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Abstract

We introduce ForceBalance, a method and free software package for systematic force field

optimization with the ability to parameterize a wide variety of functional forms using flexible

combinations of reference data. We outline several important challenges in force field develop-

ment and how they are addressed in ForceBalance, and present an example calculation where

these methods are applied to develop a highly accurate polarizable water model.

1 Introduction

Molecular mechanics (MM) using empirical potentials (force fields) is the simulation method of

choice for large-scale atomistic systems. Compared to quantum mechanical (QM) calculations,

they are computationally far more efficient. Nevertheless, the reliability of MM simulations de-

pends crucially upon the accurate modeling of the essential physical interactions, which in turn is

predicated on having accurate parameters.
∗To whom correspondence should be addressed
†Stanford University
‡Massachusetts Institute of Technology
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Historically, force fields are parameterized by fitting to experimental data. Early examples in-

clude interatomic repulsion potentials determined from experimental second virial coefficients,1

the CFF potential for organic molecules based on experimental geometries and vibrational spec-

tra,2 and the TIP3P and TIP4P water models3 which are fitted to the room-temperature density

and enthalpy of vaporization of liquid water. More recent examples include the parameterization

of protein dihedral potentials to reproduce experimentally observed conformations from NMR

measurements.4–7 On the other hand, the requirement of large amounts of data for a complete

parameterization effort has led to the widespread use of QM data in force field development, ei-

ther directly from potential energies8,9 and forces,10–15 or from calculated observables such as

vibrational spectra or electrostatic potentials.16–18 Force fields developed from fitting QM ener-

gies and forces have found applications in modeling biomolecular conformation energies,19 liquid

water,11,20 and materials such as aluminium,10 iron,21 and silica;22 electrostatic potential fitting is

commonly applied in general force fields such as GAFF.23

The main challenge in force field development is to choose functional forms that are computa-

tionally efficient, yet flexible enough to capture the relevant physical interactions in the thermody-

namically accessible regions of phase space. An accurate fit of the parameters is also crucial, which

necessitates the use of accurate and abundant fitting data from experimental measurements or from

QM calculations. Efficient and strictly regularized optimization methods are needed to search the

high-dimensional parameter space without overfitting. We have developed an open source software

package called ForceBalance24 that aids in these development and parametrization efforts, which

we expect to accelerate the exploration of new force fields and design protocols.

In this article, we briefly review the challenges associated with force field development and pa-

rameterization, and how some of these issues are alleviated by using ForceBalance. We then illus-

trate its use by developing a new polarizable water model with 27 adjustable parameters, including

five fluctuating charge sites and an improved functional form for the van der Waals interactions.

We validate this new model by comparison with experimental measurements of various properties.
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2 Theory

2.1 Objective function

Force field parameterization is essentially an optimization problem in the space of parameters (de-

noted using k). As described above, the reference data may come from experimental measurements

or from QM calculations, and just about any physical quantity can be used in the fitting procedure.

To accommodate the diverse choices possible in the fitting procedure, we allow for multiple types

of residuals X to be included in a single objective function χ2, which is then integrated over the

entire configuration space R of N atoms with some suitable measure P(r;k)dr reflecting the ther-

modynamic ensemble of interest. The integral may be evaluated using any sampling technique,

such as molecular dynamics or Metropolis Monte Carlo.

Specializing for now to QM reference calculations of energies and forces, our objective func-

tion is defined in Eq. (1a):

χ
2(k;w) =

∫
R

P(r;k)|X(r,k;w)|2 dr, (1a)

|X(r,k;w)|2 = w

[
(∆E(r,k)−〈∆E〉)2

〈E2
QM〉−〈EQM〉2

]
+

1−w
3Natoms

[
∆F(r,k)TCov(FQM)−1

∆F(r,k)
]
, (1b)

∆E(r,k) = EMM(r,k)−EQM(r), (1c)

∆F(r,k) = FMM(r,k)−FQM(r), (1d)

Cov(FQM) = 〈FQM⊗FQM〉. (1e)

where ∆E and ∆F represent the energy and force residuals, k is the set of force field parameters, and

Cov(FQM) is the covariance of the reference QM forces. The energy variance and force covariance

introduce appropriate rescalings so that the residuals in the objective function are dimensionless

and of unit magnitude. The average energy difference is subtracted out of the energy term, so only

relative energies are fitted. The force term is further divided by the number of components so that

it has the same scale as the energy term. We introduce an adjustable parameter w which weights
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the relative importance of energy residuals (w = 1) and force residuals (w = 0). In principle w

ought to be chosen carefully for each use; for simplicity, we choose w = 1
2 here, so that both are

equally weighted. Information beyond energies and forces are similarly easy to include as squared

residuals with appropriate dimensional scaling.

