this); 

    } 

    Transform calcMobilizerTransformFromQ(const State& s, int nq,  

            const Real* q) const { 

        return Transform(Vec3(q[0], q[1], q[2])); 

    } 
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    SpatialVec multiplyByHMatrix(const State& s, int nu,  

            const Real* u) const { 

    return SpatialVec(Vec3(0), Vec3(u[0], u[1], u[2])); 

    } 

    void multiplyByHTranspose(const State& s, const SpatialVec& F, int nu,  

            Real* f) const { 

        Vec3::updAs(f) = F[1]; 

    } 

    SpatialVec multiplyByHDotMatrix(const State& s, int nu,  

            const Real* u) const { 

        return SpatialVec(Vec3(0), Vec3(0)); 

    } 

    void multiplyByHDotTranspose(const State& s, const SpatialVec& F, int nu,  

            Real* f) const { 

        Vec3::updAs(f) = Vec3(0); 

    } 

    void setQToFitTransform(const State&, const Transform& X_FM, int nq,  

            Real* q) const { 

        Vec3::updAs(q) = X_FM.p(); 

    } 

    void setUToFitVelocity(const State&, const SpatialVec& V_FM, int nu,  

            Real* u) const { 

        Vec3::updAs(u) = V_FM[1]; 

    } 

}; 

 

We pass three integers to the superclass constructor: the number of generalized speeds (3), 

the number of generalized coordinates (3), and the number of those coordinates that 

correspond to rotation angles (0). 

The first method we need to implement is calcMobilizerTransformFromQ(). This is a 

straightforward method: given the list of generalized coordinates for this MobilizedBody, it 

calculates the mobilizer transform. In this example we simply take the three coordinates as 

the X, Y, and Z components of a translation: 

return Transform(Vec3(q[0], q[1], q[2])); 

This vector gives the origin of the mobilizer’s M frame (on the MobilizedBody) as a vector 

from the origin of its F frame (on the parent body), expressed in the F frame. See the 

Simbody Tutorial for definitions of these frames, which are common to all mobilizers. 

Next comes a group of four related methods: multiplyByHMatrix(), 

multiplyByHTranspose(), multiplyByHDotMatrix(), and multiplyByHDotTranspose(). The 

H matrix maps the generalized speeds u into the spatial velocity V introduced by the 

mobilizer: V = Hu. (A spatial velocity is a 2-vector of 3-vectors: V[0] is the angular velocity 

vector; V[1] is the linear velocity vector.) We need to provide methods to multiply by H (to 

convert u to V) and HT (which is also necessary). We also need to provide methods that 

multiply by the time derivative of this matrix, i.e., H  and H
T

. In this example H 
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conveniently does not change with time, so the latter two routines just return zero for all 

components. 

Finally, there are two methods that ―best fit‖ q and u based on a Transform or spatial 

velocity. These implement the standard MobilizedBody methods of the same names. 

This MobilizedBody has a simple one-to-one relationship between generalized coordinates 

and generalized speeds, such that dq/dt = u. If this were not true, we would have to 

implement three additional methods: multiplyByNMatrix(), multiplyByNTranspose(), and 

multiplyByNDotMatrix(). The N matrix transforms the generalized speeds u into the 

derivatives of the generalized coordinates: dq/dt = Nu. The default implementations of 

these methods assume N is an identity matrix, so you only need to implement them when 

that is not true. 

Like Constraints, MobilizedBody::Custom::Implementation has virtual methods you can 

implement to define new state variables, customize the appearance of the body, and various 

other things. See the API reference documentation for details. 
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3 A Custom Subsystem 

A Subsystem is Simbody’s most general element type. A System will typically contain a small 

number of Subsystems. The System’s job is to dole out work to the Subsystems in a 

predefined order, and to permit Subystems to access one another’s state variables and cache 

entries in a controlled fashion. Subsystems are not nested; they are a flat partitioning of the 

System’s work. Typically a concrete System object will insist that certain types of Subsystems 

be present. MultibodySystem, for example, requires a SimbodyMatterSubsystem and a set of 

ForceSubsystems. 

