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Spatial Operator Algebra for 
Multibody System ~~narnics '  

G. ~odriguez,". ~ain,' and K. ~reutz-~elgado' 

Abstract 

This paper describes a new spatial operator algebra for the dynamics of general- 
topology rigid multibody systems. Spatial operators allow a concise and systematic formu- 
lation of the dynamical equations of motion of multibody systems and the development of 
efficient computational algorithms. Equations of motion are developed for progressively 
more complex systems: serial chains, topological trees, and closed-loop systems. New op- 
erator factorizations and expressions for the mass matrix and its inverse are derived and 
used to obtain efficient, spatially recursive computational algorithms. The algorithms can 
be easily reconfigured in response to changes in the constraints and the topology of con- 
stituent bodies. Thus, they are particularly suited for time-varying multibody systems. 
References are provided for extensions to flexible multibody systems. Spatially recursive 
algorithms, based on the sequential filtering and smoothing methods encountered in 
optimal estimation theory, provide the computational infrastructure to mechanize the 
spatial operators. 

Introduction 

There are two major current challenges in multibody system dynamics: achiev- 
ing computational efficiency for increasingly complex systems; and retaining al- 
gorithmic efficiency while accounting for possible event-dependent changes to 
the constraints and topology of the constituent bodies. These challenges occur 
for example in highly complex and interactive spacecraft and in space robotic 
systems which require that the dynamics algorithms be quickly reconfigured in 
response to configuration changes without sacrificing computational efficiency. 

In recent years, there has been significant progress in the fomulation of the 
equations of motion and on the development of efficient dynamics algorithms for 
multibody systems. A large part of this work, [I]-161, has focused on the develop- 
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ment of recursive computational algorithms for the dynamics of serial rigid 
multibody systems. References [5,7] describe recursive forward dynamics al- 
gorithms for tree topology rigid multibody systems. References [8,9] contain re- 
cursive algorithms specific to closed topology rigid multibody systems consisting 
of multiple robot manipulators grasping a rigid object. References [lo, 111 de- 
scribe recursive algorithms for general topology rigid multibody systems. 

The spatial operator algebra [8,9] arose from a recognition of the close paral- 
lels between the structure of the equations of motion for serial chain dynamics 
and those encountered in the area of optimal estimation theory [12]. These par- 
allels naturally led to the introduction of spatial operators to obtain a concise for- 
mulation of the equations of motion of multibody systems. The spatial operators 
have been used to obtain new operator factorizations and expressions for the 
mass matrix and its inverse. These operator expressions make it possible to rec- 
ognize high-level mathematical patterns associated with the mass matrix which 
the detailed algorithms do not reveal. Therefore, the number of symbols that the 
analyst has to see is reduced significantly. In addition, the spatial operators are 
mechanized by very efficient spatially recursive computational algorithms whose 
complexity depends only linearly on the number of degrees of freedom (dofs). 
These algorithms closely resemble the algorithms used for recursive filtering and 
smoothing in the Kalman filtering and estimation problems. There is the reas- 
suring presence of such familiar concepts as Riccati equations and Kalman 
gains. This makes it easier to mechanize the dynamics algorithms and to moni- 
tor their numerical stability and robustness. Much of the experience gained over 
many years of research in estimation theory can now be used to solve multibody 
system dynamics problems. 

In this paper, the spatial operator algebra is advanced as a new systematic pro- 
cedure for concisely formulating the equations of motion and deriving efficient 
spatially recursive dynamics algorithms for general topology rigid multibody sys- 
tems. Spatial operator formulations of the dynamics of serial chain, tree and 
closed chain topology multibody systems are developed in a progressive se- 
quence. It is seen that the spatial operator formulation of the dynamics for serial 
and tree topology systems are identical in form. Consequently, such results as the 
operator factorization and inversion of the mass matrix for serial chains are di- 
rectly applicable to tree topology systems. Moreover, the recursive comput a- 
tional algorithms for serial chains extend with only minor modifications to tree 
topology systems. 

Closed topology systems are modeled as consisting of primary and secondary 
tree-topology subsystems along with additional kinematical closure constraints 
within and between them.   he primary system represents the major part of the 
system whose topology and constituent bodies do not change with time. The sec- 
ondary system is much smaller in most applications, and represents the part of 
the system whose topology and constituent bodies do change with time. 

A recursive computational algorithm is then developed for closed-chain sys- 
tems. This algorithm contains separate steps for the dynamics of the primary 
and secondary systems using recursive algorithms for tree-topology systems, plus 
additional steps to handle the closure constraints. A significant feature of these 
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algorithms is that only relatively small and localized changes are needed for re- 
configuration in response to changes in either the topology, the constraints or 
the constituent bodies of the system. The overall computational complexity of 
the algorithm stays linear in the number of degrees of freedom in the system. In 
addition, there is a linear dependency (in the absence of kinematical singulari- 
ties) on the number of closed loops in the system. 

Extensions of the spatial operator algebra and the computational algorithms to 
flexible multibody system dynamics are discussed in [13]. 

