

Documents

 OpenSim Advanced
User & Developer
Workshop

 March 19-21, 2012, Stanford University
 Websites: SimTK.org/home/opensim and opensim.stanford.edu

OpenSim Workshop Agenda

Day One – Monday, March 19, 2012
Li Ka Shing Center, Room 005, Stanford University

8:30 – 9:00am Welcome, Workshop Goals, and Meet the OpenSim Team
 Scott Delp and Jen Hicks

9:00 – 10:15am Participant Introduction and Goals
 You: Each presenter will be limited to 2 min + 1 min Q&A

10:15 – 10:30am BREAK

10:30 – 12:00pm Generating Forward Simulations with OpenSim: Theory, Best Practices,
and Examples

 Ajay Seth, Sam Hamner, and Tim Dorn

12:00 – 1:00pm LUNCH

1:00 – 1:45pm Components of an OpenSim Model with a Hands-On Example
 Matt DeMers

1:45 – 2:00pm BREAK

2:00 – 2:15pm Solidify Project Plans

2:15 – 5:00pm Work on Projects

6:00pm Informal Social Outing in Downtown Palo Alto

Day Two – Tuesday, March 20, 2012
Li Ka Shing Center, Room 005, Stanford University

8:30 – 9:00am Work on Projects

9:00 – 10:00am Breakout Session: Hands-On Introduction to the OpenSim API
 Ajay Seth

9:00 – 12:00pm Work on Projects

12:00 – 1:00pm LUNCH

1:00 – 1:30pm Preview of OpenSim 3.0
 Jen Hicks and Ayman Habib

1:30 – 5:00pm Work on Projects

Day Three – Wednesday, March 21, 2012
Li Ka Shing Center, Room 005, Stanford University