2.2 Nonlinear optimization

We use primarily the L-BFGS algorithm to optimize the objective function, with analytic first

derivatives (with respect to parameters) implemented in a modified GROMACS simulation code.24,25

While this procedure cannot guarantee a globally optimal fit, we find in practice that the opti-

mization is well-behaved, with the best final parameter values tending to result from a physically

motivated initial guess. This is evidenced by numerical studies where we used a force field to

produce the reference data and performed an optimization using randomly perturbed parameter

values; the optimization reliably converged to the same parameters used to generate the reference

data. The stability of our optimized parameters reflect previously reported numerical studies in

the literature.12 In addition, ForceBalance provides some global optimization algorithms such as

simulated annealing to handle more problematic situations.

2.3 Self-consistent configurational sampling

The probability distribution P(r,k) in configurational space reflects the thermodynamic ensemble

that we work in by providing the appropriate Boltzmann weights to each sampled point r. How-

ever, these weights will in general differ between the reference data and that predicted from the

force field. In previous work, we showed that a linear combination of the Boltzmann distributions

for the force field and the QM reference provides a more consistent result than using either distri-

bution alone.14 We continue to adopt this approach here. Furthermore, we enforce self-consistency

between the sampling simulations, reference QM calculations, and parameter optimizations until

self-consistency is reached after a number of generations.13,26–28 The procedure for doing so is

outlined in Figure 1.
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Figure 1: Flowchart for self-consistent force field parameterization showing the flow of reference data
(circles) and calculations (boxes): (1, upper left) initial parameters k, (2) sample generation using current
parameters k, (3) calculation of corresponding QM reference data, (4) optimization of parameters by mini-
mizing the objective function χ2, (5) new optimized parameters k. Steps (2) through (5) are repeated until
the force field parameters are converged.

2.4 Reweighting of data samples across generations

Since the reference calculations are expensive, we would like to carry over the data from previous

generations to aid the optimization process - but it is important to keep in mind that each batch of

reference data is sampled using a different force field, and a different thermodynamic ensemble.

As the parameters k change between iterations, the measure P(r;k)dr reflecting the configurational

weights also change correspondingly. Naïvely retaining each reference data sample in the objective

function χ2(k) would thus bias the final result toward the initial parameters. We addressed this

by using the weighted histogram analysis method (WHAM) equations to compute a consistent

set of Boltzmann weights for all generations.29–32 Writing the sampling explicitly as P(r;k) =

∑i wi(k)δ (r− ri), where wi are the weights from the thermodynamic ensemble, we have at each

generation G the self-consistent WHAM weight Pi(k j) of the ith configuration as
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Pi(kG) =
G

∑
j=1

A( j)wi(kG)

wi(k j)
, (2a)

A( j) = ∑
i

Pi(k j). (2b)

where each A( j) is the WHAM weight for the force field at generation j. These are self-consistently

determined from these equations beginning from an initial ansatz of equal weights, and the corre-

sponding new weights Pi(kG) are used in the force field optimization procedure.

Comparing this to the usual application of WHAM—to construct a free energy profile or prob-

ability histogram from several simulations that differ by a restraining potential—our current appli-

cation retains the idea of correcting weights to account for the different measures used to sample

different reference data points. To this extent, our present application of WHAM is similar to the

multistate Bennett acceptance ratio method for estimating free energy differences.33

2.5 Regularization and dimensional rescaling of parameters

Overfitting is a common and onerous problem in force field parameterization. Whenever near-

or exact redundancies in the parameter set k are present, optimization algorithms often produce

extreme parameter values that are physically counterintuitive or nonsensical. To prevent this, regu-

larization methods are often used to restrain parameters to physically intuitive values.12,34 A com-

mon such method is known as Tikhonov regularization or ridge regression, and involves adding a

quadratic penalty to the objective function that restrains parameters to their initial values.