6-Dimensional Spatial Notation 

Coordinate-free 6-dimensional spatial notation is used throughout this paper. 
Given the linear and angular velocities v and o, the linear force F, and moment 
N in 913 at a point on a body, the (inertial) spatial velocity V,  (inertial) spatial ac- 
celeration a and the spatial force f in 5k6 are: 

Here " ' " implies the time derivative in an inertial frame. The rigid body trans- 
formation operator &, y) € 5k6x6 for two points x and y is: 

where l,,, E 913 is the vector joining the two points r and y. c,, is the cross- 
product matrix associated with I,, ,  which acts on a vector to produce the cross- 
product of I,,, with the vector. 4(x7 y) and @(x7 y) transform spatial forces and 
spatial velocities respectively between the two body-fixed points x and y on a 
rigid body. The spatial inertia Mo E 5k6X6 of a rigid body at a point 0 on the 
body is 

where p E 5k3 is the vector from 0 to the center of mass of the body, m is the 
mass of the body, and T(0)  E %3x3 is the inertia tensors for the body about 0. 
See [14] for more discussion on the properties and use of the spatial notation. 

Serial Rigid Multibody Systems 

This is the simplest case of a rigid multibody system. The system consists of 
n rigid bodies connected together by multiple dof hinges. The bodies are num- 
bered 1 through n from tip to base. The term outboard (inboard) body refers to 
a body on the path towards the tip (base). 

The generalized coordinates for the serial chain are the collection of the hinge 
configuration parameters. It is assumed that the kth hinge possesses rp(k) con- 
figuration degrees of freedom which are parameterized by the vector of con- 
figuration variables B(k) E W P ( ~ )  and that its r,(k) (5 rp(k)) motion dofs are 
parameterized by the generalized velocity vector P(k) E W(k). The kinematical 



30 Rodriguez, Jain, and Kreutz-Delgado 

equations which relate 9(k) to P(k) depend on the specific nature of the kth 
hinge. It is assumed for notational convenience that all the hinge constraints are 
homogeneous (i.e., catastatic). H(k) is defined such that H*(k) E %6xrv(k' is the 
hinge map matrix for the kth hinge. Its columns span the space of permissible 
relative spatial velocities across the hinge. The number of overall motion dofs for 
the serial chain are given by N 2 2&r,(k) for the chain. The state of the multi- 
body system is defined by the collection of [8(.), P(-)] pairs for all the hinges, and 
is assumed known. 

Since each body is rigid, it suffices to develop the equations of motion for a 
body about a single reference point on the body, which is chosen here as the 
inboaid hinge location Ok for the kth body (see Fig. 1). With V(k) E a6 denot- 
ing the (inertial) spatial velocity, a(k) E %6 the (inertial) spatial acceleration, 
f(k) E 9t6 the spatial interaction force and T(k) E w'~' the generalized hinge 
force about Ok for the kth body, the following Newton-Euler recursive equations 
describe the equations of motion for the serial chain: 

I 
V(n + 1) = 0, a(n + 1) = 0 

fork  = n - - -  1 

V(k) = +*(k + l,k)V(k + 1) + H*(k)P(k) 

a(k) = &*(k + 1, k)a(k + 1) + ~ * ( k ) j ( k )  + ~ ( k )  

[end loop 

f (0) = 0 

fork = 1 - . a  n 

f(k) = +(k + 1, k)f(k - 1) + M(k)a(k) + b(k) 

T(k)  = H(k)f(k) 

end loop (1) 

( k + ~ ) * ~  link 

+ Towards Base Towards Tip c 

FIG. 1. Illustration of Links and Joints in a Serial Rigid Multibody System. 
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where the velocity dependent Coriolis and centrifugal acceleration term 
a(k) E 9t6 is, 

a(k) 9 +(k + 1, k)V(k + 1) + ~ * ( k ) p ( k )  (2) 

The velocity dependent gyroscopic force term b(k) E Si" is 

O(k,k - 1) E 916x6 denotes the transformation operator from Ok-, to Bk. For 
more details on the derivation of these equations of motion, see [9,14]. 

The simplifying assumption is made that the tip force f (0) is zero. Base mobil- 
ity can easily be handled by attaching a full motion 6-dof hinge between the 
physical base and the inertial frame. For the inverse dynamics problem, the 
hinge accelerations /3 are known, and equation (1) represents an O(N) computa- 
tion involving a base-to-t ip recursion to compute the velocities and accelerations, 
followed by a tip-to-base recursion to compute the hinge forces. 

The equations of motion equation (1) can be expressed more concisely using 
spatial operators. In this notation, the V(k)'s, a(k)'s etc. are viewed as compo- 
nents of vectors V E 916", a E 9Ih etc. Then, equation (1) can be written in the 
following compact form: 

where, 
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However, since %+ is nilpotent (%; = O), 
A 4 = ( I  - '%$)-I = I + + %$ + .. - + %-I 4 

- - 

where, 

+(i,j) A +(i,i - 1) - - - 4 ( j  + 1, j )  fo r i  > j 

Thus, equation (3) can be reexpressed as, 

= M i  + %, where M H4M@H*, and C A H4(M@a + b) (7) 

M E 9INxN is the mass matrix for the serial chain and % E '3LN contains the veloc- 
ity dependent Coriolis, centrifugal and gyroscopic hinge forces. In the terminol- 
ogy of Kane's method [15], P are the generalized speeds and the elements of 4*H* 
are the partial (spatial) velocities. The operator expression JZll = H4M4*H* is 
denoted the Newton-Euler Operator Factorization of the mass matrix. 

