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Preface

The Single Molecule Analysis Research Tool (SMART) package provides a compre-
hensive set of tools for analyzing single molecule data. This instruction manual aims
to provide a detailed account of all the functionality built into SMART so that users
can get the most from the package. To aid in presenting these topics video tutorials
have been recorded to further supplement this manual. To Begin using SMART
only a few things are needed:

1. Data from a single molecule experiment

2. Desktop computer running Matlab 2008a or higher

3. SMART software package downloaded from the website maintained by the
Simbios (The NIH Center for Physics-based Simulations of Biological Struc-
tures) at Stanford University

With these items in hand you will quickly be analyzing your data with hidden markov
analysis and powerful statistical tools that allow the behavior of individual molecules
to be faithfully analyzed. The graphical interface of SMART enables rapid, sorting,
inspecting and plotting of data, which allows you to spend more time focused on
analyzing the data. The standardized data format used in SMART will enable shar-
ing of data within a lab and among colleagues. Finally the SMART package is easy
to modify, so advanced users can improve on SMART to meet their particular needs.

The developers of SMART anticipate being able to integrate user feedback into
future versions of the package so please contact us with suggestions or details of
improvements you have made.

Stanford, CA

M.G.

D.P.

H.M.

D.H.
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Chapter 1

Analyzing Data with SMART

SMART has extensive functionality all of which is accessible via a graphical inter-
face. This chapter illustrates how to analyze data using SMART by following the
analysis of example data that is provided with the SMART software package.

The SMART software package is implemented in the MATLAB programing lan-
guage and requires MATLAB 2008a or latter to run. SMART can be run without
programing experience or experience with MATLAB. If your organization does not
all ready have a MATLAB license one can be purchased from MathWorks. First
MATLAB should be installed on the computer you will be using for data analysis;
this can be accomplished by following the instructions accompanying MATLAB.
Second the folder containing the SMART scripts should be added to your MATLAB
path, from the default MATLAB window (See Fig 1.1) this can be done by:

1. Go to File and select Set Path
2. In the Set Path window select Add with Subfolders
3. Navigate to the location where you saved the SMART folder and select Open
4. Save this path by selecting Save in the Set Path window

If you work in a lab that already uses SMART you are ready to begin analyzing your
data. If you are using SMART for the first time you, you will have to put your raw
data files into the .traces format SMART requires which is described in the section
1.1.3.

1.1 Raw Data Files in SMART & .traces Files

To access data in the SMART graphical interface your raw data needs to be put
in a form that is recognizable by SMART. No standardized data format currently
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Work Space Variables

Current Directory

Figure 1.1: Default MATLAB window. This screenshot highlights the Com-
mand Window, Workspace, Work Space Variables and Current Directory referenced
throughout descriptions in the text
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exists for saving raw single molecule data. The SMART package uses a .traces file
for this task. The .traces is a standard MATLAB .MAT file type that has a uniform
data structure that is convenient for storing raw single molecule data. A quick way
to inspect the format of a .traces file is to load one of the example traces supplied
in the “SMART Example Data” folder downloaded with SMART.

This can be done by navigating to the “SMART Example Data” downloaded with
the SMART package, then load an example .traces file by typing in the Command
Window

>> load -mat movie1(1).traces

The raw data has now been loaded into the Workspace under the variable group data.
The variable group data is a cell array where each row corresponds to a trace (in
this example there are 10 traces in the example data) and the three columns are
used to store different aspects of the raw data. Tables 1.1 and 1.2 details what is
stored in each column. A user of SMART must put their data in this format. This
will require writing a simple matlab script that opens your current raw data files
and saves them as .traces files, See section 1.1.3.

1.1.1 Viewing and Selecting Traces

This data format allows for .traces files to contain traces which will only have limited
regions analyzed and for some traces to be skipped in the analysis. This feature
can be clearly seen by using the interface that allows the viewing, inspecting and
selection of .traces files. Type into the command line

>> trace viewer

this will bring up a window that looks like, Fig. 1.2A. From the Open menu select
one of the .traces files in the “SMART Example Data” folder. If the backgrounds
of the trace being displayed are black (e.g. 1.2B) the trace is not selected and will
not be analyzed as described in Section 1.2. However, the entire trace or a region
of the trace can be manually selected using the cursor to grab a region of interest
and then pressing Select. Once the trace is selected, the background will be white
as shown in 1.2C. Once all the traces of interest have been selected from the Save
menu select Save Data, this will overwrite the original .traces file with a new one
where the only thing that has changed are the differences in the selected regions.
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Figure 1.2: The trace viewer interface allows for .traces files to be inspected and
for regions of traces to be selected for analysis. (A) The trace viewer interface
immediately after being opened. (B) The trace viewer displaying the first trace
in a .traces file prior to selecting a region of interest (C) The trace viewer after a
region of interest was selected
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1.1.2 Combine .traces Files

SMART is set up to allow data from different types of experiments to be analyzed
simultaneously. Raw data from different types of experiments (e.g. from different
days, different types of molecules or different solution conditions) in the .traces for-
mat and with the file naming scheme movieX(Y).traces can be easily combined using
the numbering indices included in the file names using the proc traces window. The
X and Y in the file name correspond to variables known as movie num and Y is the
movie ser (See Section 1.1.3 and Table1.2 for detailed descriptions) in the .traces
files.

This numbering scheme was settled upon because the developers of SMART ini-
tially conducted experiments where the most basic form of the raw data were groups
of about 100 traces extracted from movies that monitored a wide-field image of
molecules sparsely attached to a surface of a slide. The movie number (movie num)
is sufficient to identify most experiment types. However, in some instances multiple
movies are taken of the same field of view of molecules, leading to multiple movies
that have to be subsequently aligned and molecules colocalized. To deal with this
type of data it is convenient to have an orthogonal index for each movie number
(i.e. movie ser). A user of SMART can choose to use the indices in the manner that
there were initially intended or for a scheme the better fits their experimental design.

To begin set the current path of MATLAB to the directory that contains your
raw data. To begin grouping .traces files in this directory type into the command
line

>> proc traces

This will load the proc traces window. Select from the “Options” pulldown “Com-
bine Raw Data” to bring up a field that will allow a range of movie numbers and
movie series to be input. For the field shown in Fig. 1.3 each row corresponds to a se-
quential set of .traces files to be combined. For the example shown movie1(1).traces
and movie2(1).traces will be combined into one file. If one or more movies in the
series is not in the directory the files that are present will still be combined into one
file. If discontinuous movie numbers need to be used simply move to the next row.