A Bayesian perspective offers a useful framework for choosing the relative scales between

the quadratic penalties for each parameter. The quadratic penalty function arises from imposing a

Gaussian prior distribution on the force field parameters. As with the objective function in Eq. (1a),

the Gaussian widths for each parameter in the prior reflects the intrinsic scale of that parameter, and

provides a form of dimensional rescaling that is required to treat parameters with different physical

units on the same footing. This is important on two counts. First, parameters in the GROMACS
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unit system can vary over six orders of magnitude: bond lengths are on the order of 0.1 while

force constants are on the order of 105. Second, different parameter types have different inherent

variabilities; bond lengths are expected to be correct to within a few percent while atomic partial

charges can change sign or fluctuate by several times their initial values.

This Bayesian framework guides, but does not fully automate, our choice of regularization

parameters in practical applications. For each parameter, the center of the prior is given by its

initial value, and the prior width is the rescaling factor specified at the start of the optimization.

For instance, we may choose the prior width for atomic charge parameters to be one elementary

charge, and the prior width for a bond length to be 0.01 nm. Note that the prior widths are related

to the parameter’s natural size, and also incorporate some physical intuition regarding its inherent

variability.

3 Application to parametrizing a polarizable water model

To illustrate the power of ForceBalance, we use it to develop a polarizable water model and deter-

mine its parameters automatically. The supreme importance of water has spurred intense interest

in capturing its extraordinary properties in various theoretical models. The most common point

charge models with three or four charge sites have several different published parameter sets de-

pending on the reference data and parameterization strategy, including the TIP3P3 and SPC/E35

three-site models and the TIP4P,3 TIP4P-Ew,36 TIP4P/Ice37 and TIP4P/200538 four-site models.

Other functional forms include a single-site multipole expansion,39 five-site and six-site mod-

els40,41 and models with explicit three-body interactions.42

Recent years have seen increasing interest in the need to treat electronic polarization for more

accurate force fields, and thus also for water models;43–46 moreover, polarizable force fields repre-

sent an important frontier for systematic parameterization approaches because of the many-body,

nonlinear nature of the dependence of the energies and forces upon the polarization parameters.
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3.1 Functional form

Our new water model has five charge sites and a force field of the form

E = ∑
(i, j)∈bonds

EMorse(ri j)+ ∑
(i, j,k)∈angles

EU-B(θi jk,rik)+EQTPIE({ri})+ ∑
moli<mol j

EvdW(ri j), (3)

where EMorse(ri j) is a Morse potential for the O–H bond vibrations, EU-B(θi jk,rik) is a Urey–

Bradley potential for the HOH angle vibration, EQTPIE({r}) is the electrostatic energy from the

QTPIE (charge transfer by polarization current equalization) model,47–50 and EvdW(ri j) is a pair-

wise van der Waals interaction. The bond and angle interactions have a total of seven adjustable

parameters; the QTPIE interaction has eight parameters and the van der Waals interaction has

nine parameters. There are three parameters that determine the position of virtual sites. Overall,

ForceBalance treats all 27 adjustable parameters on the same footing and optimizes all of them

simultaneously.

3.1.1 Intramolecular parameters

The vibrational modes of water can be approximated with simple functional forms owing to the

small amplitude of such motions under typical thermodynamic parameters of interest. We chose the

Morse potential and Urey–Bradley potential to describe the bond and angle vibrations respectively;

these have the well-known functional forms:

EMorse(ri j) = Di j

[
1− e−ai j(ri j−r0

i j)
]2
, (4)

EU-B(θi jk,rik) = kθ
i jk(θi jk−θ

0
i jk)

2 + k1−3
ik (rik− r0

ik)
2. (5)

We have found that accounting for some anharmonicity in the vibrations in this way greatly im-

proves the quality of fit for a single water molecule when compared against other alternatives such

as harmonic bond-angle cross terms and quartic angle potentials.

8



3.1.2 Fluctuating charges

QTPIE is a type of fluctuating-charge model51,52 that has an improved description of charge trans-

fer behavior.47,48 The charges qi on each atom i are recomputed for each geometry by minimizing

the fluctuating charge energy expression

EQTPIE({ri}) = min
{qi};Q

[
∑

i
(χ̄iqi +

1
2

ηiq2
i )+∑

i< j
qiq jJi j

]
, (6a)

χ̄i = ∑
i 6= j

(
χi−χ j

)
Si j, (6b)

Ji j =
1
ri j

erf
(√

αiα j

αi +α j
ri j

)
, (6c)

Si j =

[
4αiα j

(αi +α j)2

] 3
4

e
−

αiα j
αi+α j

r2
i j . (6d)

Each fluctuating charge i has three parameters - the electronegativity χi, the chemical hardness ηi,

and the Gaussian width αi. This last parameter determines the amount of screening in the charge–

charge interactions Ji j and also the attenuation Si j of the electronegativity difference between two

charge sites. In this study, all pairwise electrostatic interactions were modified to go smoothly to

zero at a cutoff distance of 1.2 nm in order to treat periodic systems.