In terms of the rigid body transformation operator from the tip to the first 
hinge by 4(1, O), the tip spatial velocity, V(O), is given by V(0) = 4*(1,O)V(1). 
Thus, 

A r(;O)l 3 6 n x 6  V(0) = B*4*H*P, where B = 

Thus, the Jacobian matrix J E 916xN which maps /3 to the tip velocity V(0) is 

J = B*@H*, and we have V(0) = JP (8) 

%+, 4 ,  H, and M are the first spatial operators encountered. Recursive dy- 
namical algorithms can be derived easily by using the state transition properties [8] 
of the elements of spatial operators such as %'&, 4 etc. For instance, given a 
vector y, the evaluation of the matrix-vector product 4y does not require an 
0(n2) matrix-vector product computation, and not even the explicit computation 
of the elements of 4. Rather, this product can be evaluated using an O(n) recur- 
sive algorithm involving only the elements of %$ and y. This is precisely the cor- 
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respondence between the concise operator based high-level description of the 
equations of motion in equation (7) and the recursive algorithmic description in 
equation (1). 

Spatially recursive O(N) forward dynamics algorithms for serial chains have 
been developed in [3] based on the recognition of the close parallels between the 
structure of the multibody dynamics equations and the equations encountered in 
Kalman Filtering theory [16]. These parallels are used to obtain a new (square) 
Innovations operator factorization of the mass matrix JU and an operator expres- 
sion for its inverse, and form the basis for the recursive algorithms. 

Tree Topology Systems 

In this section, the dynamics of tree-topology rigid multibody systems are dis- 
cussed. A tree topology system is viewed here as a set of component serial chains 
(referred to as branches), coupled together via hinges at their inboard terminal 
bodies. The total number of branches is denoted t. The index for the branches 
ranges from 1 - - f ,  and consistent with the body numbering scheme in the previ- 
ous section, the inboard branches are assigned indices larger than those for the 
outboard ones. The inboard function i(k) is defined as the index of the direct 
predecessor branch, i.e., the inboard branch to which the kth branch is directly 
connected. The jth branch is referred to as apredecessor of the kth branch if it 
belongs on the unique path from the kth branch to the base, i.e., if iP(k) = j for 
some integerp > 0, where iP(-) = i o i o - - - o i(.) denotes ap-times function com- 
position. Figure 2 illustrates the decomposition of a tree system into branches as 
well as a sample branch numbering scheme for the system. 

The notation developed earlier for serial chains is used to describe the 
branches in the tree system. A subscript serves to identify the specific branch in 
the system. Thus n, and uN; denote the number of bodies and the number of mo- 
tion dofs respectively, while q E 9Q6'~, and Mi, %4i, 4, etc. in 916n~x6' denote the 
spatial vector, spatial inertias etc. for the jth branch. A bodylhinge is identified 
by the index of the branch it is on, plus its location within the branch. For in- 
stance, the k, body is the kth body on the jth branch, and V(k,) (or q(k)) denotes 
the spatial velocity of the kth body of the jth branch at its inboard hinge location 
O(k,). The overall stacked spatial velocity, acceleration etc. vectors for the tree 
are once again denoted V,  a, f etc. with V [V: V f ] *  E 9l6" etc. The total 
number of bodies n, and the total number of motion dofs N for the tree multi- 
body system are now given by 

P e 
n z n j  and N A  EN, 

, = I  )=I 
(9) 

Note that when the jth branch is the direct predecessor of the kth branch, i.e., 
j = i(k), the hinge connecting them is regarded as the nkth hinge (the last hinge) 
on the kth branch and describes the attachment to body 1, on the jth branch. The 
transformation operator from the nkth hinge to the 1,th hinge is denoted 
4(lj7 nk). The spatial operator 'Ed E 9'i6nx6n for the tree system is defined in terms 
of its block matrix elements below. For j, k € 1 at, the (j ,  k)th block element 
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Incorrect 

FIG. 2. Illustration of Decomposition into Branches for a Tree System. 

8+( j7  k )  E %6n~X6nk of %& is defined as follows: 

, 80, for j = k 
, 0 ... 0 + ( I j ,  nk) 

0 -.. 0 0 

. ... . 