It is unusual to need a new Subsystem—be sure to check first whether you can achieve the 

results you want with custom forces, custom constraints, or custom mobilizers as discussed 

in the previous chapter. You may want to discuss your problem on the Simbody forum to see 

how others have tackled similar issues. But if you do need to make your own Subsystem, 

read on. 

3.1 A First Subsystem 

In this chapter, we will write a custom Subsystem. We will build it up in pieces, starting from 

the simplest possible Subsystem: one that does nothing at all. 

#include "Simbody.h" 

#include "SimTKcommon/internal/SubsystemGuts.h" 

 

using namespace SimTK; 

 

class ExampleSubsystemImpl : public Subsystem::Guts { 

public: 

    Subsystem::Guts* cloneImpl() const { 

        return new ExampleSubsystemImpl(); 

    } 

}; 

 

class ExampleSubsystem : public Subsystem { 

public: 

    ExampleSubsystem(MultibodySystem& system) { 

        adoptSubsystemGuts(new ExampleSubsystemImpl()); 

        system.adoptSubsystem(*this); 

    } 

}; 

 

To understand this code, you first need to know that a Subsystem is actually defined by two 

different classes. Subsystem defines the ―public interface‖ to it—those properties that most 

people access most of the time. There also are many properties related to the 
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implementation, which most users of the Subsystem do not care about most of the time. To 

keep the interface clean, these properties are split off into a separate class called 

Subsystem::Guts. An object of this type is created automatically for each Subsystem and can 

be accessed by calling getSubsystemGuts() on it. 

To define a new type of Subsystem, you must create a subclass of each of these classes. The 

Subsystem subclass defines the public API, while the Subsystem::Guts subclass defines the 

implementation. 

Now let’s look at the example above. We define a class called ExampleSubsystemImpl that 

will provide our implementation. Since our Subsystem doesn’t currently do anything, there 

isn’t much to implement. The only method it is required to implement is cloneImpl(). There 

are many others which it can implement, and we will see some of those later. But all the 

others are only required if you need to provide certain features in your Subsystem. 

ExampleSubsystem is equally simple. It defines only a constructor: 

ExampleSubsystem(MultibodySystem& system) { 

    adoptSubsystemGuts(new ExampleSubsystemImpl()); 

    system.adoptSubsystem(*this); 

} 

 

The Subsystem we are planning to create will work only with MultibodySystems, so we 

require one as a constructor argument. The constructor creates an ExampleSubsystemImpl, 

registers it by calling adoptSubsystemGuts(), and adds itself to the System. 

You can now create an ExampleSubsystem and add it to a System exactly as you would any 

other Subsystem: 

MultibodySystem system; 

SimbodyMatterSubsystem matter(system); 

ExampleSubsystem example(system); 

 
Notice that the ExampleSubsystem is created as just a local variable. It will disappear as 

soon as that variable goes out of scope. The ExampleSubsystemImpl is the true persistent 

object. For this reason, you should never add fields to a Subsystem subclass or try to store 

information in it. Instead, store all information in the Subsystem::Guts subclass. A 

Subsystem object is merely a glorified pointer to it. 

One other point is worth mentioning before we go on. Notice that we had to include an extra 

header file: 

#include "SimTKcommon/internal/SubsystemGuts.h" 
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Why was this necessary? In the past, it has always been enough to just include Simbody.h, 

which includes all the header files you need. Usually, that is true. It includes all the headers 

that most people need most of the time. But it does not include headers that are needed only 

when writing extensions to SimTK. Those must be included separately. 

3.2 A ForceSubsystem 

Now let’s make our Subsystem actually do something. We’re going to implement in a 

Subsystem the same ―mutual repulsion‖ capability we created in the previous chapter using a 

custom force element; if this is all you need to do you should definitely use a custom force, 

not a whole Subsystem! However, the example will serve nicely to illustrate the mechanics of 

building a Subsystem. 