A default concatenated file name will be made that shows the movie number and
movie series number that were input. Alternatively a user specified name can be
typed into the box indicating the default name format. After all values have been
input click Save. This will combine all the data and save a .traces file in the current
directory.
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Figure 1.3: To combine .traces files the proc traces interface can be used. (A) The
default proc traces window immediately after opening. (B) The proc traces window
set to group movie1(1).traces and movie2(1).traces as described in the text.
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1.1.3 Generating .traces Files

MATLAB can open almost any data type and a number of built in functions allow
data to be loaded by running one line of code. Once your data is open you can
copy the data into a group data cell array that has the format described in Tables
1.1 and 1.2 . The group data variable should them be save with a file name that
ends with a .traces extension. The file name can be anything however, the format
movieX(Y).traces where X is the movie num and Y is the movie ser described in
Table 1.2 has proven to be a useful way to categorize raw data for the individuals
who created SMART and is required to access all the functionality described in sec-
tion 1.1.2 and 1.4 .

To help with this conversion process we have provided two scripts the convert two
different types of raw data into .traces files. The simplest form of the raw data that
can be converted to a .traces formatwith these scrips is a single trace that has been
saved in a Tab Delimited Text (.txt) file. To see how this script is used set the
current directory to the SMART Example Data folder, in this there is a text file
titled ‘simplest raw data.txt’ this can be opened and inspected with any standard
text editor. This file can be converted to a .traces file by entering into the command
window of MATLAB

>> generate dot traces(’simplest raw data.txt’)

Running this script will generate a .traces file title ‘simplest raw data.traces’ which
will be saved in the current directory. This .traces file can then be used in all the
graphical interfaces of SMART.

Modifying of the generate dot traces script would likely be a good starting point
for converting an arbitrary data format to the .traces format which is compatible
with SMART. If you have limited programing experience consider finding an in-
dividual in your organization who does have experience. If that resource is not
available there are many online tutorials that provide a good introduction to the
basics of MATLAB programing and are a good starting point for writing this con-
version script. If you have trouble with this step feel free to contact the developers
of SMART for assistance.

We have also provided a script that allows traces that have been saved in a specific
type of binary file to be opened and converted into the SMART format. An example
file (’movie3.traces’ has been included which allows data that has been generated
by extracting traces with scripts distributed from Taekjip Ha’s group (University
of Illinois at Urbana-Champaign) from wide field movie fluorescent images of single
molecules to be analyzed with SMART. This example can be run if the current
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Column 1 Column 3 Column 3

struct with fields detailed in Table 1.2 raw data m×n matrix empty cell or m×1

Table 1.1: Cell array structure of group data. Each row contains a trace. For each
trace the first column cell contains a structure array with the fields listed in Table
1.2. The second column cell containes the raw data. The data should be an m × n
matrix where m is a unique time in the time series data n corresponds to data from 1
to an arbitrary number of channels. The graphical interface has been generalized to
handle up to 4 channels, as graphical display of more than this becomes cumbersome,
the HMM algorithms are generalized to handle an arbitrary number of channels. The
third column cell is either empty, indicating SMART should not analyze that trace
or is a m × 1 matrix where values in the column vector are either 1 or 0. Values of
1 indicate that part of the trace should be analyzed values of 0 indicate that part
should not be analyzed.

directory is set to SMART Example Data folder by typing

>> btraces to SMART traces(’movie3.traces’)

Modification of this script is also a useful means for converting your data into a
SMART compatible format.
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variable name variable description

name string containing file name
gp num is reserved for future use and

should be set to NaN
movie num an index for grouping experiment

set to an integer 1 or greater
movie ser an index for grouping traces that

have the same movie num typi-
cally set to 1

trace num an index for traces within partic-
ular experiment

spots in movie how many traces were initially
identified in the expermeint or are
in the .traces file

positions x if molecules have an identifiable x
coordinate set to that coordinate

positions y if molecules have an identifiable y
coordinate set to that coordinate

positions stores the position of all other po-
tential traces within a movie

fps indicates the data acquisition rate
or is set to NaN

len indicates the length of the entire
trace

nchannels indicates the number of data
channels in the trace

Table 1.2: Fields in first column of .traces files
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1.2 Process Data

Once a user has a .traces file they are interested in analyzing with an HMM they
need to load that file into the proc traces interface. From the proc traces select
“Open” from the pulldown menu. This will bring up the “Select File to Open” win-
dow that allows the user to navigate to and select a .traces file they want to process
(i.e. fit to an HMM). Once a .traces file is selected (in the example the movie[1
2] group[1].traces which was created in Section 1.1.2 was selected) the proc traces
window will configure to look like that shown in the screen shot depicted in Fig. 1.4.

This interface allows users to specify the model types to be fit to the data, de-
tails on how those variables should be fit and some additional summary statistics to
be fit. This interface is also formated so that future iterations of this package can
be expanded to accommodate calculating other summary statistics or alternative
model types or fitting algorithms.

The screen shots shown in Fig. 1.4A and B depict fields that take on a range
of values that will specify the model to be fit and how that fit is to be completed.
The views shown are the default values and it is set up to analyze a FRET trace (or
any two channel data) with a two state HMM and by determining confidence values
on gaussian emission parameters. For the example the movie[1 2] group[1].traces
that is loaded all that is required to analyze the data with this model is inputing
the FPS field, which can be set to a place holder of 1 since this is simulated data.
Pressing Fit will run the script and the Command Window will look as in Fig. 1.7.
When the script is done running a file with the same name as the .traces file but
now with a .proc extension will be save in your current directory.

The section below describes the meaning of each field where changes from the default
values are common. Table 1.3 provides an additional summary of these parameters.
For fields that are not described See Tables 2.1, 2.2, 2.3 and 2.4 for a detailed de-
scriptions. Two examples of how these parameters typically change are shown in
Fig. 1.5, see the caption for a description of the HMM model being depicted.

1. HMM This field indicates if HMM fitting should be done. In some instances
a user of SMART might want to use the graphical interface to calculate a
summary statistic that does not involve fitting an HMM, so fitting an HMM
model would be a waste of time. Input yes to fit HMMs or no to skip the
HMM fitting.

2. Einital Sets the initial conditions for the emission model parameters. In most
cases this should be set to auto. This setting will use an algorithm to determine
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different initial conditions for each trace to be fit. In rare instances these values
do not allow for the algorithm to converge to a good fit. This will typically be
determined by inspecting traces that end up having outlier fitted parameters.
If a user wants to fit a trace using a user specified initial starting condition
they can input a string that conforms to the syntax indicated in Table 2.2.

3. Ainitial This has an identical role as Einitial except this is used to initialize
the fits for the transition matrix (rate parameters). In most cases this should
be set to auto. However, a string that specifies the initial conditions can be
input; see Table 2.1 for the string syntax.

4. auto confint This field indicates the confidence bound that will be calculated.
This value can range from 0 to 1. The 0.97 shown for this example indicates
the 97% confidence bound.

5. Detailed Balance This field indicates if the fit should be completed imposing
a constraint of detailed balance. Input 1 to constrain the fit or 0 to skip the
constraint.