0 0 0 ,  

for j = i(k),  i.e. if j = k's 
direct predecessor branch 

0 
for j ;t i(k),  i.e. if j 2: k's 
direct predecessor branch (10) 
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In this paper 0 denotes a zero matrix whose dimension is apparent from the con- 
text. As a consequence of the numbering scheme used here, for j < k, the jth 
branch cannot be a predecessor to the kth branch and thus the (j, k)th block ele- 
ment, '&&(j, k) = 0. Thus '%& is a strictly lower triangular matrix. The analogs of 
equation (3) are as follows: 

V = stv + H*P 

Once again (analogous to equation (6)), %& is nilpotent (%$ = 0) and the operator 
4 can be defined as follows: 

It is easy to verify that the (j, k)th block element +(j, k) E 916"X6nk of 4 is given 
below: 

I 4, A (I - '%&,)-I for j = k 

4i k if 3 p > 0: j = iP(k), i-e., if j is a predecessor branch of k 
0 if j # iP(k) V p  > 0, i.e., if j is not a predecessor 

branch of k 

(13) 
where components of the matrix 4j,k are defined as 

for m E 1 . n, and 1 E 1 - - nk. 4(m,, lk) is the transformation operator from 
hinge lk (on the kth branch) to hinge m, (on the jth branch) and is a generaliza- 
tion of the transformation operator 4(i, j) in equation (6) for serial chains. It is 
formed by sequentially composing all the individual transformation operators 
that lie on the unique path joining the two hinges. The numbering scheme used 
here ensures that 4 will be a lower triangular matrix. The structure of the g4 
and 4 operators for the example in Fig. 2 is given below: 

The operator 4 has state transition properties analogous to the 4 for serial 
chains, and as a consequence, it can be used for high-level and concise descrip- 
tion and analysis of the dynamics of tree topology systems (as in equation (14) 
below). However, from the computational perspective, equations involving these 
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operators can always be directly mapped into very efficient and recursive com- 
putational algorithms. From equation (11) and equation (12) it follows that, 

v = pH*@ 

a = q ~ ( ~ * j  + a) 

A 
= .Mg + %, where 1 = H4MflH: and '& H&(MPa + b) (14) 

1 E 9tMxN denotes the mass matrix for the tree system, and % E 9' is the vector 
of velocity dependent nonlinear Coriolis type terms. While neither .M nor Ce are 
typically available, their explicit computation is not required either for solving 
the forward dynamics of the system. Since the complexity of the forward dy- 
namics algorithm depends primarily on handling 1 and not %, we assume here 
for simplicity that % is explicitly computed from the state information. Defining 
T T - %, the forward dynamics then requires the solution of 

for the hinge accelerations b. 
It is noteworthy that the spatial operator expressions for the mass matrix .M 

and the Coriolis vector '& in equation (14) are identical to the corresponding ones 
for serial chains in equation (7). Moreover, key properties of the operators re- 
main uneffected. Thus, important operator results for the alternative (square) 
innovations factorization and the inversion of the mass matrix for serial chain 
systems in [9] also hold for tree-topology systems. Indeed, with only minor exten- 
sions, even the O(N) recursive algorithms for the dynamics of serial chain sys- 
tems extend directly to tree-topology systems. The  discussion of these operator 
results and algorithms is postponed until after the dynamics of closed-chain sys- 
tems have been discussed in the next section. 

However, before proceeding to closed topology systems, an expression is 
derived for the tree-topology Jacobian operator. Given nc points, denoted Ck's on 
the tree, the Jacobian operator J E % 6 n ~ x N  defines the mapping between 0 and 

i.e., P = J@, where 9 E 9t6"~ denotes the vector of spatial velocities at these 
points. If Ck is on body mj, then the spatial velocity at Ck is given by 

with 4(0(mj), Ck) denoting the rigid body transformation operator from Ck to the 
point O(m,). With the block elements of B E %6nx6nc defined as 

B(mj, k) = $[O(m,),Ck] if Ck E m,th body fo rk  = 1 . . -  nc 
otherwise (17) 

it follows from equation (16) that 
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This gives an expression for the desired Jacobian operator that will be used 
below to deal with the loop closure constraints for closed topology systems. 

Closed Topology Systems 

This section describes equations of motion for closed topology multibody sys- 
tems with time-varying topologies, constraints and constituent bodies. The 
closed-chain system consists of: 

(a) the primary tree-topology subsystem, consisting of the major part whose to- 
pology and constituent bodies are t he least time-variant . 

(b) The secondary tree-topology subsystem, which is much smaller, and con- 
sists of the part whose topology and constituent bodies do change from 
time to time. 

(c) The set of closure constraints and/or boundary conditions betweenlwithin 
the primary and secondary systems. 

Note that the subsystems described above are in an order of increasing time- 
variation. As an example, take the case of multiple robot manipulators inter- 
acting with each other and the environment to perform complex tasks. In this 
context, the manipulators by themselves should be assigned to the primary sys- 
tem since their internal structure does not vary with time. On the other Band, 
the task objects and the tools vary from task to task and are assigned to the sec- 
ondary system. The closure constraints between the primary and secondary sub- 
systems characterize those arising from task related grasping, mating, tool 
operation etc., and belong to the last category. 

This decomposition of the closed topology system is a departure from the 
more traditional approach (see [10,11]) of forming a spanning tree for the full 
system and computing the constraint forces at the points of closure. In these lat- 
ter approaches, even small changes in the original system typically require whole 
new spanning trees for the system. This disallows any algorithmic optimization, 
and the algorithms are also not amenable to coping with time-varying systems. 
When the application system is "time-invariant", such as a spacecraft, there may 
be no secondary subsystem at all, and in the absence of closed loops, the set of 
constraints will also be empty. 