So once again we’re going to cause all the MobilizedBodies in the System to repel each other 

with a force proportional to 1/r2: 

#include "Simbody.h" 

#include "simbody/internal/ForceSubsystemGuts.h" 

 

using namespace SimTK; 

 

class ExampleSubsystemImpl : public ForceSubsystem::Guts { 

public: 

    ExampleSubsystemImpl() : ForceSubsystem::Guts("Example", "1.0") { 

    } 

    Subsystem::Guts* cloneImpl() const { 

        return new ExampleSubsystemImpl(); 

    } 

    int realizeSubsystemDynamicsImpl(const State& state) const { 

        const MultibodySystem& system = MultibodySystem::downcast(getSystem()); 

        const SimbodyMatterSubsystem& matter = system.getMatterSubsystem(); 

        Vector_<SpatialVec>& forces = system.updRigidBodyForces(state,  

                Stage::Dynamics); 

        for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) { 

            const MobilizedBody& body1 = matter.getMobilizedBody(i); 

            for (MobilizedBodyIndex j(0); j < i; j++) { 

                const MobilizedBody& body2 = matter.getMobilizedBody(j); 

                Vec3 r = body1.getBodyOriginLocation(state)- 

                         body2.getBodyOriginLocation(state); 

                Real distance = r.norm(); 

                Vec3 force = r/cube(distance); 

                forces[i][1] += force; 

                forces[j][1] -= force; 

            } 

        } 

        return 0; 

    } 
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    Real calcPotentialEnergy(const State& state) const { 

        const MultibodySystem& system = MultibodySystem::downcast(getSystem()); 

        const SimbodyMatterSubsystem& matter = system.getMatterSubsystem(); 

        double energy = 0.0; 

        for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) { 

            const MobilizedBody& body1 = matter.getMobilizedBody(i); 

            for (MobilizedBodyIndex j(0); j < i; j++) { 

                const MobilizedBody& body2 = matter.getMobilizedBody(j); 

                Vec3 r = body1.getBodyOriginLocation(state)- 

                         body2.getBodyOriginLocation(state); 

                energy -= 1.0/r.norm(); 

            } 

        } 

        return energy; 

    } 

}; 

 

class ExampleSubsystem : public ForceSubsystem { 

public: 

    ExampleSubsystem(MultibodySystem& system) { 

        adoptSubsystemGuts(new ExampleSubsystemImpl()); 

        system.addForceSubsystem(*this); 

    } 

}; 

 

The first thing to notice is that we are using different parent classes: ForceSubsystem and 

ForceSubsystem::Guts. ForceSubsystem is a subclass of Subsystem defined by Simbody, 

which you should use for any Subsystem that applies forces to bodies. This ensures that 

Subsystems will be realized in the proper order, and also defines a calcPotentialEnergy() 

method in which you can calculate your force’s contribution to the potential energy of the 

system. Also notice that we add the Subsystem to the System by calling 

addForceSubsystem(), instead of adoptSubsystem() like we did in the previous example. 

We have added a method to ExampleSubsystemImpl, realizeSubsystemDynamicsImpl(). 

This will be called each time a State is being realized to Dynamics stage. There are similar 

methods for all the other stages. Each one has a default implementation that does nothing, 

so you only have to implement the ones you need. 

Very little of the code in this method should look unfamiliar. We begin by calling 

getSystem() to get a reference to the System this Subsystem is part of, and use 

MultibodySystem’s downcast() method which verifies that we have the expected type of 

System before returning a reference to it: 

const MultibodySystem& system = MultibodySystem::downcast(getSystem()); 

We look up its SimbodyMatterSubsystem, then call updRigidBodyForces() to get a writeable 

reference to the vector of spatial forces acting on the bodies: 
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Vector_<SpatialVec>& forces = system.updRigidBodyForces(state, Stage::Dynamics); 

Now we have a pair of nested loops over each pair of bodies. We calculate the displacement 

between them, use that to calculate a force, and add it to the appropriate entries in the 

vector. 

