
Studies in Geometry

Christopher Arthur

June, 2004

This paper discusses the following ideas from geometry: tesselators, tubes,
regular polyhedral mappings, cubic splines and some special transformations
of the unit circle. The reader should have basic knowledge of differential
geometry for the discussion of tubes.

1 Tesselators

A Tesselation is commonly known as a tiling of a the plane using a single,
primative geometric shape. If the shape is copied and transated, the copies
interlock to cover the entire plane without any overlapping. The idea of a
tesselation is expanded by Kepler to allow not just single shapes, but tilings
by aggregate patterns of regular and star polygons. There is in either case
a finite pattern. A tesselator is a relation that enumerates each of the
copies. It serves to organize a tesselation for the purposes of projection onto
manifolds.

We introduce two kinds of tesselators.

1.1 Toriodal Tesselators

TT : R2 −→ Z2 is a surjective map that essentially assigns a unique pair of
integers (i, j) to each instance of the pattern. For the purpose of building
aggregate tesselations, the pattern is topologically equivalent to a torus, so
that we can imagine it also as a rectangle having the top meeting the bottom
and the left meeting the right.
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Figure 1: Enumeration by toroidal tesselator
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Figure 2: Enumeration by hexagonal tesselator
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1.2 Hexagonal Tesselators

TH : R2 −→ Z2 is similiar to TT , only that the patterns are enumerated in
staggered rows due to the nature of how hexagons interlock.

2 Tubes

A tube T(C, s) in R3 is a cross-section C extruded along a path s. The
cross-section c : [0, 1] −→ C ⊂ R2 is a closed curve with no intersections (an
injective map). The path s : A ⊂ R −→ R3 is a continuously differentiable
C2 curve.

Figure 3: Cross-section and path

2.1 Construction

To construct a tube from its path and cross-section, we project the cross-
section at each point along the path. We first derive a basis for the plane
into which we make the projection, then define a mapping from the space
of the cross-section. Let t ∈ A be arbitrary, p = s(t) and v = s′(t) so that
vp ∈ R3

p. For the cross-section, let e1, e2 ∈ R2 be a basis. At point p we have
a plane normal to v with basis (ê1)p, (ê

2)p ∈ R3
p. For each a ∈ C, we have
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a = xe1 + ye2. The projection T : R2 −→ R3 that maps the cross-section is
defined as

T (a) =




ê1
1 ê1

2

ê2
1 ê2
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Figure 4: Mapping cross-section onto path, (a′ = T (a))

Now, as t is arbitrary, this mapping can be repeated for all t. As an
example, consider the usual basis for the cross-section space, and for the
planes, we derive an expression for the basis at a point by parametrizing
everything in terms of t:

n(t) =
s′(t)
‖s′(t)‖

ê1(t) =
n′(t)
‖n′(t)‖

ê2(t) = n(t)× ê1(t)

We obtain a coordinate system f : A × [0, 1] −→ R3 for the entire tube
surface.
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f(t, u) = (c1(u)ê1(t) + c2(u)ê2(t) + s(t)

Figure 5: Complete tube T(C, s)

3 Regular Polyhedral Mappings

A polyhedral map P = {Pi}n
i=1 is a set of transformations Pi : V −→ Wi

defined on the a bounded space V = A× [0,∞) where A is a polygon in R2.
A polyhedral map is regular if:

1. A is a face of a regular polyhedron.
2. P maps to the volumes above each face on the polyhedron.
3. Wi ∩Wj = ∅ for all i, j.

For example, for a cube we have P = {Pi}6
i=1 for the six sides with

A = [−0.5, 0.5]× [−0.5, 0.5].
Note that Pi is essentially a rotation followed by a translation.
One application of polyhedral maps is in the construction of symmetric

solids and surfaces in which the symmetry is guided by underlying polyhedra.
By carefully choosing the boundary of a subset of V , P (V ) becomes a surface
with continuous transitions from one face to the next.
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Figure 6: A dodecahedral map
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Figure 7: A cube mapping of a cross

6



4 Determing Cubic Spline Functions

Arising frequently in geometry is need for a smooth curve between two end-
points, with the added requirement that the direction of the curve at its
endpoints can be specified. Cubic splines provide a straightforward solution
and a simple algebraic means to derive a continously differentiable function
for the curve.