The equations of motion for tree topology systems derived in equation (15) will 
be used to describe the dynamics of the tree components of both the primary 
and secondary systems, with the subscripts "P" and 'SS" being used to identify the 
two subsystems. Thus the dynamics of the tree part of the two systems are de- 
scribed by 

J U ~  and Ats denote the mass matrices, p p  and ps the motion dof parameter vec- 
tors, T p  and Ps the bias-free internal hinge forces for the primary and secondary 
subsystems respectively. 

Collect together the internal loop points of closure with the points of closure 
coupling the two systems, and denote the$ number by & and Ls for the primary 
and secondary systems respectively. Let Vp E 9161p and Vs E denote the vec- 
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tors of spatial velocities at these points of closure for the two systems. Following 
the discussion leading up to equation (18), J p  = B&b;HF and Js  = B:+:H: are 
tke Jacobians toAthese points of closure for the two systems respectively. Thus 
VP = J P ~ P  and Vs = J s P s .  The kinematical constraints due to the existence of 
internal closed loops within the primary and secondary systems are character- 
ized by constraint matrices QP and Qs and lead to kinematical constraint equa- 
tions of the form: 

The coupling together of the primary and secondary systems is characterized by 
the constraint matrices Q p  and Q s  and leads to a kinematical constraint equation 
of the form: 

A A 

QpVP + Gsk = fit 
Define 

The closure constraints can be collectively expressed as: 

It is assumed here onwards that [ApJp ASJS] is of full row rank, and its rank is 
N. .  T h e  overall number of motion dofs of the closed chain system is given by 
Nc = X + Yhr, - NE. While not required for the purpose here, equation (20) can 
be used, whenever necessary, to find the NC dimensional minimal set of general- 
ized velocities for the system. Based on the principle of virtual work, equa- 
tion (20) implies that the closure constraint forces are 

for sornef E WE. Together, the dynarnical equations of motion for the primary 
and secondary systems equation (7) and equation (21), as well as the constraint 
equation in equation (20), lead to the following equations of motion for the 
closed chain system follows: 
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Premultiplication of both sides of the above equation by the matrix 

leads to 

where 
A A A p = ~ p ~ p l ~ B ,  and As=JsJUi lJs*  

Physically, A p  E !R6rpX6J~ and As E 9t6rsx655 are the effective "admittances" of 
the primary and secondary systems reflected to the points of closure. 

When there is no secondary system, the equations of motion in equation (22) 
are given by 

A A 

( f p  PJP ) 0 ($1 = ( )  where U = k - (A/Jp)Vp 

The corresponding form of equation (23) is given by: 

Simplifications for some special cases types of closed chain systems are de- 
scribed below: 

When the hinge constraints coupling the primary and secondary systems are 
only on the relative spatial velocity across the hinges coupling them to- 
gether, an appropriate reordering of the elements of V  will result in 
A A 

Q p  = - Q S .  Furthermore, if no relative motion is permitted :cross the 
hinge, i.e., there is rigid rather than loose coupling, then in fact Q p  = I and 
QS = I. When this feature holds for only some of the hinges, only the corre- 
sponding rows of Q p  and Qs have this special structure. 
When the secondary system has no internal actuators or source of general- 
ized forces, then Ts = 0. 
If the secondary system is a free rigid body with no internal degrees of free- 
dom, then the motion generalized coordinates vector Ps is of dimension 6 
and is just the spatial velocity of the body. 
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Forward Dynamics of Closed Chain Systems 

This section describes a recursive algorithm for solving the forward dynamics 
of closed chain rigid multibody systems which does not require the explicit com- 
putation of tbe system mass matrix. 

From the equations of motion for closed chain systems given by equation (23), 
the forward dynamics problem can be solved by the following sequence of steps: 

( B) Compute a$ = J P &  Compute a4 = Js& 

(c) Compute Ap = J p h p 1 ~ ;  Compute As = JsJU;'J; 

(D) Solve [ A p A p ~ :  + A ~ A ~ A ~ ] ~ ^  = ( ~ ~ O l f p  + A&) - U for f^ 

The interpretation of each of the  steps is as follows. STEP (A) solves for the 
"free" hinge accelerations ~ ' p  and P< of the primary and secondary systems as- 
suming that there are no closure constraints on the system. Note that this step is 
equivalent to computing the forward dynamics of the primarylsecondary tree- 
topology systems. STEP (B) computes the corresponding "free" tip spatial accel- 
erations d p  and a4 for the systems. STEP (C) computes the effective admittances 
of the primary and secondary systems at the points of closure. In STEP (D), 
the constraint forces at the points of closure are computed,.and they are used in 
STEP (E) to compute the "correction" hinge accelerations P; and for the two 
systems. Combining the free and correction hinge accelerations in STEP (F) 
gives the true hinge accelerations for the two systems. 