This minimization procedure reduces to solving a linear saddle-point system with the block

matrix form  J K

KT 0


 q

µ

=

 χ̄

0

 . (7)

where Ji j = Ji j, i 6= j, Jii = ηi and K is the charge constraint topology48 which enforces charge

neutrality of individual molecules. The desired charges are the q part of the solution. The QTPIE

model has been implemented into a development version of the GROMACS simulation software

which is freely available on the Web.24
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3.1.3 Virtual sites

Our model contains five fluctuating charge sites with two sites located on hydrogen nuclei, one

virtual site on the HOH angle bisector denoted “M” (similar to the TIP4P model), and two out-of-

plane virtual sites denoted “L1” and “L2”. Their positions are determined by:

rM = rO +aM (rOH1 + rOH2) , (8a)

rL1 = rO +aL (rOH1 + rOH2)+ cL (rOH1× rOH2) , (8b)

rL2 = rO +aL (rOH1 + rOH2)− cL (rOH1× rOH2) . (8c)

Here rOH1 and rOH2 denote the displacement vectors from the O atom to the two H atoms; the con-

stants aM, aL and cL are fitting parameters. The out-of-plane sites are needed to describe the nearly

isotropic dipole polarizability of the water molecule; without them, the out-of-plane component of

the polarizability tensor would be zero. Figure 2 illustrates the charge sites of the water model

after all of the fluctuating charge parameters and virtual site positions have been optimized. In the

absence of an electric field, the out-of-plane sites are nearly neutral; their main role is to describe

the polarizability tensor and not the static charge distribution. The unconventional positions of the

out-of-plane sites are determined by the automatic parameterization and are discussed later.

Figure 2: 3D rendering of a model water molecule with the five fluctuating charge sites (spheres) colored
to represent their charges in the absence of an electric field. The H atom sites are positive (blue), the in-plane
M site is negative (red), and the out-of-plane sites are nearly neutral (gray). The virtual site positions have
been fully optimized; note their significant deviation from the “lone pair” positions.
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3.1.4 Van der Waals interactions

The van der Waals (vdW) interactions in our water model are described using a new exp–6 func-

tional form with three parameters; we independently parameterize the O–O, H–H and O–H pair-

wise interactions, so there are a total of nine vdW parameters.

The exp–6 form models both exchange repulsion and dispersion effects. The repulsion is

known to have an approximately exponential form;53–57 however, the original Buckingham exp–6

function58 has an unphysical singularity at the origin, which causes severe problems for relatively

soft repulsive interactions. We have modified the functional form to eliminate the singularity. The

new form is given by EvdW below:

EvdW(r) =
2ε

1− 3
γ+3

(
σ6

σ6 + r6

)[
3

γ +3
eγ(1− r

σ )−1
]
, (9a)

EB(r) =
ε

1− 6
γ

[
6
γ

eγ(1− r
σ )− σ6

r6

]
, (9b)

where we have also written out the Buckingham interaction EB for comparison. In both interactions

σ denotes the minimum energy distance , ε is the well depth, and γ is a dimensionless constant de-

scribing the steepness of the repulsion. The Buckingham interaction goes to−∞ at zero separation,

but at large values of γ (> 12) there is a substantial barrier that blocks the system from reaching

the singularity. However, for softer repulsions the barrier is much lower ( Figure 3a), and for small

values of γ (< 8) the barrier vanishes completely. Previous attempts to eliminate the singularity

have used new functional forms with four or more parameters or piecewise behavior.58–61 Instead,

we have chosen a new vdW empirical potential with just three parameters that nevertheless:

• is analytic and nonsingular,

• tends to an attractive r−6 term as r→ ∞, describing dipole–dipole dispersion,

• tends to a repulsive exponential term as r→ 0 describing exchange repulsion,

• has a well-defined, unique minimum,

• is inexpensive to evaluate, and
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• is highly tunable to accommodate interactions between diverse atom types and molecule
types.