6. Channel Spec C1, C2, C3 and C4 indicate 4 input signal channels each of
which can be fit in the SMART interface. If the column is left blank like
C3 and C4 in the example shown the interface will not expect data for than
channel. For each channel the 2 parameters that need to be specified are
indicated below (See Fig. 1.6)B.

(a) fitChanellType This specification indicates the noise model that is to
be fit to each state in a model. Currently SMART can fit to poissonian or
gaussian noise models. These are specified by inputing the strings gauss
or poisson.

(b) Error State mr This allows the user to specify if a confidence interval
should be calculated for the λ parameter in a poissonian noise model and
the λ and µ (mean) parameters in a gaussian noise model. To calculate
a confidence bound enter 1 to skip this calculation enter 0.

7. nStates This field indicates the number of states in the model being fit. This
value can take on integer values of ≤ 10. This will create a generic HMM
where all transitions are allowed (See Fig. 1.6A). When this value is changed
it reinitializes the graphically displayed HMM shown next to the table, the
discStates field, the state Spec field and the Param 1, Param 2 and Param 3
fields.

8. discStates This field is used to specify if a state should have a unique emission
parameter. If you want two states to have the same emission intensity assign

17



them to be the same number. Numbering begins with 1 and ends once all
states have an assignment. The graphical representation of HMM indicates
which states have identical emissions by assigning those states to have the
same color.

9. State Spec This field changes depending on the value of nStates. This field
can be read as a generic HMM transition matrix. State, a and k are used syn-
onymously at this time, but future versions will consistently use the a notation.
Allowed transitions are set to 1. To disallow transition set the transition val-
ues to 0. To calculate a confidence interval on an inferred transition rate set
the value to 2. Use the graphical representation of the HMM as a guide for
the HMM being specified.

10. Param 1, Param 2 and Param 3 These pull down menus can be used to
choose groups of parameters that will be clustered. Up to 3 parameters can
be jointly clustered. Add parameters to be clustered from left to right. Up to
10 different groups of parameters can be specified in one run of fitting.

Explanations of the fields in Fig. 1.4B are as follows.

1. FPS The field allows the user to input the instrument acquisition rate. This
is necessary for converting to continuous time transition rates. This can be
any integer value. If no conversion is necessary input 1.

2. temp The field allows you to input the temperature an experiment was
conducted at. This is useful for indexing experiments conducted at different
temperatures and can be used for calculating thermodynamic parameters i.e.
∆G which SMART can do for two state traces.

3. FRET Spec For users conducting FRET experiment SMART has some built
in functionality to calculate and visualize FRET using simple methods. This
functionality results from older unpublished versions of SMART. Since it might
be useful for some users we left it in the user interface. To run this section
enter yes to skip the section enter no.

4. Cross Talk This field defines the amount of cross talk between the donor and
acceptor fluorophores. This can take on any value between 0 and 1 but for
most dye systems is about 0.05. An investigator needs to determine this value
for their system of study.

5. smooth Smooth uses the MATLAB function smooth to put traces through
a box car averaging filter. The default window is no this indicates no filter
will be used. Alternatively input an integer value larger than 1 to indicate the
averaging window to be used.
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6. threshold This indicates the threshold level that will be used to determine
the point of transition between the low and high FRET states. This can take
on any value between 0 to 1.

7. fret cutoff When calculating FRET it is common to have some values that
are anomalously high or low. An easy way to deal with this limitation is to set
values beyond a certain level to a thresholded value. Enter the lower threshold
value in the column labeled 1 and the upper threshold value in the column
labeled 2.
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GUI Label Functional Description Selection Op-
tions

HMM Use HMM fitting algorithm yes or no
maxIterEM Use the default or see Table 2.2 200
threshEMT Use the default or see Table 2.2 10−3

Einital Use the default or see Table 2.2 ‘auto’
Ainitial Use the default or see Table 2.1 ‘auto’
auto confint Indicates what confidence bound

should be calculated
0 to 1

auto boundsMeshSize Use the default or see Table 2.3 10
auto MeshSpacing Use the default or see Table 2.3 ’square’
Detailed Balance Fit model with the detailed bal-

ance constraint
0 or 1

Channel Spec model parameters for 4 channels
(C1/C2/C3/C4) can be specified
in the SMART interface

fitChanellType Emission distribution to be fit poisson or gauss
Error State mr Calculate confidence int ervals for

the emissions parameter of the
specified chanell

1 (yes) or 0 (no)

nStates Number of states in the HMM an integer ≤ 10
discStates Which states have a unique emis-

sion intensity
1 (yes) or 0 (no)

State Spec Specified allowed transition for
the nStates model an if confidence
intervals should be calculated

0 no transition,
1 transition,
2 transition
+ confidence
interval

Table 1.3: Summary of how to define HMMs in SMART. All parameters in this
table correspond to fields depicted in Fig. ??A.
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Figure 1.4: Depiction of the default fields for defining fitting parameters. (A) All
fields for the HMM fitting. (B) Fields for inputing FPS, temperature and FRET
parameters.
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Figure 1.5: Example of how the HMM fitting window will look for different types
of HMMs. (A) A 2 state HMM being fit to 1 channel data with poisson emissions
and with confidence intervals being calculated for all fitted parameters and with the
covariation being calculated on the two inferred rate constants to allow clustering
latter on. (B) A 4 state HMM fit to 3 channel data with gaussian emissions in each
channel, The fit is constrained to only allow two unique emission levels and transi-
tions are not allowed between States 1 and 3 and 3 and 1. Confidence intervals will
be calculated on the inferred emission parameters and some of the inferred param-
eters will have their covariation calculated to allow clustering of those parameters
latter on. 22
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Figure 1.6: HMM transition matrix and emissions notation. (A) A general 4 state
HMM is depicted on the right with all transition rates shown. On the right the
corresponding 4 × 4 transition matrix is shown with the position of each of the
inferred rate constants. (B) For each channel an emission model is fit. Depending
on if a Poissonian or Gaussian emission model is chosen one (µ) or two (µ and
σ) fitted parameters is defined for each state. The HMM representation of 1 to
3 state models is shown on the left. For a single channel the preliminary (before
fits) emission distributions are shown in the middle and the fitted parameters for
Poissonian or Gaussian models are shown on the right.

Figure 1.7: Command window while traces are being processed. This will appear
after Fit in Fig. 1.4 has been pressed.
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1.3 Loading .proc Files

Once the traces have finished being processed resulting in a .proc file being gener-
ated the data is ready to be analyzed. This is done in the view proces interface.
This interface allows molecules to be sorted based on user specified properties, for
individual molecules to be inspected, for summary plots of groups of molecules to
be generated and for molecules to be clustered.