It is now easy to see the use of the decomposition into primary and secondary 
systems in the development of dynamics algorithms which are responsive and 
adaptable to time-varying systems. Tbe forward dynamics procedure above in- 
volves a sequence of decoupled steps for each of the primary and secondary sys- 
tem dynamics, and one step in which they come together when the constraint 
forces are computed. Being structurally time-invariant, it is possible to put in 
place optimized algorithms for the dynamics of the primary system. Changes in 
the secondary system, which is typically of small dimension, effect only the rela- 
tively smaller number of computations involving the steps in the right half 
column. Changes in the closure constraints only alters the constraint matrix A, 
and thus only STEP D is qffected, while the computations for the primary and 
secondary systems remain unaffected. Thus, changes to the secondary system or 
the constraints on the system require very modest changes to reconfigure the 
algorithm to respond to these changes. 

Recursive algorithms for each of the above steps are now described. It follows 
from the symmetry between the steps in the two columns that the recursive al- 
gorithms for the primary system are directly applicable to the secondary system 
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as well. Therefore, the explicit use of the subscripts identifying the primary/ 
secondary systems are dropped here onwards (except for STEP (D)). 

STEP (A) Solve R B~ = (Forward Dynamics of a Tree Topology System) 

Step (A) is equivalent to solving the forward dynamics of a tree topology sys- 
tem. Here, an O(N) recursive algorithm for this solution is developed. This 
algorithm is based on a new factorization of the mass matrix .Ad in terms 
of square factors in contrast to the earlier non-square factorization in equa- 
tion (14). This square factorization is then used to obtain an explicit expres- 
sion for A-'. 
The articulated body inertia matrix P is defined as the solution to the 
following equation: 

P is block diagonal and the elements on the diagonal (denoted P(k,)) can be ob- 
tained using a recursive algorithm described in equation (39) in Appendix A. 
Physically, P(kj) is the articulated body inertia as seen at the kith hinge, i.e., 
it is the effective inertia of all the links outboard from the kith hinge assum- 
ing that the hinge forces at all the outboard hinges are zero. 
For the subsequent development, it is convenient to define 

Note that D, G ,  r and 5 are all block diagonal. The structure of %$ is identical 
to that of Zd with its elements being given by 

%$ is also nilpotent (%$ = O) ,  and analogous to 4, $ is defined as 

The structure of $ is very similar to that of 4 and it also possesses the state 
transition properties which are used to develop recursive algorithms. 4 may 
be viewed as the transformation operator for composite bodies (i.e., as if all 
the hinges are locked), while $ is the transformation operator for articulated 
bodies (i-e., as if all the hinge forces were zero). The following lemma yields a 
square factorization of A. 

Lemma I: The mass matrix .Ad has the following factorization: 

Proofi See Appendix B. I 
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Note that the factor [I + H q K ]  is square and block lower triangular, while D 
is block diagonal. Thus the factorization in equation (28) may be thought of as 
an explicit block LDU factorization of the mass matrix. This factorization is 
also known as the innovations factorization because of its relationship to the 
innovations approach to filtering and prediction theory (see [17]). 
The following lemma gives the explicit form for the inverse of [I  + H&K].  

Lemma 2: 

Prooj See Appendix 13. 1 

Combination of Lemma 1 and Lemma 2 leads to the following form for the 
inverse of the mass matrix. 

Lemma 3: 

Note that the factor [I  - H@K] is square and block lower triangular, while 
D-' is block diagonal. Thus the factorization in equation (29) may be thought 
of as an explicit block LDU factorization of the mass matrix inverse. Thus, 

The O(N) recursive computation of the expression on the right is given in 
equation (40) in Appendix A. 

STEP (B) Compute d = J B ~  

From equation (18), af = I?*$, where 

&f " * ~ * j f  

How ever, 

Lemma 4: 

( I  - H+K)H& = H3, 

Prooj See Appendix B. I 

Thus, use of equation (30) and the above lemma in equation (32),  

iif = @H*[I - H@K]*D-'[I - H@K]T = @*H*D -I[I - H@K]T 

Compare this with equation (31) to see that lif can be evaluated as an interme- 
diate quantity in the O(N) recursive algorithm for computing $ described in 

STEP (A). 

STEP (C) Compute A = J A d ' J *  
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Use of equation (18) and equation (30) implies 

A 
= B*$*H*D-'H$B = B*$2B, where fl = $*H*D-'H* (34) 

Here equation (33) has been used to simplify the above expression. A recur- 
sive O(N) procedure for the computation of fl is given in equation (43) in 
Appendix A. Note that without the simplification resulting from the use of 
equation (33), the computation of A would be an 0(.N3) process. 