8:30 – 12:00pm Work on Projects

12:00 – 1:00pm LUNCH

1:00 – 2:00pm Prepare Final Presentations

2:00 – 3:45pm Presentation of Progress, Hurdles, and Future Plans
 You

3:45 – 4:00pm Closing Remarks
 Scott Delp and Jen Hicks

4:00 – 5:00pm RECEPTION

OpenSim Workshop, March 2012

1

Table of Contents
1 Introduction ... 4

1.1 Getting the Most Out of an OpenSim Workshop .. 4

1.2 Where to Find Additional Resources and Support .. 4

1.2.1 The OpenSim GUI ... 4

1.2.2 Online Documentation .. 5

1.2.3 Model and Simulation Repository .. 5

1.2.4 Publications ... 5

2 Overview of the OpenSim Workflow ... 6

2.1 The OpenSim Model .. 6

2.2 Importing Experimental Data ... 6

2.3 Scaling ... 7

2.4 The Inverse Problem .. 7

2.4.1 Inverse Kinematics .. 7

2.4.2 Inverse Dynamics .. 8

2.4.3 Static Optimization .. 8

2.5 The Forward Problem ... 8

2.6 Analyzing Simulations .. 9

3 Scaling ... 11

3.1 Overview .. 11

3.2 Settings Files .. 11

3.3 Inputs .. 12

3.4 Outputs .. 12

3.5 Best Practices and Troubleshooting ... 13

3.5.1 Data Collection and Other Preparation: ... 13

3.5.2 Scale Settings: .. 13

3.5.3 Evaluating your Results: ... 13

3.5.4 Troubleshooting Tips: ... 14

4 Inverse Kinematics .. 15

4.1 Overview .. 15

4.2 Inputs .. 15

4.3 Outputs .. 16

4.4 Best Practices and Troubleshooting ... 16

4.4.1 Data Collection and Other Preparation .. 16

OpenSim Workshop, March 2012

2

4.4.2 Inverse Kinematics Settings .. 16

4.4.3 Evaluating your Results .. 16

5 Inverse Dynamics .. 18

5.1 Overview .. 18

5.2 Settings File ... 18

5.3 Inputs .. 18

5.4 Outputs .. 19

5.5 Best Practices and Troubleshooting ... 19

6 Static Optimization ... 20

6.1 Overview ... 20

6.2 Inputs ... 20

6.3 Outputs .. 21

6.4 Best Practices and Troubleshooting ... 21

6.4.1 Static Optimization Settings .. 21

6.4.2 Troubleshooting .. 21

6.4.3 Evaluating your Results .. 22

7 Residual Reduction Algorithm ... 23

7.1 Overview .. 23

7.2 Settings File ... 23

7.3 Inputs .. 23

7.4 Outputs .. 25

7.5 Best Practices and Troubleshooting ... 25

7.5.1 RRA Settings .. 25

7.5.2 Troubleshooting .. 26

7.5.3 Evaluating your Results .. 26

8 Computed Muscle Control .. 28

8.1 Overview ... 28

8.2 Settings File .. 28

8.3 Inputs .. 29

8.4 Outputs .. 29

8.5 Best Practices and Troubleshooting Tips .. 29

8.5.1 CMC Settings ... 30

8.5.2 CMC Troubleshooting ... 31

8.5.3 Evaluating your Results .. 31

9 Forward Dynamics .. 32

9.1 Overview .. 32

OpenSim Workshop, March 2012

3

9.2 Inputs .. 32

9.3 Outputs .. 33

9.4 Best Practices and Troubleshooting Tips .. 33

10 Checklist - Evaluating your Simulation .. 34

10.1 Scaling ... 34

10.2 Inverse Kinematics .. 34

10.3 Inverse Dynamics ... 34

10.4 Static Optimization .. 34

10.5 RRA .. 35

10.6 CMC ... 35

11 Extending the Capabilities of OpenSim .. 36

11.1 Overview .. 36

11.2 Organization of OpenSim ... 36

11.3 OpenSim Model and ModelComponents .. 37

11.4 OpenSim Application Programming Interface (API) ... 38

11.5 What is an OpenSim plug-in? ... 39

11.6 What is an OpenSim "main" program? ... 39

11.7 OpenSim Developer's Guide ... 39

11.8 Command Line Utilities .. 40

11.9 MATLAB Utilities for Data Import ... 40

12 Example: Forward Simulation with RRA and CMC .. 41

13 Example: Model Editing ... 45

13.1 Purpose .. 45

13.2 Connecting an Additional Segment to the Model .. 45

13.3 Adding an Additional Actuator ... 49

OpenSim Workshop, March 2012

4

1 Introduction

1.1 Getting the Most Out of an OpenSim Workshop
The OpenSim team at Stanford puts many hours into preparing for workshops and developing
the software, documentation, and examples. As participants, you’ve put many hours into
collecting and analyzing your data and now have traveled from around the world to spend three
days working on your projects. There are several guidelines we can follow to ensure that
everyone gets a maximum benefit from the workshop:

• Use the didactic lectures, handouts, and online OpenSim resources we’ve provided as the
first step for resolving problems.

• Work together! The participant sitting next to you might be able to answer your question
just as well or better than a member of the Stanford team. Included with your handout
materials is a list of all of the workshop attendees and their project topics.

• There will be many Stanford graduate students and staff researchers available to help
answer questions during the workshop. Everyone has different areas of expertise. Please
see the see the workshop leaders to find where best to direct your questions.

• Have fun and take breaks. We’ve purposely included breaks and time for social
interaction and ask that you follow this part of the schedule. Taking the time to rest and
recharge is essential for everyone.

• Set a clear and manageable project goal for the workshop. This is the purpose of
preparing goals slides and the related pre-workshop interaction.

• Share your results. Create a project on SimTK.org to share your models and simulation
results at the end of the workshop, if you haven’t done so already. Documenting your
work will allow other researchers to build on your findings and give you credit for the
discoveries you’ve made in your research.

• Teach others. We hope you will share what you learn at the workshop with your students
and colleagues Please contact us if you are interested in starting an OpenSim user group
or leading a workshop at your local institution.

• Fill out our online survey to give us feedback and help us improve OpenSim and future
workshops.

1.2 Where to Find Additional Resources and Support
There are many resources available to help with troubleshooting, access models and simulation
data, and interact with the rest of the OpenSim community.

1.2.1 The OpenSim GUI
The OpenSim Help menu provides the following resources:

• Direct links for filing a bug or requesting a new feature.
• Direct links to three tutorials for becoming familiar with the OpenSim GUI.

OpenSim Workshop, March 2012

5

• A “Convert Files…” utility for converting older OpenSim model and setup file formats to
the latest version.

• An “Available Objects…” option that opens a panel that lists all the model components,
analyses, and tools that are available in OpenSim and lists their setup properties that
specify the behavior of these objects.

1.2.2 Online Documentation
We are preparing to launch a new online portal to OpenSim resources, and we are giving you a
preview at the workshop. You can find the main support page at:
http://opensim.stanford.edu/support/support_index_test.html

This page has links to all of our online support resources including the User’s and Developer’s
Guide, User Forums, Examples and Tutorials, Frequently Asked Questions, a Best Practices and
Troubleshooting Guide, Videos, and more.

At the top of the main support page, you will also find a custom Google search box that will let
you search all of the available resources for topics and keywords of interest.

In the rest of the document, blue highlighted text indicates a page on confluence. You can find
the page using the search box.

1.2.3 Model and Simulation Repository
You can create your own models of musculoskeletal structures and dynamic simulations of
movement in OpenSim, as well as take advantage of computer models and dynamic simulations
that other users have developed and shared. For example, you can use existing computer models
of the human lower limb, upper limb, cervical spine, and whole body, which have already been
developed and posted at https://simtk.org/home/nmblmodels. You can also use dynamic
simulations of walking and other activities that have been developed, tested, and posted on
SimTK.org. We encourage you to share your models and simulations with the research
community by setting up a project on SimTK.org.