There is a very similar method called calcPotentialEnergy(). This method is defined by 

ForceSubsystem::Guts. When someone calls calcPotentialEnergy() on a MultibodySystem, it 

loops over each of its ForceSubsystems, calls calcPotentialEnergy() on each one, and returns 

the sum of their potential energies. 

Note that the above routines are very similar to the ones we wrote for a custom force in the 

previous chapter, but we have additional bookkeeping to do here. 

3.3 Adding Parameters to the Subsystem 

The force we implemented in the last section resembles Coulomb repulsion: lots of charged 

bodies all repelling each other. Wouldn’t it be useful if you could change the strength of the 

force (to represent changing the charge on each body)? Of course, you could just edit the 

source code and recompile, but what if you want to run lots of simulations, each with a 

different strength for the force? It would be much easier if you could set the strength 

programmatically. 

Here is a version that allows that: 

class ExampleSubsystemImpl : public ForceSubsystem::Guts { 

public: 

    ExampleSubsystemImpl() : ForceSubsystem::Guts("Example", "1.0"),  

            defaultForceStrength(1.0) { 

    } 

    Subsystem::Guts* cloneImpl() const { 

        return new ExampleSubsystemImpl(); 

    } 
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    int realizeSubsystemDynamicsImpl(const State& state) const { 

        const MultibodySystem& system = MultibodySystem::downcast(getSystem()); 

        const SimbodyMatterSubsystem& matter = system.getMatterSubsystem(); 

        Vector_<SpatialVec>& forces = system.updRigidBodyForces(state,  

                Stage::Dynamics); 

        for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) { 

            const MobilizedBody& body1 = matter.getMobilizedBody(i); 

            for (MobilizedBodyIndex j(0); j < i; j++) { 

                const MobilizedBody& body2 = matter.getMobilizedBody(j); 

                Vec3 r = body1.getBodyOriginLocation(state)- 

                         body2.getBodyOriginLocation(state); 

                Real distance = r.norm(); 

                Vec3 force = defaultForceStrength*r/cube(distance); 

                forces[i][1] += force; 

                forces[j][1] -= force; 

            } 

        } 

        return 0; 

    } 

    Real calcPotentialEnergy(const State& state) const { 

        const MultibodySystem& system = MultibodySystem::downcast(getSystem()); 

        const SimbodyMatterSubsystem& matter = system.getMatterSubsystem(); 

        double energy = 0.0; 

        for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) { 

            const MobilizedBody& body1 = matter.getMobilizedBody(i); 

            for (MobilizedBodyIndex j(0); j < i; j++) { 

                const MobilizedBody& body2 = matter.getMobilizedBody(j); 

                Vec3 r = body1.getBodyOriginLocation(state)- 

                         body2.getBodyOriginLocation(state); 

                energy -= defaultForceStrength/r.norm(); 

            } 

        } 

        return energy; 

    } 

    void setDefaultForceStrength(Real strength) { 

        defaultForceStrength = strength; 

        invalidateSubsystemTopologyCache(); 

    } 

    Real getDefaultForceStrength() const { 

        return defaultForceStrength; 

    } 

private: 

    Real defaultForceStrength; 

}; 

 

class ExampleSubsystem : public ForceSubsystem { 

public: 

    ExampleSubsystem(MultibodySystem& system) { 

        adoptSubsystemGuts(new ExampleSubsystemImpl()); 

        system.addForceSubsystem(*this); 

    } 

    void setDefaultForceStrength(Real strength) { 

        updImpl().setDefaultForceStrength(strength); 

    } 

    Real getDefaultForceStrength() const { 

        return getImpl().getDefaultForceStrength(); 

    } 
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private: 

    ExampleSubsystemImpl& updImpl() { 

        return dynamic_cast<ExampleSubsystemImpl&>(updRep()); 

    } 

    const ExampleSubsystemImpl& getImpl() const { 

        return dynamic_cast<const ExampleSubsystemImpl&>(getRep()); 

    } 

}; 

 

First look at ExampleSubsystemImpl. We have added a field called defaultForceStrength. 