To begin enter into the command window of MATLAB

>> view proc

This will load the view proc window. As shown in Fig. 1.8 select from the “Options”
pulldown “Open”. This will bring up a window (depicted in the figure) that will
allow you to navigate to and select the .proc file you are interested in analyzing. For
the running example throughout this manual the movie[1 2] group[1].proc is selected
to be opened.

Before the data is completely opened the user will have to specify whether they
want to load more than one .proc file and whether they want to do model selection
on the data. Two popup windows are given to specify this. The first popup is shown
in Fig. 1.9a. If you want to analyze data from multiple .proc files select Yes and this
will take you back to the field shown in Fig. 1.8. If you select No the popup shown
in Fig. 1.9b will appear and give the user the option of doing model selection with
the loaded data. Selecting Yes will take the user to the model selection interface
(see Section 1.15) selecting No will bring up the sorting interface (see Section 1.4).
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Figure 1.8: Opening .proc files in SMART. (A) In the view proc window select
Open from the Options tab. (B) Navigate to and select the desired .proc file

(a) Popup 1 (b) Popup 2

Figure 1.9: Once a .proc file is selected a second can be loaded if desired. The user
then needs to decide if they want to do model selection with their loaded data.
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1.4 Sort Processed Data

To aid in data analysis SMART has the ability to rapidly select subsets of imported
data to be analyzed. This feature aids in finding subgroups of molecules within a
particular type of experiment and allows for the rapid analysis of multiple experi-
mental types; as this feature eliminates potential presorting steps prior to processing
the data in SMART. To accomplish this SMART allows the user to group molecules
based on two criteria, indices of a particular experiment or by defining a limited
range of fitted or calculated experimental observables to be selected.

Fig. 1.10 depicts a screen shot of the molecule sorting interface. Fig. 1.10B
summarizes for every imported molecule unique identifiers and fitted parameters.
This field can be used to visually inspect the molecules that have been selected and
for manually adding or removing select molecules to be used in downstream analysis
steps (selected molecules have the check box selected). Fig. 1.10C summarizes a
high and a low range of select fitted parameters that a user can use to limit the
range of selected molecules. Fig. 1.10C Molecules in SMART are typically indexed
by two parameters a movie number and group number. This indexing is used to
select groups of molecules. Inputing starting and ending points will inclusively select
all molecules within the range. If the user wants to select a discontinuous group of
molecules multiple rows in this field can be used. Fig. 1.10D allows all of the
selection parameters to be reset to the default values. If nothing is changed from
the default values all the inputed traces will be carried on to subsequent steps.

Once the user has selected molecules they are interested in analyzing further
the pull down window shown in Fig. 1.10E is used to move on to downstream analysis
steps. Selecting HMM or FRET will bring up fitted and calculated parameters as
described in Section 1.5. Selecting Cluster will bring up a window for clustering the
molecules as described in 1.7. Checking the box “Convert to FPS” will convert all
transition rates from discrete time to continuous using the FPS value displayed in
1.10C.
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Figure 1.10: view proc window for selecting molecules based on fitted parameters
and/or experiment type. (A) Summary of all molecules loaded in to SMART.
(B) Field for selecting molecules based on fitted parameters. (C) Field for selecting
molecules based on experiment type. (D) Reset button to restore all visualized fields
to the default values. (E) Menu for switching to interfaces that allow visualization
and clustering of molecules.
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1.5 View Processed Data

Once traces have been fitted to HMMs an experimentalist is interested in being able
to quickly visualized the fits of an individual molecule and of many molecules. When
HMM is selected from the pulldown menu shown in Fig. 1.10E the view proc window
will appear as shown in Fig. 1.11. This window allows all the fitted parameters
determined in the HMM fits to be displayed for an individual molecule and for plots
to be made displaying all the molecules that were selected prior to choosing this
window.

Fig. 1.11A displays the raw data for a single trace. A two channel FRET
trace is shown and this axes can display up to four independent channels. Fig.
1.11B displays the inferred state probabilities for each if the states. Inferred state
probabilities are bounded between 0 and 1 and indicate for every point in time of
the trace the probability that state is occupied. Fig. 1.11C displays the cumulative
intensity histograms for any one of the channels in the experiment (using the pull-
down menu below the plot, see Fig. 1.13A the displayed channel can be changed).
Fig. 1.11D allows for any of the parameters displayed in Fig. 1.11E to be plotted.
Fig. 1.12 provides a detailed description of the different plots that can be generated
in this window. Any plot displayed in this window can be exported and save for
future use.

To export the plot displayed in Fig. 1.11D from the “Options” menu select the
“Export Figure”. This will create a standard MATLAB figure that can be edited
and saved like any figure in MATLAB. Fig. 1.13E displays parameters that were
determined during the HMM fitting for a single trace. The notation for how the
fitted emission and kinetic parameters are displayed is gone over in Fig. 1.6 . The
region adjacent to 1.11F has four functions. The horizontal scroll bar is used to
move between all the different traces. The CI check box can be selected to display
the confidence intervals as shown in Fig. 1.13B. The Log-Log axes check box can be
selected to have the displayed plot have Log-Log axes. Finally the pulldown menu
can be used to go between the sorting, FRET or clustering interfaces.

To enable zooming into particular parts of the data plots press z on the key
board. This will change the cursor to allow zooming. After zooming is complete
press z again.

Sometimes in SMART it is useful to save subsets of a larger data set. Once
a subset of data has been selected using the tools just described in Fig. 1.10 the
data can be save by selecting the “Save Sorted” or “Export Table” under the
“Options” menu in the HMM visualization interface. If “Save Sorted” is selected
in the Command Window of the MATLAB work environment a prompt will appear
with a suggested name (press Enter to accept) or type in a desired name and then
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press Enter. A new .proc file will then be saved in the current directory. If “Export
Table” is selected a file title current data.mat will be save in the current directory.
This will save most of the data that was selected in a very simple format that can
be easily navigated so a user can access the date for plotting in a program like Excel
if they desire.

Additional data summaries can be view by selecting FRET from the pulldown
menu shown in Fig 1.11F and 1.10E. Selecting FRET will bring up the interface
depicted in Fig. 1.14. This interface primarily serves to display FRET data and
parameters that were derived from fitting thresholded FRET traces as described in
Section 1.2. The exception to this is the top part of the table shown in Fig. 1.14D.
This part of the table is used to display a number of parameters that are convenient
for tracking or summarizing molecules that are not determined by HMM fits such
as the file name, trace number and molecule position.
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Figure 1.11: view proc window for HMM. (A) Raw experimental data. (B) Cumu-
lative intensity histograms overlaid with fitted state emissions. (C) Fitted HMM
state probabilities. (D) Regions for plotting many inferred parameters, see Fig.
1.12. (E) Table for displaying inferred parameters. (F) Slider bar for changing
what molecules are displayed and check box that is used to indicate if confidence
intervals should be displayed or if plotting axes should have a Log-Log scale.