Furthermore, EvdW is parameterized such that σ , ε , and γ have the same physical interpretations

as in the Buckingham potential.
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Figure 3: (a) A family of Buckingham potentials with fixed σ and ε parameters with tunable γ . Note that
the barrier vanishes for γ < 8. (b) Our new van der Waals potential.

Our new functional form is guaranteed to have the qualitatively correct behavior for any choice

of positive σ , ε , and γ; it has strictly one x-intercept that separates the attractive and repulsive

regions, and tends to Ae−br and −Cr−6 in the r < σ and r > σ regions (where A, b, and C are

functions of σ , ε , and γ).

Figure 3b shows that the repulsion can be tuned over several orders of magnitude while mini-

mally affecting the attractive region, whereas the Buckingham interaction fails catastrophically for

soft repulsions. Furthermore, the new vdW interaction is nearly identical to the Buckingham in-

teraction everywhere except in the region where the Buckingham interaction becomes unphysical.

We have implemented the new vdW interaction into our modified copy of GROMACS,24 and it has

proven to be valuable in describing the subtle vdW interactions for hydrogen atoms in hydrogen

bonds (see Section 4.2).
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3.2 Reference data

The objective function included the following QM reference data:

1. energies and forces for thermally sampled water clusters,

2. dipole and quadrupole moments for an isolated water molecule, and

3. dipole polarizability tensor for an isolated water molecule.

In the objective function, the energy and force residuals were rescaled according to Eq. (1b).

The dipole, quadrupole, and polarizability residuals were rescaled to the RMS values of each quan-

tity (1.85 Debye, 2.10 Debye Å, and 1.47 Å3 respectively); all data types were given equal weight.

The QM reference data were computed with an RI–MP262,63/aug-cc-pVTZ64 model chemistry,

with additional frozen core and dual–basis65 approximations to accelerate the calculations. The

QM calculations were performed using the Q-Chem quantum chemistry software.66

3.3 Parameterization

The water model was automatically parameterized using a self-consistent procedure. The initial

guess for force field parameters were derived from a number of sources including the UFF force

field,67 and the SPC/E,35 TIP4P3 and TIP5P40 water models. Where precedent was unavailable

(as was the case for fluctuating charge parameters), we guessed the parameters and performed an

initial optimization using a simulated annealing algorithm. Table S1 in the Supporting Information

lists the starting parameters.

In each generation of the force field parameters, we first obtained 300 samples of water dode-

camer configurations by running constant–temperature molecular dynamics and taking snapshots

at 10 ps time intervals. A shallow harmonic restraint of 0.5 kJ mol−1 nm−2 was applied to pre-

vent the trajectories from diverging; this was sufficiently weak to still include samples with one

molecule dissociated from the rest of the cluster. We set the prior widths (rescaling factors) by

rescaling the parameters within a given type using their geometric mean.
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Seventeen self-consistency iterations, using 5100 total cluster configurations, were needed for

the parameters to be converged to within 1%; further convergence was not possible due to statistical

fluctuations and linear dependency issues. We also performed a multi-cluster fit where we included

six sets of clusters with different size (1800 snapshots of 3, 4, 6, 9, 12, and 15-mers); the objective

function only decreased by less than 1%, indicating that the force field was robust for different

cluster sizes. The final parameter set is given in Table 1.

Table 1: Parameters for the polarizable water model. There are a total of 27 parameters; the average
electronegativity has no effect on the interactions.

Morse r0 (nm) D (kJ mol−1) a (nm−1)
rOH 0.10251 183.90 28.134

Angle θ 0 (deg) kθ (kJ mol−1 rad−2)
θHOH 113.73 396.82

Urey–Bradley r0 (nm) k1−3 (kJ mol−1 nm−2)
rHH 0.031562 6322.3

QTPIE χ (eV) η (eV) α (bohr−1)
H -1.1973 18.059 0.35423

M (in-plane) 4.1282 11.209 0.32822
L (out-of-plane) 4.5228 11.596 0.32027

Virtual sites a c (nm−1)
M (in-plane) 0.26061 n/a

L (out-of-plane) 0.10086 2.4066
van der Waals σ (nm) ε (kJ mol−1) γ

rHH 0.99403 0.0005 8.9623
rOH 0.29451 1.6072 5.1196
rOO 0.36174 1.0334 13.256

4 Results and Discussion

4.1 Quality of fit

The final optimized model provides a chemically accurate fit to the reference data. For a total of

5100 snapshots spanning 17 generations, the RMS energy error for the 12-mer is 3.6 kJ/mol. The
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RMS force error is 10.3%. In the final generation of the optimization, the RMS energy error and

force error change by less than 0.1% from their initial values, thus indicating convergence.