Why ―default‖? Because in the next section we will introduce a state variable for storing the 

force strength, and the value stored in the Subsystem will simply be the default value for 

newly created States. We have added a pair of accessor methods for getting and setting it, 

and modified the force and energy calculation to use it. 

There is one line that needs explanation. In setDefaultForceStrength(), we call 

invalidateSubsystemTopologyCache(). The default force strength is stored in the Subsystem. 

That means it is a topological property (logically a Topology stage ―state variable‖). 

Whenever you modify a topological property, it is very important that you call this method. 

It marks that topology has changed, and all existing States need to be realized from Topology 

stage onward. That way if you try to use an old State object without recalculating, you will 

get an error. 

You might wonder why this is necessary. If a topological change actually affects the data 

stored in a State (such as the set of cache entries), obviously old States will no longer be 

valid, but why does it matter for a simple change to the force constant? 

The answer is that it is especially important for changes like this, because that is the only 

way to catch a variety of errors. A topological change should only ever be made before the 

start of a simulation, not in the middle. Otherwise, a saved State from earlier in the 

simulation (created based on an old value of the force constant) could easily get passed to a 

routine that would try to analyze it based on the new value. This is a very insidious sort of 

bug, because there is no way to detect it by looking at the State object itself. Calling 

invalidateSubsystemTopologyCache() ensures that all such errors will be caught. 

If this seems restrictive, don’t worry. There’s an easy solution, which we’ll see in the next 

section: if you want to be able to change something in the middle of a simulation, make it a 

state variable instead of a topological property. 
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The changes to ExampleSubsystem are very simple. We added two accessor methods, which 

just invoke the corresponding methods of ExampleSubsystemImpl. For convenience, note 

that we created two methods for looking up the ExampleSubsystemImpl: 

ExampleSubsystemImpl& updImpl() { 

    return dynamic_cast<ExampleSubsystemImpl&>(updRep()); 

} 

const ExampleSubsystemImpl& getImpl() const { 

    return dynamic_cast<const ExampleSubsystemImpl&>(getRep()); 

} 

 

Since we will be accessing it many times, this saves us from having to write a dynamic_cast 

every time. 

3.4 Creating a State Variable 

We really want to be able to change the force strength at any time, not just before starting a 

simulation. To do that, it needs to be stored in a state variable. The following example shows 

how to do it. (Some methods are omitted to avoid repeating code you have already seen.) 

class ExampleSubsystemImpl : public ForceSubsystem::Guts { 

public: 

 

    ... 

 

    int realizeSubsystemTopologyImpl(State& state) const { 

        forceStrengthIndex = allocateDiscreteVariable(state, Stage::Dynamics,  

new Value<Real>(defaultForceStrength)); 

        return 0;  

    } 

    int realizeSubsystemDynamicsImpl(const State& state) const { 

        const MultibodySystem& system = MultibodySystem::downcast(getSystem()); 

        const SimbodyMatterSubsystem& matter = system.getMatterSubsystem(); 

        Vector_<SpatialVec>& forces = system.updRigidBodyForces(state,  

                Stage::Dynamics); 

        Real forceStrength = getForceStrength(state); 

        for (MobilizedBodyIndex i(0); i < matter.getNumBodies(); i++) { 

            const MobilizedBody& body1 = matter.getMobilizedBody(i); 

            for (MobilizedBodyIndex j(0); j < i; j++) { 

                const MobilizedBody& body2 = matter.getMobilizedBody(j); 

                Vec3 r = body1.getBodyOriginLocation(state)- 

                         body2.getBodyOriginLocation(state); 