30



A B

C D

Figure 1.12: Multiple types of summary plots can be generated in the view proc
window. (A) As depicted the drop down windows can be used to select fitted
parameters that will be plotted in the axes in the view proc window. (B) Using
only the x axis pull down will produce a histogram of the selected parameters. (C)
Using only the y axis pull down will plot the selected parameter in rank order from
the lowest to highest value. (D) Using both variables will produce a scatter plot
on the specified axes. The red point in (C) and (D) indicates the molecule that is
being displayed in other fields. Clicking on other data points will cause the selected
data point to update.
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Figure 1.13: Depiction of how confidence intervals and fitted emissions distributions
are displayed in the view proc window. (A) The pull down menu below the emission
histogram allows the displayed channel to be updated.(B) Scatter plot as in Fig.
1.12D but in this instance the CI check box is checked indicating that the confidence
intervals should be drawn for the inferred parameters. The confidence intervals are
depicted by the blue bars.
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Figure 1.14: view proc window for FRET and other summary statistics. (A) Win-
dow showing the current FRET trace. (B) Window showing transitions determined
by thresholding. (C) Residuals for the fits to cumulative dwell time distributions
for folding and unfolding rates. Single exponential fits are in black and double
exponential fits are in red. (D) Table showing kinetic parameters determined by
thresholding and other summary statistics.

33



1.6 Model Selection

An important component of analyzing single molecule data is determining the ap-
propriate model to fit to the data. SMART provides a tool which allows the BIC
and log p (data | model) (logPx) statistics determined for fits of a given trace to be
compared.

To begin this process you need to fit a raw data set to different HMMs as described
in Section 1.2. In the SMART Example Data folder the movie [1 2] group[1].traces
data was fit to 1, 2 and 3 state HMMs (after each fit the name of the resulting
.proc file was manually appended to denote what model was fit to the data e.g.
1state movie [1 2] group[1].proc. To compare the model fits for different traces the
.proc files need to be opened in the view proc interface. This is done in an analogous
fashion as described 1.3 but the answers to the two popups shown in Fig. 1.9a and
Fig. 1.9b will be opposite.

The .proc files should be loaded in to the SMART interface in order of increas-
ing model complexity. In this example this means loading the 1 state fit first and
the 3 state fit last. After loading the first .proc file select Yes from the popup shown
in Fig. 1.9a, this will allow additional files to be imported. Once you have loaded
all of the different model fits select No from the popup shown in Fig. 1.9a. This will
bring up the second popup shown in Fig. 1.9b, which asks if you want to do model
selection with the data, the answer to this will be Yes.

Once the data has been loaded this will bring up the interface shown in Fig. 1.15.
This interface is relatively simple compared to the others in SMART and serves to
plot 4 different parameters in the axes shown in Fig. 1.15A. In these axes the BIC,
LogPx or these values normalized for trace length can be plotted. Both the BIC and
logPx scale with trace length so to compare traces of different length on the same
figure it is convenient to plot normalized values. The ordinate values i.e. 1, 2, and
3 correspond to the order in which the data was loaded and is shown in Fig. 1.15B.
The pulldown menu in 1.15C allows the user to change what is being plotted in this
interface. The data shown in Fig. 1.15 can be exported using the“Export Table”
function described in section 1.5. When this is used the saved file contains all the
data needed to easily recreate the figure displayed in Fig. 1.15A using a different
plotting software.

Note: Zooming does not work perfectly in this interface, so for the time it is best to
export the figure and then use the zooming function on the exported figure.
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Figure 1.15: view proc window model selection interface. (A) Figure axes for plot-
ting models selection criteria. (B) List of the data files that were loaded and the
order in which they are being ploted in (A). (C) Pull down menu to switch what
model selection criteria is being plotted. Options include the BIC, logPx or those
values normalized for trace length.
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1.7 Clustering

SMART has the ability to cluster molecules based on up to three jointly inferred pa-
rameters. To cluster molecules two separate calculations must be completed. First,
when the HMM fitting is completed the covarience between inferred parameters must
be determined. This is done by specifying a single parameter or a group of up to
three parameters with the Param 1, 2 or 3 fields as described in Section 1.2. If this
has not been done the clustering algorithm that is run in this section can not be used.

Assuming covariance parameters were calculated and prior to clustering your data
can be loaded, selected and visualized as described in Section 1.3, 1.4 and 1.5. To
begin clustering use the pulldown menu depicted in Fig 1.10E to select Cluster.
This will bring up the default clustering window shown in Fig. 1.16. This interface
allows for the user to choose which variable groups should be clustered, specify the
maximum number of clusters to be fit to the data, cluster the data and visualize the
clustering output.

Once the default clustering window has been brought up use the top pull down
menu shown next to Fig. 1.16A to select the parameters that should be clustered.
Next use the middle pull down menu to select the maximum number of clusters to
be fit to the data. For example if 4 clusters is picked the data will be fit with 1, 2, 3
and 4 clusters. After these values have been selected press the Cluster button. This
will run the clustering script. The length of time it takes to run the script depends
on the number of molecules and number of clusters being fit. For most situations
we have encountered the clustering is completed in 1 to 2 minutes.

When the clustering is complete a file titled “cluster outputs.mat” will be saved
in the current directory. This contains the output from the clustering result and
can be used to generate cluster plots using MATLAB directly or a different plot-
ting software. the clustering interface will also change to the view shown in Fig. 1.17.

Once the clustering window has changed you can use the pull down menu below
the plotting axes to select a range of plots that summarize the clustering outputs
in various ways. Summary plots include Bar plots of cluster size (e.x. Fig. 1.17A),
scatter plots of cluster fits (e.x. Fig. 1.17B) and plot of the BIC and Log p (date
| model) (logPx) of the fit. These summary plots can be used to assess how many
clusters well fit the data given the uncertainties in the inferred parameters.
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Figure 1.16: The default view proc window prior to clustering molecules (A) To
cluster molecules select the parameters that can be clustered (i.e. had covariance
matrices calculated as specified in Section 1.2) then select the maximum number
of clusters you want to fit to the data and then press Cluster. (B) Axes used for
displaying different cluster plots. (C) This pull down menu still allows for navigation
to other functions of the view proc window.
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Figure 1.17: Examples of cluster plots (A) Stacked bar plot displaying how many
molecules reside in each cluster for the 1, 2, 3 and 4 cluster fits (third and 4th
clusters are either 1 or 0 making them difficult or impossible to see in this example)
(A) Scatter plot of rate constants determined for a two state fit. Molecules are color
coded according to which cluster they reside in for this two cluster fit.
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Chapter 2

Using SMART Functions from the
Command Line

The SMART graphical interface can access all key functionality of the HMM algo-
rithms. However, advanced users might desire to access the HMM function directly
in their own MATLAB scripts. This section provides additional descriptions on the
implementation of the HMM algorithms in SMART and the syntax for accessing
them directly.