STEP (D) Solve [ A p A A :  + A ~ A ~ A : ] ~  = (Apa$  + As& - U f o r j  

Now, 

In this form this step is of 0(.Nk) complexity. However, when (ApApAF) is in- 
vertible, there is an alternative expression for f. This is obtained by reexpress- 
ing equation (23) as: 

Premultiply both sides by 

to get 

14. 0 

From the above equation it follows that 

Note the similarity between the forms of equation (35) and the above equation 
for f. The computational cost of the above operation is a combination of the 
cost of inverting A p A p A ; ,  and the 0(.Ni) step of solving a square linear system 
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of equations of size .Ns. The cost of inverting APApAP depends on its structure: 
its sparsity reflects the degree of coupling between the closed loops in the sys- 
tem. The cost is typically much less than the worst case of O(Ni). In many ap- 
plication domains such as robotics, ApApA: is in fact block diagonal and is 
thus invertible in O(&) steps [8]. In addition, for most applications Ns << &, 
and this new formulation can lead to considerable computational savings. 
The inverse of [ApApAF + AsAsA:] will not exist if [ApJp AsJs] is not of full 
rank, i.e., the configuration is such that the number of motion dofs for the sys- 
tem have changed. It is therefore necessary to reformulate the constraint 
equation (20) so as to preserve the full rank property. Such changes of rank 
can occur at kinematically singular configurations. 

STEP (E) Compute p6 = -A-IJ*A*J 

From equation (30) and equation (18), 

Use of Lemma 4 in this leads to 

The recursive O(N) implementation of the above step is given in equation (44) 
in Appendix A. 

The overall complexity of this spatially recursive forward dynamics algo- 
rithm ranges between O(N + Ns) + O(Xi) for the worst case and O(N + NS) + 
O(XE) + O(Ni) in the best case. 

By treating the primary and secondary system as one overall system, which 
amounts to defining the quantities t,b A diag($p, $s), H diag(Hp, Hs) etc., and 
using the above results, for U - 0 the overall closed topology forward dynamics 
algorithm can be restated in the following form: 

where b A D-"~H~+~BA* (37) 

Note that when there are no closed loops in the overall system, A = 0, and the 
middle term reduces to I. Hence, the forward dynamics of tree topology systems 
in equation (31) are recovered. 

Conclusions 

The algorithms developed here are suitable for multibody systems that have 
time-varying topology as well as changing constituent bodies and constraints. 
For the sake of clarity, the focus of much of the paper is on multibody systems 
with rigid links. 

This paper describes the use of the spatial operator algebra to easily develop 
these algorithms. Based on the rate of time-variation, a multibody system is par- 
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titioned into a primary subsystem, a secondary subsystem and the set of closure 
constraints. Spatial operators are used to develop operator factorizations and in- 
version of the mass matrix. These factorizations lead directly to efficient com- 
putational algorithms for the dynamics of the multibody system. The algoxit hm 
consists of parallel paths involving the tree-topology primary and secondary sys- 
tems respectively. The two paths come together at one point to compute the 
constraint forces. The algorithm can be adapted to time-varying topology and 
changes in constraints or constituent bodies since only localized and relatively 
easy modifications to the algorithm are required. 

The algorithm does not require the computation of the mass matrix, and its 
computational complexity is linear in the number of degrees of freedom, 
(Np + NS).  In the absence of kinematical singularities, the algorithmic complex- 
ity also depends only linearly on the number of closure constraint equations, NE. 

Reference [13] describes extensions to flexible multibody systems. The spatial 
operator formulation for flexible multibody systems is identical in form to the 
formulation for rigid multibody systems described in this paper. The structure of 
the dynamics algorithms requires the addition of only a few straightforward 
steps to handle body flexibility. 
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Appendix A: Recursive Computational Algorithms 

Based on the special structure of 4, t++ etc., it is possible to evaluate many of 
the dynamical expressions in a recursive manner and we describe some recur- 
sive algorithms in this appendix. First we define some notational shorthand to 
simplify the description of these algorithms: 

where y ( - ,  .) and x ( - )  stand for some appropriate arrays. Thus where ever in an al- 
gorithm, a term with indices as in the left column appears, its meaning is actu- 
ally given by the corresponding term in the column on the right. 

A recursive method for the computation of the block diagonal elements of P 
as defined by equation (25) and the entries of D, G, K,  %& and 5 defined in 
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equation (26) is given by: 

(end loop (39) 

for j  -- 1 - t  

The recursive computation of B' = [I - H$K]*D-'[I - H ~ , ~ K ] T  in equa- 
tion (31) in STEP (A) can be carried out via the O(N) tree topology forward 
dynamics algorithm described below. It also results in the computation r>f 
uf = $*DP'[I - H$K]T required in STEP (B) as an intermediate quantity. 

4 

r 
If i - ' (1)  = 0, then P(0,) = 0 

for k  = 1, - - n, 
P(k) = $(k, k  - 1)P(k - l)t,b*(k, k  - 1) + M(k)  

D(k) = H(k)P(k)H *(k )  

~ ( k )  = P ( ~ ) H * ( ~ ) D  -'(k) 

?(k)  = I - G(k)H(k)  

$(k + 1,k) = 4(k  + 1, k)?(k) 

K(k + 1, k )  = 4 ( k  + 1, k )G(k )  

, end loop 

(end loop 

for j = l...t' 

I af(n + 1) = 0 

for j = t'-1 

< 

for k  = n, - - 1, . 

ar(k) = +*(k + l ,k )af (k  + 1) + H*(k)v(k) 