The high quality of fit is reflected across the various physical quantities being fit. First, the

quality of the energy fit is evident in the scatter plot of Figure 4. In contrast, the SPC/E point

charge model shows a much less satisfactory reproduction of the QM reference data. As SPC/E

was parameterized to reproduce experimentally measured properties of water, this demonstrates

the potential incompleteness of such models in modeling detailed atomistic interactions. Second,

a representative 15-mer geometry is shown in Figure 5 to provide some insight into the quality of

the force fit. Both QM reference and MM forces are drawn, but the vectors are often practically

coincident. This demonstrates how a force error of 10-11% corresponds to forces that are visually

indistinguishable. Third, the dipole and traceless quadrupole moments of the water molecule were

also reproduced to within 5% of the reference data. For comparison, the traceless octupole mo-

ment, which was not fit, disagrees with the reference data by roughly 15%. Fourth, we found in our

multi-cluster study that the RMS energy error scales roughly linearly with cluster size, where each

additional water molecule contributes 0.3 kJ/mol to the RMS energy error. The RMS force error

has a weaker dependence on the cluster size, ranging from 8.5% for the water trimer to 11.5% for

the 15-mer.

After the 16th optimization cycle, the generated force field was fit to 4800 snapshots, but not

the final set of 300 snapshots. The small changes in the parameters observed by including the final

set of snapshots in the 17th generation indicates that the force field is essentially just as accurate

for newly sampled snapshots and snapshots used in the fit. This indicates an absence of overfitting

to the QM reference data.

4.2 Optimized model parameters

The final optimized parameters are given in Table 1. While the parameter values should not be

interpreted too literally, the final parameter values do contain a few surprises. We now discuss the

implications of our fitting results.
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Figure 4: Scatter plots of the relative energies for 5100 configurations of the water 12-mer for SPC/E
(grey), the fitted data for our new model (red), and predicted energies for configurations not used in the fit
(blue).

The Urey–Bradley interaction has an equilibrium HOH angle of 113 degrees and an equilibrium

H–H distance of only 0.039 nm. These do not coincide with the equilibrium geometry of the water

monomer. Despite this, the force field provides an equilibrium geometry that closely matches the

reference geometry (RMSD = 0.7 pm). This apparent discrepancy can be explained by frustration

between the angle term, which favors an increased HOH angle, and the 1–3 term, which favors

a shorter H–H distance. At the equilibrium geometry of the water molecule, the Urey–Bradley

energy is 44 kJ/mol.

Perhaps our most surprising results are the optimized virtual site positions, which are shown

in Figure 2. The position of the oxygen charge site resembles the M site in previous four-site

water models. However, the out-of-plane sites (gray spheres in Figure 2) are consistently placed

on the same side as the hydrogen atoms. This persists even with initial guesses in the lone pair

positions or if the oxygen charge site location was fixed. This is clearly a consequence of the near-

isotropy of the dipole polarizability of water, and demonstrates the inadequacy of lone pair models

to reproduce the polarization properties of water.
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Figure 5: Atomistic forces on a representative water 15-mer from the QM reference data (blue) and the
force field (yellow), showing near-coincidence for many atoms. The representative configuration demon-
strates a force field with a RMS force error of 11%. The lengths and thicknesses of the force vectors were
scaled by an arbitrary global factor to aid visualization.

The QTPIE parameters also demonstrate some interesting trends. As expected, the M and L (in-

plane and out-of-plane) charge sites are significantly more electronegative than hydrogen. (There

is no charge site on the oxygen atom.) The effective O–H electronegativity difference compares

favorably with the QEq parameters:51 whereas QEq uses an electronegativity difference of 4.2 eV,

we find an optimized value of 5.3 eV. As in the QEq model, the absolute electronegativities are not

physically significant. We also find that the in-plane site is more electropositive, but also softer,

thus resulting in a greater tendency to accumulate negative charge. This reflects slight anistropy of

the dipole polarizability, with the out-of-plane polarizability being the smallest component.