2.1 Fitting a trace from the command line

This section walks through the demofit.m example script provided in the SMART
HMM folder. This script demonstrates simulation of a single trace, setting up fit
parameters, performing the fit, and viewing the results. To run the script, go to the
HMM folder and enter

>> demofit

into the command window of MATLAB.

2.2 Generating a simulated trace

To simulate a trace we must specify the length N of the trace, the transition ma-
trix (A)ij = P(xt+1 = j|xt = i) and any parameters necessary to sample from the
emissions dstributions. This is done in lines 1-15 of demofit.m.
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The signal parameters are specified by a single MATLAB cell array of vectors E
indexed by E{n, c}(p), where n is the index of the hidden state, c is the index of the
channel, and p is the index of the emissions parameter. p = 1 corresponds to the
mean for both Poisson and Gaussian channels. p = 2 corresponds to the standard
deviation for a Gaussian channel (and is disregarded for Poisson channels in the
fits). We generate a sample trace by entering (demofit.m line 21)

>> [trueStates,y] = HMMNoisy3 (A,E,{’gauss’,’gauss’},N);

where trueStates is the N by 1 sequence of true hidden states and y is the N
by number of channels matrix of observations.

2.3 Setting up fit parameters

Next we must set up the fitting parameters. This is done in the demofit initialize parameters.m
subscript of demofit.m (invoked at line 24 of demofit.m). We must create a MAT-
LAB structure (named params in this example) with the fields in table 2.1 and then
enter (demofit.m line 36)

>> output = TrainPostDec (params);

2.3.1 Specifying levels with distinct emissions

The discStates field of the fitting parameters structure specifies which states have
the same emissions distribution as other states, corresponding to states that may
have the same FRET level, but may have different lifetimes. This variable is a vector
of integers that must add up to the total number of hidden states. If all states have
possibly distinct emissions distributions, set discStates = [1 . . . 1] or discStates =
[] (empty).

To specify that k states have identical emissions distributions, enter k as a com-
ponent of discStates. States are numbered in order of increasing emissions mean.
For example, if our model has 5 states, setting discStates = [2 1 2] means the first
two states (lowest mean) have an identical emissions distribution, the third state
has a unique emissions distribution, and the last two states (highest mean) have an
identical emissions distribution. Setting discStates = [1 2 2] means the first (lowest
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parameters field description suggested
default
value

data N by C matrix of observations whereN is the
number of time points and C is the number
of channels corresponding to fitChannelType
below

pi N by 1 vector of true hidden states (for use
in plotting outputs). Leave empty for real
data

[] (empty)

nStates Integer number of HMM states to fit
nChannels Integer number of channels in trace (number

of columns in data)
fitChannelType cell array that lists channel types, e.g.

{’gauss’,’gauss’,’poisson’} means the first
two channels are normally-distributed and
the third is Poisson-distributed

discStates List of integers that adds up to nStates.
Specifies which states have distinct emissions
model (see 2.3.1)

[] (empty)

noHops List of forbidden transitions, e.g. [1 2 ; 3 4 ;
2 1] means a12 = a34 = a21 = 0 (see 2.3.2 for
further discussion)

[] (empty)

sameHops List of transitions same as othe rtransitions,
e.g. [1 2 3 4 ; 2 1 1 3] means a12 = a34 and
a21 = a13

[] (empty)

imposeDetailedBalance true or false to guarantee that output satis-
fies detailed balance or not

false

tryPerms true or false to try all possible permutations
of discStates distinct states vector (see 2.3.1)

false

Ainitial set to ’auto’ or a K by K initial guess for
transition matrix in doing fit. Set to desired
value if wish to only train emissions distribu-
tion and set trainA = false below

’auto’

Table 2.1: Fields in params structure for fitting a single trace (continued on next
page)
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parameters field description suggested
default
value

Einitial set to ’auto’ or an initial guess for emis-
sions distribution parameters in doing fit (see
[ABOVE] for format of emissions structures).
Set to desired value if wish to only train tran-
sition matrix and set trainE = false below

’auto’

trainA true or false if wish to do maximum likeli-
hood estimation of transition matrix or not.
If set to false, user must provide a transi-
tion matrix in the Ainitial field; otherwise
the program will choose some initial guess
for the transition matrix and never update it

true

trainE true or false if wish to do maximum likeli-
hood estimation of emissions distribution pa-
rameters or not. If set to false, user must
provide an emissions distribution cell array
in the Einitial field; otherwise the program
will choose some initial guess for the emis-
sions distribution cell array and never update
it

true

maxIterEM Integer > 0. Maximum number of iterations
over which to perform maximum likelihood
estimation of model parameters

200

threshEMToConverge minimum exp log-likelihood difference be-
tween consecutive iterations minus one be-
fore declare opimization to have converged

10−3

SNRwarnthresh threshold value of inferred SNR before issu-
ing warning to user

1

returnFit true or false to return or not return fit of
probability to be in each state at each time.
Setthing this to ’true’ appends a N by K
structure to your output, which dominates
the size in memory of your output for suffi-
ciently long traces

false

Table 2.2: Fields in params structure for fitting a single trace (continued on next
page)
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parameters field description suggested
default
value

paramsErrorToBound-
Auto

String that specifies for which parame-
ters to compute likelihood ratio confidence
bounds in an automatically chosen re-
gion (chosen to include threshold value of
likelihood ratio, specified in auto confInt).
e.g. ’a(1,2),a(2,1),a(3,2)’ means find 1-D
confidence bounds for a12, a21, and a32,
’(a(1,2),a(2,1))’ means find a 2-D joint con-
fidence bound for a12 and a21, and ’e(3,2,1)’
means find a 1-D confidence bound for hid-
den state 3, channel 2, parameter 1 (the
mean for a Poisson- or Gaussian-distributed
channel; hidden states are sorted in order of
increasing mean)

” (empty
string)

auto confInt fraction between 0 and 1. 1 − auto confInt
gives the minimum likelihood ratio to in-
clude in computing likelihood ratio confi-
dence bounds for parameters specified in
paramsErrorToBoundAuto

auto boundsMeshSize Integer > 0 number of positions at which to
sample data likelihood in automatically cho-
sen region around MLE. For joint (2-D) con-
fidence bounds, computation time scales as
the square of this number

10

auto MeshSpacing ’square’ or ’auto’. Setting this to
’auto’ ensures an equal number (half of
auto boundsMeshSize) of data likelihood
samples below and above the MLE estima-
tor for a model parameter. Setting this to
’square’ spaces out the auto boundsMeshSize
samples equally in the data likelihood sam-
pling range and may not be desirable if the
data likelihood is skewed near the MLE

’square’