&k) = v(k) - K*(k + 1, k)crf(k + 1) 

end loop 

end loop 

8 

If i-'(1) = 0, then ~ ( 0 , )  = 0, T(0,) = 0 

for k  = I j  . n, 

r ( k )  = $(k, k  - l ) z (k  - 1) + K(k, k  - 1)T(k - 1) 

€ ( k )  = T(k)  - H(k)z (k )  

v(k)  = D - ' ( k ) ~ ( k )  

end loop 



Spatial Operator Algebra for Multlbody System Dynamics 47 

STEP (C) requires the computation of A = B*nB. In order to obtain a O(N) 
recursive scheme for the computation of we first define the matrix Y as 
the one satisfying the equation: 

Y as defined above is a block diagonal matrix and its elements can be com- 
puted recursively. We now obtain the following decomposition of 1R. 

Lemma 5 

n = Y + $*Y + YJ 

Proofi See Appendix B. I 

Noting that t,& is strictly lower triangular, we can then recognize that Y as 
nothing but the diagonal elements of 1R. We now present a recursive scheme 
to compute the block diagonal elements of Y and of fl. 

I Y(ne + 1 )  = 0 

f o r j  = e m - -  1 

a ( k ,  k )  = Y ( k )  

for m = k - l . * * l j  

n (k ,m)  = a*(m, k )  = Y(k,m + l)+(m + 1,m) 

end loop 

( end loop 

The above recursion yields the elements Chi on the block diagonal of I R .  
Since fl is symmetric, the off-diagonal elements satisfy = atj, and can 
be computed from the diagonal elements as follows. a[, , for 1 E 1 - - - ( j - 1 )  
can be obtained via the following recursive scheme: 

if iP(l) = j for some p > 0 
for k = n, . 1, 

for m = n r m . . l I  
a ( k ,  m) = fl*(m, k )  = n ( k ,  l,)+(l,, rn) 
end loop 

end loop 
else 

a,,, = = 0 
end if 
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In this appendix we give the proofs of the various lemmas. First we establish a 
few identities. 

The O(N) recursive implementation of 8' = - [ I  - H$K]*D-'H*BA*~ in 
equation (36) in STEP (E) is given below: 

, 
Define 2 A - B A * ~  

f o r j  = 1 - . s t  

If i - * ( j )  = 0, then r(Oj) = 0, P(0,) = 0 

for k = I , . . - n j  

z (k )  = +(k, k  - l )z(k - 1 )  + K(k, k  - l ) i ( k  - 1 )  

~ ( k )  = -H(k)z (k)  

~ ( k )  = D l l (k)€(k)  

end loop . 
lend loop 

Lemma 6: P  satisfies the equation 

M = P - %q,P%; 

* 
ProojF. It is easy to verify from the definitions in equation (26) that 

~ P T *  = 0 and thus ?P = ?P?* 

r 

as(nc + 1 )  = 0 

for j = t . - - 1  

I 
for k = n j -  - .  1, 

a"k) = #*(k + l ,k )as(k  + 1)  + H*(k)v(k) 

&k) = v(k)  - K*(k + l ,k )a6(k  + 1) 

end loop 

end loop (44) 

Thus we can rewrite equation (25) in the form 

Appendix B: Proofs of the Lemmas 

Lemma Z. In the stacked notation we have that: 

(a) 
- A # = *%, = %,* = * - r 

(b) *M** = P + $P + P&* 
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From equation (27) we have that '&# = I - $ - I .  Substituting this into 
equation (46) gives the result. 
Pre- and post-multiplying equation (45) by $ and $* we have that 

+M$* = (4 + I ) P ( ~  + I)* - $P$* = P + $P + P$* 

We have from equation (26) and equation (24) that 

Pre- and post-multiplying this by 4 gives the result. 
From equation (26) 

7PH* = PH* so that TPH* = 0 andthus (&#pH* = 0 

Pre- and post-multiplying equation (47) with H and H* respectively and 
using the above fact in conjunction with equation (46) yields the result. I 

Proof of Lemma I: 

We have that 

A = H ~ M ~ H *  = H(~+-~)$M$*(~$- ' )*H*  

= HII + +KH]$M$*[I + 4KH]*H* = [ I  + H4K]H$M$*H*[I + H4K]* 

= [I  + Hc$K]D[I + H4K]* 

We have used equation (48) and equation (49) above. I 

Proof of Lemma 2: 

Using the operator identity in equation (50) along with a standard matrix iden- 
tity, it follows that ( I  + AB)-I = I - A(I  + BA)-'B, we have that 

[ I  + H4K-j-' = I - H [ I  + ~ K H ] - ' ~ K  = I - ~ ( 4 $ - ' ) - ' 4 ~  = I - H$K 

We have used equation (48) to simplify the above. I 

Proof of Lemma 4: 

We have that 

[ I  - H$K]H4 = H 4  - H$(KH4) = H 4  - H$($-'4 - I )  = H$ 

We have used equation (48) in the above for simplification. I 

Proof of Lemma 5: Using equation (41) and equation (46) we have that 

n = +*H*D-~H$ = $*Y$ - $*Y$ = Y + $*Y + Y& I 
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