The optimized vdW potentials are plotted in Figure 6. The O–O interaction goes to zero at a

separation of rOO = 0.316 nm with a well depth of 1.03 kJ/mol; the crossover point agrees well

with existing water models,3,35,36 but the well depth is deeper than expected. The O–H interaction

has a crossover point at rOH = 0.24 nm, and the repulsion is significantly softer than the O–O
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Figure 6: The optimized van der Waals interactions for the water molecule. The O–O potential (blue,
dashed) is in close agreement with existing water models, but the well depth is deeper than expected. The
O–H potential (orange, dashed) is softly repulsive in the hydrogen bonding region. The H–H potential
(black, solid) is entirely repulsive and decays slowly.

interaction (note that the typical O–H distance in a hydrogen bond is 0.07 nm inside the repulsive

region.) In stark contrast to the oxygen potentials, the H–H potential is a soft, essentially purely

repulsive wall. These observations are consistent with the fact that many water models have no

vdW interactions on hydrogens, as a L-J functional form would be too sharply repulsive to provide

a good description.

4.3 Validation: predicting properties of liquid water

To validate our force field, we compare the predictions made of some properties of liquid water

with experimental measurements. This is a particularly severe test of the accuracy and transfer-

ability of our intermolecular interactions, as the model was parameterized using data from only

gas-phase water clusters.

To compute the liquid water properties, we used a periodic cubic simulation cell with 512

water molecules. Our simulations used a 1.0 fs time step. Dynamics in the NPT ensemble was
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achieved using a Nosé-Hoover thermostat68,69 and a Parrinello-Rahman barostat70 as implemented

in the GROMACS 4.0.7 simulation code.25 For this study, we performed a total of >20 ns of MD

simulation of the water box at 298.15 K and 1 atm.

Table 2: Predicted properties of liquid water and comparisons to experimental measurements; the experi-
mental values are taken from Ref. 71.

Property Computed Experiment
Density (kg m−3) 1040 ± 2 1000
Dielectric constant 85 ± 10 78

Dipole moment 2.6 2.3—2.9
Diffusion constant (10−5 cm2) s−1 1.5 ± 0.2 2.3

Temperature of maximum density (◦C) -20 ± 5 4

Table 2 summarizes some of the properties we have investigated. First, the bulk density dis-

agrees with experiment by 4%. Although a seemingly small error, the high incompressibility of

water suggests that pressure fluctuations may not be well-described in our model.

The electrostatic properties of water are also in good agreement with experiment. We calcu-

lated a dielectric constant of 85±10, which agrees well with the experimental value of 78.71 The

large error bars result from the slow convergence of fluctuations of the box dipole moment. We

also found the dipole moment of the model water molecules to increase from 1.85 D in isola-

tion to 2.63 D in the liquid phase , in good agreement with previous experimental and theoretical

assessments of the dipole moment of liquid water molecules.50,72–74

Not all the properties we looked at were predicted well. The predicted self-diffusion constant

was 1.5± 0.2 , in contrast to the experimental value of 2.3.Abnormally low diffusion constants for

water molecules have also been observed for other polarizable models of water,75–79 suggesting

that the polarization response is a common cause. Furthermore, our model did not correctly predict

the temperature of maximum density for liquid water; the temperature of maximum density was

found at -20 ◦C instead of the experimentally measured 4 ◦C. This problem could stem from our

choice of optimization procedure, which only sampled water molecules from the room temperature

canonical ensemble.
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Figure 7: Plots of the (a) O–O, (b) O–H and (c) H–H radial distribution functions as predicted in this work
(green), and as measured in Ref. 80 (blue) and Ref. 81 (gold).

The computed radial distribution functions of water are plotted in Figure 7, along with two ex-

perimentally derived radial distribution functions.80–82 The plots show that the force field correctly

describes the structure of the liquid water at the two-body level, except for some slight overstructur-

ing which is almost certainly due to the lack of nuclear quantum fluctuations. Our results compare

favorably with other polarizable models such as AMOEBA75 and SWM4-DP.44
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5 Conclusion

Our main goal in this article was to illustrate the utility of systematic optimization methods and

their ability to produce high-quality force fields. ForceBalance provides a framework for easily

exploring improvements to the force field by changing the optimization strategy, reference data,

and functional form. Here we recap four main challenges / sources of error in our strategy and

suggest avenues for further improvement.