                Real distance = r.norm(); 

                Vec3 force = forceStrength*r/cube(distance); 

                forces[i][1] += force; 

                forces[j][1] -= force; 

            } 

        } 

        return 0; 

    } 
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    void setForceStrength(State& state, Real strength) const { 

        Value<Real>::updDowncast(updDiscreteVariable(state, 

                forceStrengthIndex) = strength; 

    } 

    Real getForceStrength(const State& state) const { 

        return Value<Real>::downcast(getDiscreteVariable(state, 

                forceStrengthIndex)); 

    } 

private: 

    Real defaultForceStrength; 

    mutable DiscreteVariableIndex forceStrengthIndex; 

}; 

 

Let’s start by looking at realizeSubsystemTopologyImpl(). The first thing to notice is that, 

unlike realizeSubsystemDynamicsImpl(), it receives a non-const reference to the State. 

Topology and Model are the only stages where the State can be modified during realization 

(such as by defining new state variables). 

That may seem strange. Isn’t the whole point of realization to modify the State and store new 

information in it? The answer is that all cache entries are mutable. They are exactly what the 

name suggests: a cache. The state variables are the true information. The cache entries can 

always be regenerated based on them. So a const State reference still allows you to modify 

the cache, but not the state variables. Logically nothing has changed when the cache is filled 

in—you could delete the whole thing and regenerate it any time from the information in the 

state variables. 

Now look at what happens when we realize Topology stage: 

forceStrengthIndex = allocateDiscreteVariable(state, Stage::Dynamics, 

new Value<Real>(defaultForceStrength)); 

 

We call allocateDiscreteVariable() on the State to create a new discrete variable. There are 

three arguments: the state, the stage that should be invalidated when this variable’s value is 

changed, and a Value object to hold the actual value, with a default value given. We specify 

Dynamics stage, since that is the earliest stage whose computations depend on this variable. 

Notice that Value is a template. A discrete state variable can hold any type of value, even a 

large data structure. It is not restricted to just real values the way continuous state variables 

are. 

The return value from allocateDiscreteVariable() is an index, which we will use whenever we 

want to access the value. We store that index in a mutable field of ExampleSubsystemImpl. 
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I hope you just cried out in horror at that last sentence? If not, please reread it and think 

carefully about why it’s such a shocking statement!  A System (including all its Subsystems) 

is supposed to be immutable during a simulation. All mutable information is supposed to go 

into the State. And here we are, realizing a State object... and we modified a field of the 

Subsystem? Didn’t we just violate that design principle? And what will happen when we 

realize a different State, and write a new value to the field? 

In any other situation, you would be completely correct. Topology stage is the only time 

when we are allowed to modify the System during realization. And not just any change; only 

properties that are calculated as a result of realizing the State during realizeTopology(). 

Indices are calculated for the state variables and cache entries as they are allocated, and we 

need to store them for future reference. 

But what happens when we realize another State? Won’t the indices get overwritten with 

new values? That’s where Topology stage is special. Remember, there are no Topology stage 

variables in a State. What happens in realizeTopology() can depend only on topological 

properties of the System, which means you will get exactly the same indices every time it is 

called (unless you modify a topological property, in which case your previously created 

States will become invalid anyway.) Mutable fields in a System (or in a Subsystem that is 

part of a System) are like Topology-stage cache variables—they are calculated but add no 

new information. Everything they depend on is present as Topology-stage ―state variables‖, 

i.e. non-mutable data members of System and Subsystem objects. You can recalculate them 

any time and you’ll always get the same values. 

But wait a minute—what about Model stage? You can also allocate state variables then. Does 

that mean it’s also alright to store indices in the System while realizing Model stage? 