Table 2.3: Fields in params structure for fitting a single trace (continued from
previous page)
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parameters field description suggested
default
value

paramsErrorToBound-
Manual

String that specifies for which parameters to
compute likelihood ratio confidence bounds
in a manually chosen region (specified in
ManualBoundRegions below). Same string
format as for paramsErrorToBoundAuto

” (empty
string)

ManualBoundRegions Cell array of row vectors specifying values of
model parameters at which to evaluate data
likelihood. Must contain one entry per set
of parameters specified in paramsErrorTo-
BoundManual (above), e.g. if paramsError-
ToBoundManual = ’(a(1,2),a(2,1)),e(3,2,1)’
we could set ManualBoundRegions{1} =
{0.01 : 0.01 : 0.2, 0.01 : 0.01 : 0.2},
ManualBoundRegions{2} = 50 : 10 : 150
to sample values of a12 and a21 in the 2-D
rectangular region specified by the first entry,
and sample values of E{3, 2}(1) (the mean in
state 3, channel 2) in the 1-D region from 50
to 150 in increments of 10. Limited to 1-D
and 2-D regions

[] (empty)

plotPFits ’true’ or ’false’ to plot inferred hidden states
at each iteration of optimization of model pa-
rameters. Can be handy for debugging or for
choosing initial parameter values

false

showProgressBar ’true’ or ’false’ to show progress bar during
optimization of model parameters. Might
not work on a mac

false

pause ’true’ or ’false’ to pause or not at each it-
eration of optimization of model parame-
ters. Only pauses if plotPFits is set to ’true’.
Pauses after plotting inferred hidden states

false

Table 2.4: Fields in params structure for fitting a single trace (continued from
previous page)
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mean) state has a unique emissions distribution, the next two states (highest mean)
have identical emissions distributions, and the last two states have identical emis-
sions distributions.

To try fitting all permutations of the discStates vector (e.g. try to fit both [1 2]
and [2 1] for a three-state model that has only two distinct emissions distributions
associated with its three states) and return the best fit, set the parameters field
tryPerms = true.

The number of free parameters in the model is reduced to calculate the BIC if
not all states have unique emissions distributions.

2.3.2 Specifying forbidden transitions

The noHops field of the fitting parameters structure specifies forbidden transitions.
For example, setting noHops = [1 2; 3 4] means a12 = a34 = 0. Since states are
numbered in order of increasing mean, in this example we would forbid transitions
from the state with the lowest mean (state 1) to the state with the second-lowest
mean (state 2).

If some states have identical emissions distributions as other states (see 2.3.1) and
tryPerms is set to true, the noHops field will be permuted to respect the ordering
of non-distinct states.

For example, if we are fitting a three-state model with only two distinct FRET
levels, possibly two different lifetimes corresponding to one of these FRET levels,
and no interconversion between the two hidden states that have the same FRET
level, we should set discStates = [1 2], tryPerms = true, and noHops = [2 3; 3 2].
Since tryPerms is set to true, we will attempt to fit discStates = [2 1] as well, at
which point noHops will be set to [1 2; 2 1], since now states 1 and 2 are have the
same (lower) emissions mean. If tryPerms is set to false, we will fit only the model in
which the higher emissions mean corresponds to two hidden states, without trying
the model in which the lower emissions mean corresponds to two hidden states.

Note that setting imposeDetailedBalance to true may not be compatible with no-
Hops. For example, in fitting a three-state model, setting noHops = [1 3] (a13 = 0,
but not a31 = 0), will result in an inferred model that in general has nonzero a13
and thus does not respect the noHops setting, but satisfies detailed balance.
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The number of free parameters in the model is reduced by the number of forbidden
transitions to calculate the BIC.

2.4 Working with the fit output

The output structure produced by calling output = TrainPostDec (params); con-
tains the fields in table 2.5.

2.4.1 Displaying likelihood ratio confidence bounds

To display figures showing the 2-D or 1-D likelihood ratio confidence bounds in the
output enter (demofit.m line 64)

>> ShowErrorBounds(output, ’auto’);
>> ShowErrorBounds(output, ’manual’);

An output produced by demofit.m is shown in figures 2.2 and 2.1.

2.4.2 Converting probabilities to transition rates

As discussed in the methods, converting inferred transition probabilities (unitless)
to rates (Hz) is approximately multiplying by the sampling rate so long as transition
probabilities are small. To do the exact conversion enter (demofit.m line 68)

>> A cont = DiscToContA(output.A, f sample);

where f sample is the sampling frequency with the same units as the transition
rates (so if f sample is in units of Hz, so are the transition rates). A cont(i, j) = kij,
the transition rate from state i to state j.

2.5 Clustering traces from the command line

This section walks through the democluster.m example script provided in the SMART
HMM folder. This script demonstrates simulation of a traces from a mixture of
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output field description

A inferred transition probability matrix (A(i, j)= aij)
E inferred emissions distributions (format given in section

2.2)
fitChannelType cell array that lists channel types (emissions distribu-

tions). Same value as for fit parameters
auto confInt fraction between 0 and 1. Same value as for fit param-

eters
logPx log likelihood of data given the inferred model
BIC Bayesian Information Criterion (BIC) value given the

inferred model
freeParams number of free parameters in inferred model used in

computing BIC
SNRMat Matrix of signal to noise ratio (SNR) values between ev-

ery pair of states. SNRMat(i, j) gives the SNR between
the emissions distributions in state i and j

discStates List of integers that adds up to nStates. Specifies which
states have distinct emissions model (see 2.3.1). This
may be reordered from its value in fit parameters if
tryPerms is set to true in fit parameters

noHops List of forbidden transitions (see 2.3.2). This may be
reordered from its value in fit parameters if tryPerms is
set to true in fit parameters

postFit K by N matrix such that postFit(i, j) =
P(hidden state at time j = i| all observations)

flags contains error messages if crash occurred in fitting model
parameters or SNR between a pair of states is below the
threshold SNRwarnthresh in fit parameters

imposeDetailedBalance true or false to guarantee that output satisfies detailed
balance or not. Same value as for fit parameters

errorBoundsAuto contains likelihood ratio confidence bounds for parame-
ters specified in paramsErrorToBoundAuto in fit param-
eters. Use ShowErrorBounds.m script to display (see
2.4.1)

errorBoundsManual contains likelihood ratio confidence bounds for parame-
ters specified in paramsErrorToBoundManual in fit pa-
rameters. Use ShowErrorBounds.m script to display
(see 2.4.1)

Table 2.5: Fields in output structure determined by fitting a single trace
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Figure 2.1: HMM fit output. The red and green traces (top subplot) show the noisy
observations. The black line (bottom subplot) shows the true state and the red line
shows the inferred probability of being in state 2 given all of the observations and
the inferred model.
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Figure 2.2: HMM fit output. Colored blocks show data likelihood evaluated at the
corresponding value of the transition probabilities a21 and a12. The purple border
indicates the points at which the data likelihood is 0.01 of its maximum value.
The white cross indicates the inferred a21 and a12 that locally maximizes the data
likelihood.
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models, setting up fit parameters, performing the fits, clustering the outputs, and
viewing the results. To run the script, go to the HMM folder and enter

>> democluster

into the command window of MATLAB.