Reference data: The reference QM data in this study consisted of approximate calculations

on finite sized clusters. Our chosen QM method (MP2 / aug-cc-pVTZ) is an incomplete treatment

of electron correlation and may suffer from basis set truncation errors, whereas the most accu-

rate benchmark calculations for water cluster binding energies employ the CCSD(T) method with

complete basis extrapolation.83,84 Our choice of QM method was a compromise between the re-

quirements for high accuracy, comprehensive configurational sampling, and large cluster sizes. In

the future we plan to improve our model by incorporating more types of data into our objective

function, such as QM calculations with periodic boundary conditions or experimental data.

Functional form: Our choice of functional form was adequate for fitting the MP2/aTZ ener-

gies and forces with chemical accuracy; the QTPIE interaction was a good description of the inter-

molecular electrostatics, and we introduced a new van der Waals interaction with a well-behaved

repulsive wall. However, there still remains a small amount of energy and force error, and our

electrostatic treatment does not describe intermolecular charge transfer. ForceBalance provides a

framework for rapidly exploring the space of functional forms, and in the future we plan to explore

functional forms of varying complexity and different treatments of intermolecular charge transfer.

Sampling: We showed that the 27 parameters in our model converged after 17 cycles of self-

consistent optimization. The WHAM-based convergence accelerator was instrumental in achieving

convergence because it allows us to use reference data from previous generations without biasing

the final result. Despite our reference data being entirely based on small clusters, our resulting

force field performed quite accurately for several experimentally measured properties of liquid

water. However, our model failed to find the temperature of maximum density of liquid water; we
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propose that sampling from different tempratures may produce a model that is better adapted to

temperature variations.

Regularization: Overfitted models are characterized by unphysical parameter values and poor

predictive power. In ForceBalance the physically acceptable range of parameter values is quantified

using a Bayesian prior. In the present study we find that the converged parameters are physically

interpretable (albeit not too literally), and the force field is able to accurately predict energies and

forces outside of the training set. We observed that several force field parameters fell outside our

initial expectations, but the differences are not so great that they are patently unphysical. These

borderline cases are the most interesting, because they suggest that the true physical interaction

differs from our intuitive expectations, and in the future may guide us toward designing better

functional forms.

Classical approximation: Quantum nuclear effects have a profound impact on the behavior

of water, giving rise to phenomena such as deuterium fractionation and the kinetic isotope effect,

and also affecting the condensed phase properties. It is generally acknowledged that including

quantum nuclear effects in a simulation leads to reduced structure,85,86 reduced phase transition

temperatures87 and increased diffusion constants88,89 compared to a classical simulation; there is

also strong evidence for a competing stabilizing effect from intramolecular zero-point vibrations.90

In the present study, our use of classical molecular dynamics is a major approximation that does

not treat the quantum nuclear effects. This may have contributed to the observed discrepancies

with experimental measurements. Empirical force fields implicitly include these effects by fit-

ting to the experimental data directly - but some major issues remain, such as the unphysically

large temperature gap between the freezing point and density maximum in almost all models.91

The combination of accurate ab initio-based parameterization of a polarizable force field, a sound

treatment of quantum nuclear effects, and improved algorithms for more rapid simulations92 may

be sufficient to afford quantitative agreement with experiment comparable to empirical models;

this is an exciting topic for future study.

The water model presented in this work is not a bid for the most accurate polarizable water
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model - it is quite accurate for some, but not all properties of liquid water. More importantly, the

procedure outlined in this work can be easily applied to other systems - this holds great promise

for researchers who wish to perform MM simulations but lack the force field for their molecules

of interest. In the future, we hope that systematic parameterization methods like ForceBalance

will contribute to the molecular simulation community by improving the accuracy of MM simu-

lations and aiding in our search for the essential physical interactions that govern the dynamics of

molecules.
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Starting parameters for the optimization are provided in Table S1.

This material is available free of charge via the Internet at http://pubs.acs.org/.
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Graphical TOC Entry

ForceBalance is a method and free software package for automatic force field
parameterization. Left: The polarizable water model that is optimized in this
work. Middle: The ForceBalance logo; the Chinese character means “balance”.
Right: A plot of the QM (yellow) and MM (red) atomistic forces on a cluster of
water molecules, illustrating the quality of the fit.
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