The answer is a very emphatic NO! What happens during Model stage can depend on state 

variables, so you might get different indices for different States. Instead, create a data 

structure to hold any indices that will be calculated at Model stage. Then at Topology stage, 

allocate a cache entry to hold an instance of that structure. That way, all the indices 

calculated at Model stage will be stored in the State, not the System. 
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Now look at how we access the state variable: 

void setForceStrength(State& state, Real strength) const { 

    Value<Real>::updDowncast(updDiscreteVariable(state,  

            forceStrengthIndex)) = strength; 

} 

Real getForceStrength(const State& state) const { 

    return Value<Real>::downcast(getDiscreteVariable(state, 

            forceStrengthIndex)); 

} 

 

We invoke updDiscreteVariable() to get a writable reference to an AbstractValue object, or 

getDiscreteVariable() to get a const reference. We then ask the concrete Value type to verify 

that we have the expected kind of value, then cast the result to the appropriate type. 

Finally, realizeSubsystemDynamicsImpl() and calcPotentialEnergy() need to be modified to 

use the value stored in the state variable. This is trivial: we just call getForceStrength(), then 

use that value instead of the default value. 

3.5 Other Subsystem Features 

There are many other things a Subsystem can do. Some are trivial to implement, while 

others are rarely used, so rather than discuss extended examples of each one, we will simply 

go through them quickly in this section. You can get much more information by looking in 

the API reference documentation by class or method name. 

3.5.1 Allocating continuous state variables q,u, and z 

Allocating continuous state variables is similar to allocating discrete ones, but simpler. You 

invoke allocateQ(), allocateU(), or allocateZ() on the State to allocate a contiguous block of 

state variables. Each of these methods takes a Vector containing the initial values of the state 

variables to allocate. The length of the Vector determines how many variables will be 

allocated. The return value is the index of the start of the block within the Vector of state 

variables for that Subsystem. For example, if you allocate a block of q’s by writing 

qindex = allocateQ(state, initialValues); 

then you would look up the value of the first one by calling 

value = getQ(state)[qindex]; 

 

If you allocate continuous state variables, you will usually also want to implement 

realizeSubsystemAccelerationImpl() to calculate their derivatives. You set them by calling 

updQDot(), updUDot(), and updZDot() on the State. For q’s you also need to provide second 
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time derivatives via updQDotDot(). Those are often, but not always, the same as udots. The 

qdot, udot, zdot, and qdotdot values are actually cache entries created and managed 

automatically by the State as a result of the allocation of the corresponding continuous 

variables. 

3.5.2 Allocating your own cache entries 

If a Subsystem needs to create a ―discrete‖ cache entry, that works almost exactly like 

creating a discrete state variable. You call allocateCacheEntry() to create it, and 

getCacheEntry() or updCacheEntry() to access a value. However, a cache entry is associated 

with two stages: the earliest stage at which it can be realized (evaluated), and the latest stage 

at which it will be realized. The ―earliest‖ stage is the highest stage of any state variable on 

which the cache entry’s value depends. If any state variable at that stage or lower is 

modified, the cache entry is invalidated automatically. The ―latest‖ stage is a promise that if 

a State has been realized to that stage or later then you can depend on the cache entry’s value 

being valid. For example, a cache entry holding the value of an expensive calculation that 

depends on Position variables (e.g. q’s) but isn’t normally needed until Dynamics stage can 

be declared with earliest=Position and latest=Dynamics. It should then be evaluated during 

realize(Dynamics), after which it will be presumed valid, and it will be automatically 

invalidated if any Position-affecting state variable (or earlier stage variable) is modified. 

3.5.3 Allocating cache entries with “lazy” evaluation 

It is useful to set the ―latest‖ stage to Stage::Infinity, meaning that no promise is being made 

that the cache value will ever be realized. You can do that with allocateCacheEntry() but it is 

more clear if you use allocateLazyCacheEntry(). In either case the cache entry is ―lazy‖ in the 

sense that it will only be realized if someone asks for its value. The first time after the 

―earliest‖ stage has been realized that someone asks for the value must cause realization to 

happen. After that the value is available for free.  The method isCacheValueRealized() can be 

used to check whether the value has been calculated, and the method 

markCacheValueRealized() is used to mark the cache value valid any time between stage 

―earliest‖ and stage ―latest‖. These methods should be used as follows, for a cache entry CE 

whose value type is CEType and whose CacheEntryIndex is CEIndex. 