2.5.1 Clustering setup

To simulate fits from a mixture of models, we simulate 30 traces, each equally likely
to arise from one of three two-state models: a12 = a21 = 0.1, a12 = 0.1, a21 = 0.2,
a12 = 0.2, a21 = 0.1. All three models have Poisson-distributed channels with means
100 and 200, corresponding to SNR of about 9 (democluster.m lines 4-8). clust-
demo.m lines 12-58 set up fitting parameters (see section 2.3). clustdemo.m lines
63-81 simulate traces from this mixture of models and fit these traces to a two-state
HMM as specified in the fit parameters structure params. Trace lengths are sampled
uniformly from 500 to 1000.

The command line clustering scripts require a cell array outputs, such that outputs{i} =
output of HMM fit to the i-th trace, and a cell array traces, such that traces{i} =
i-th trace (N by C matrix, where N is the number of time points and C is the
number of channels.

2.5.2 Approximating data likelihood near the MLE

As discussed in Methods, in order to avoid computatins that scale like the total
length of all traces, we approximate the data likelihood by a normal distribution
centered on the MLE and with a yet-to-be-determined covariance matrix.

We jointly cluster up to 3 of the model’s parameters (rates and emissions distri-
bution parameters), so we must estimate this covariance for subsets of up to 3 of
the model’s parameters. The sets of parameters to jointly cluster are specified by
the string cov mats string, which has the same format as the string paramsError-
ToBoundAuto (see section 2.3). For example, democluster.m line 90 sets

>> cov mats string = ’(a(2,1),a(1,2)),a(1,2),(a(1,2),a(2,1),e(1,1,1))’;

Meaning cluster parameters a21 and a12 jointly (2-D), cluster a12 alone (1-D), and
cluster a12,a21, and e(1, 1, 1) jointly (3-D) (where e(1, 1, 1) = E{1, 1}(1) is the state
1, channel 1, parameter 1, the mean). To estimate the 3 by 3, 1 by 1, and 2 by 2
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covariance matrices corresponding to these parameters for the i-th trace and i-th
HMM fit output using a numerical solver in MATLAB, enter (democluster.m line 95)

>> outputs{i} = AppendCovMatsToHMMFitOutput(outputs{i}, traces{i}, cov mats string);

2.5.3 Fitting clusters

Now that the estimates for the covariance matrices have been appended to the out-
puts we can cluster the outputs. We must specify how many clusters to fit to our set
of outputs in a row vector of positive integers. democluster.m sets (democluster.m
line 102) numClusterList 2D= [2 3 4 5]; to fit 2 through 5 clusters. To perform the
fit we enter (democluster.m line 103)

>> clustFitOutputs 2D = GetClustsRatesMult v2(. . .
outputs,’(a(2,1),a(1,2))’,numClusterList 2D);

Note that the second argument to GetClustsRatesMult v2, the string ’(a(2,1),a(1,2))’,
must match match a string from cov mats string (see section 2.5.2), meaning co-
variance matrices for this set of outputs have already been computed. Otherwise,
outputs that have not had the necessary covariance matrices appended to them are
excluded from clustering (as in democluster.m lines 108-111).

The clustering fit output clustFitOutputs 2D is a cell array with one entry per
number of clusters to fit. Each entry is a structure with the fields listed in table 2.6

2.5.4 Displaying clustering outputs

To display the clustering outputs enter (democluster.m line 117)

>> ShowClustFitOutputs v2(. . .
clustFitOutputs 2D,traces,numClusterList 2D, 0.1, false,false,true);

The arguments of the clustering output plotting function clustFitOutputs 2D are
given in table 2.7. An output produced by democluster.m is shown in figure 2.3
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output field description

clustPos K by d array of inferred positions of K clusters for d
clustered parameters

clustFrac K by 1 array of inferred fraction of all traces to have
come from each of K clusters, e.g. clustFrac(i)=P(trace
from cluster i)

clustMembershipP N by K array of probabilities such that
clustMembershipP(i,j)=P(trace i from cluster j),
N is the number of traces and K is the number of
clusters

minTracesInClust K by 1 vector such that minTracesInClust(i)= number
of traces assigned to cluster i. The assignment is done
by choosing the single likeliest cluster for each trace to
be from (maximizing clustMembershipP(i,j) over j)

logPx log likelihood of all traces given the inferred clustering
model (see Methods for definition)

logPxTracesList N by 1 array such that logPxTracesList(i)= log likeli-
hood of trace i given the inferred clustering model. The
logPx clustering output is the sum of the entries of this
vector

BIC Bayesian Information Criterion (BIC) value given the
inferred clustering model (see Methods for definition)

invalidTraces vector of trace indices that were not included in clus-
tering because the necessary covariance matrix was not
appended to their fit outputs

numClusters number of clusters in inferred model. This is determined
by input to clustering script (GetClustsRatesMult v2)

coords N by d matrix of HMM fit outputs such that
coords(i,j)=inferred value of parameter j for trace i,
where N is the total number of traces and d is the num-
ber of parameters clustered. Handy for plotting cluster-
ing outputs

numIter number of iterations before clustering algorithm con-
verged

initialIndices 1 by K vector of trace numbers which were used to seed
the positions of the K clusters in the clustering algo-
rithm. These are chosen uniformly at random without
replacement from the N traces 10 different times and
the best clustering output (maximizes logPx above) is
chosen

Table 2.6: Fields in one entry of output structure for clustering
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argument
number

argument description suggested
default
value

1 clustering fit output (returned by GetClustsRates-
Mult v2, see section 2.5.3)

2 traces structure such that traces{i}= i-th trace. Same
input as for GetClustsRatesMult v2 (see section 2.5.3)

3 row vector of positive integers specifying number of clus-
ters in fit. Same input as for GetClustsRatesMult v2
(see section 2.5.3)

4 true or false to show trace numbers next to points in
plot. Can be handy for finding outliers

false

5 true or false to plot on log log scale false
6 true to color clustered points in color of nearest cluster,

false to take mean color weighted by probability to be
in each cluster

true

Table 2.7: inputs to clustering output plotting function ShowClustFitOutputs v2

Figure 2.3: Clustering fit output. Points are colored according to their nearest
(highest likelihood to produce them) cluster. Point sizes are proportional to trace
length. The 4-cluster model assigns 0 traces to cluster 4. Cluster centroids are
shown as squares, circles, crosses.
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