Let X be the set of all cubic polynomials having real coefficients. A
cubic spline seqment in Rn is a function s : A ⊂ R −→ Rn such that
s : t 7−→ (f 1(t), f2(t), ..., fn(t)) where {fi}n

i=1 ∈ X. For isolated segments,
it is convenient to consider A = [0, 1]. A cubic spline segment is a smooth
curve that can be completely determined by the position and heading at its
endpoints. The headings are essentially the derivatives of the curve at the
endpoints (more properly, they are the limits of the derivatives).

s(0)

s(1)

s'(1)

s'(0)

Figure 8: Heading and position of endpoints

If the endpoints and headings are known, we can determine each fi by
solving a system of linear equations. Consider first the case of a spline seg-
ment in R. Then s(t) = f(t). Let f(t) = a0+a1t+a2

2+a3t
3. By differentiation

of f and substitution, we have

s(0) = a0

s(1) = a0 + a1 + a2 + a3

s′(0) = a1

s′(1) = a1 + 2a2 + 3a3
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which yields the following solutions:

a0 = s(0)
a1 = s′(0)
a2 = −3s(0) + 3s(1)− 2s′(0)− s′(1)
a3 = 2s(0)− 2s(1) + s′(0) + s′(1)

For the case in Rn, we have n systems of equations all with similar solu-
tions. We note that πi ◦ s = fi, and generate the systems accordingly.

A cubic spline in Rn may be expressed as a piecewise function composed
of a series of segments, typically linked together to form a continuously dif-
ferentiable C1 curve.

s1

s2

s3

s4

Figure 9: Segments chained together

If S is a cubic spline having two segments s1 and s2, then we could have,
for example, the domains of s1 as [0, 1] and s2 as [1,2], and the chaining
condition that s1(1) = s2(1) and s′1(1) = s′2(1).
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5 Special Transformations of the Unit Circle

Let s be a parameterization of the unit circle A.

s : [0, 1] −→ A ⊂ R2

such that
s : t 7→ (cos 2πt, sin 2πt)

A transformation Tr : A −→ B ⊂ R2 is a radial modulator if there
exists a function

r : [0, 1] −→ R

such that
Tr(A) = {r(t)s(t)|t ∈ [0, 1]}

Tr transforms the circle by changing its radius at each point. We show that
Tr is well-defined. Let x, y ∈ A such that x = y. Since s is injective, there
exist a, b ∈ [0, 1] where a = s−1(x) and b = s−1(y). Now x = y, so s(a) =
s(b) ⇒ r(a)s(a) = r(b)s(b). Since, Tr ◦ s(t) = r(t)s(t)∀t, Tr ◦ s(a) = Tr ◦ s(b)
and finally Tr(x) = Tr(y).¤

[0,1]

A Tr (A)

s

Tr

r s

Figure 10: Diagram of radial modulator
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Figure 11: r(t) = 1
3
cos 8πt + 1

A transformation Tt is a toroidal modulator if there exists a function

ρ : [0, 1] −→ R2

such that ρ : t 7→ (R1−R2 cos 2πnt, R2 sin 2πnt) and Tt(A) = {(ρ1s1, ρ1s2, ρ2s3)|t ∈
[0, 1]} with R1, R2 ∈ R and n ∈ Z+. For convenience we define a function

G : [0, 1] −→ R3

such that G = (ρ1s1, ρ1s2, ρ2s3). The proof that Tt is well-defined proceeds as
before, noting that for x, y ∈ A, x = y ⇒ G(s−1(x)) = G(s−1(y)) ⇒ T (x) =
T (y).
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Figure 12: Diagram of toroidal modulator

Tt

Figure 13: ρ(t) = (1− 1
3
cos 2π8t, 1

3
sin 2π8t)
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