1. Allocate your lazy cache entry something like this:  
     CEIndex = allocateLazyCacheEntry(state,stage,new Value<CEType>()); 
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2. Write a realizeCE() method structured like this:  

     void realizeCE(const State& s) const { 

         if (isCacheValueRealized(s,CEIndex))  

             return; 

         // calculate the cache entry, update with updCacheEntry() 

         markCacheValueRealized(s,CEIndex); 

     } 

 

3. Write a getCE() method structured like this:  
     const CEType& getCE(const State& s) const { 

         realizeCE(s); // make sure CE has been calculated 

         return Value<CEType>::downcast(getCacheEntry(s,CEIndex)); 

     } 

  

4. Write an updCE() method like this:  
     CEType& updCE(const State& s) const { 

         return Value<CEType>::updDowncast(updCacheEntry(s,CEIndex)); 

     } 

 

Note that all the above routines are const, even though they may modify the cache entry’s 

value; that’s because cache entries are always mutable since, as discussed above, they do not 

contain any new information. 

3.5.4 Creating event handlers 

Another feature of Subsystems is the ability to define event handlers. This is not a widely 

used feature, because it is usually easier to use the EventHandler and EventReporter classes. 

But sometimes you might prefer to have a Subsystem do its own event handling, especially if 

the events are closely related to other functions of the Subsystem. 

To define a scheduled event or scheduled report, the Subsystem should call 

createScheduledEvent() when realizing Instance stage. This allocates a globally unique event 

ID that is thereafter used to refer to that event. Next, you need to implement one or both of 

the two methods calcTimeOfNextScheduledEvent() and calcTimeOfNextScheduledReport(). 

These methods return the next time at which any events or reports will occur, and the IDs of 

all events/reports that will occur at that time. Finally, you need to implement one or both of 

the methods handleEvents() and reportEvents(). These are called when an event/report 

occurs, and are given the IDs of all events/reports that occurred. 

To define a triggered event or triggered report, call createTriggeredEvent() when realizing 

Instance stage. This returns both an event ID and an index into the Vector of trigger function 

values. When realizing the appropriate stage, you should calculate the value of the trigger 

function, then store it in the State by calling 
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state.updEventsByStage(getMySubsystemIndex(), stage)[eventIndex] = value; 

You then implement handleEvents() to handle the event when it occurs. 

3.5.5 Defining new constraints 

Another function Subsystems can perform is to define constraints. Once again, doing this 

directly from a Subsystem is rarely the easiest way. In the previous chapter, we saw an easier 

way to define constraints using the custom constraint feature of the 

SimbodyMatterSubsystem. 

A constraint equation may be applied to coordinates, velocities, or accelerations. When 

realizing Instance stage, call allocateQErr() to create a constraint on coordinates, 

allocateUErr() to create a constraint on velocities, and allocateUDotErr() to create a 

constraint on accelerations. The actual quantities you will calculate and store in the State are 

the ―constraint errors‖. Every constraint is defined by an equation of the form c(d;t,y) = 0. 

You calculate the value of the function c(d;t,y), and Simbody then tries to keep it equal to 0. 

You set the constraint errors when realizing the appropriate stages by calling updQErr(), 

updUErr(), and updUDotErr(). 

It is quite difficult to handle constraints correctly and we highly recommend that you not do 

this from your own Subsystems but instead take advantage of the Constraint facility that is 

part of the SimbodyMatterSubsystem, which provides built-in constraints as well as highly 

flexible custom constraints. See the previous chapter for more information and be sure to 

take advantage of the Simbody forum at https://simtk.org/home/simbody to discuss with 

expert users the best approach to solving your problem.  

https://simtk.org/home/simbody