1.2.4 Publications
You can find additional information in the following article:

Delp, S.L., Anderson, F.C., Arnold, A. S., Loan, P., Habib, A., John, C., Guendelman, E.G.,
Thelen, D.G., OpenSim: Open-source software to create and analyze dynamic simulations of
movement. IEEE Transactions on Biomedical Engineering, vol. 54, no. 11, pp. 1940-1950, 2007.
Please cite this work in any of your own publications that use OpenSim.

OpenSim Workshop, March 2012

6

2 Overview of the OpenSim
Workflow

OpenSim has a broad range of capabilities for generating and analyzing musculoskeletal models
and dynamic simulations. This chapter provides an overview of these capabilities and a list of
resources to find more information about each component of the OpenSim workflow.

2.1 The OpenSim Model

One of the major goals of the OpenSim project is to provide a common platform for creating and
sharing models of the musculoskeletal system. Thus the first component of any analysis is an
OpenSim model. An OpenSim model represents the dynamics of a system of rigid bodies and
joints that are acted upon by forces to produce motion. The OpenSim model file is made up of
components corresponding to parts of the physical system. These parts include bodies, joints,
forces, constraints, and controllers.

Additional information is also available in the section on OpenSim Models in the User’s
Guide. A large repository of existing models is available at SimTK.org
(https://simtk.org/home/nmblmodels). This library includes models of the lower extremity,
head and neck, spine, and wrist. We encourage you to contribute your own models to this
library to enable other researchers to build on your work and further advance the field. For
example, in a model used for simulation of human walking (above), the bodies represent the
geometry and inertial properties of the body segments. The joints specify the articulations at the
pelvis, hip, knee, and ankle joints, while a constraint could be used, for example, to couple the
motion of the patella with the model’s knee flexion angle. The forces in the model include both
internal forces from muscles and ligaments and external forces from interaction with the
ground. Finally, the model’s controller determines the activation of muscles (e.g. computed
muscle control).

2.2 Importing Experimental Data

In many cases, you will use OpenSim to analyze experimental data that you have collected in
your laboratory. This data typically includes:

• Marker trajectories or joint angles from motion capture
• Force data, typically ground reaction forces and moments and/or centers of pressure
• Electromyography

See Preparing Your Data in the User’s Guide for detailed information about preparing and
importing your experimental data.

OpenSim Workshop, March 2012

7

2.3 Scaling

If you are using a generic model from the existing library of models, the next step is to scale the
model to match the experimental data collected for your subject, functionality provided by the
Scale tool in OpenSim. The purpose of scaling a generic musculoskeletal model is to modify the
anthropometry, or physical dimensions, of the generic model so that it matches the
anthropometry of a particular subject. Scaling is one of the most important steps in solving
inverse kinematics and inverse dynamics problems because these solutions are sensitive to the
accuracy of the scaling step. In OpenSim, the scaling step adjusts both the mass properties
(mass and inertia tensor), as well as the dimensions of the body segments.

See the section on Scaling in the User’s Guide for more details. Tutorial 3 - Scaling, Inverse
Kinematics, and Inverse Dynamics includes an example using the Scale tool. This tutorial is also
accessible from the OpenSim application Help menu.

2.4 The Inverse Problem

OpenSim enables researchers to solve the Inverse Dynamics problem, using experimental
measured subject motion and forces to generate the kinematics and kinetics of a
musculoskeletal model (see figure below).

In inverse dynamics, experimentally measured marker trajectories and force data are use to
estimate a model’s kinematics and kinetics.

2.4.1 Inverse Kinematics

The Inverse Kinematics (IK) Tool in OpenSim finds the set of generalized coordinates (joint
angles and positions) for the model that best match the experimental kinematics recorded for a
particular subject (figure below). The experimental kinematics targeted by IK can include
experimental marker positions, as well as experimental generalized coordinate values (joint
angles). The IK tool goes through each time step of motion and computes generalized coordinate
values which positions the model in a pose that "best matches" experimental marker and
coordinate values for that time step. Mathematically, the "best match" is expressed as a
weighted least squares problem, whose solution aims to minimize both marker and coordinate
errors.

OpenSim Workshop, March 2012

8

Experimental markers are matched by model markers throughout the motion by varying the
generalized coordinates (e.g., joint angles) through time. See Inverse Kinematics in the User’s
Guide for full documentation for running IK in OpenSim. Tutorial 3 - Scaling, Inverse
Kinematics, and Inverse Dynamics walks through an example of using Inverse Kinematics for
human walking.

2.4.2 Inverse Dynamics

Dynamics is the study of motion and the forces and moments that produce that motion. The
Inverse Dynamics (ID) tool determines the generalized forces (e.g., net forces and torques) that
cause a particular motion, and its results can be used to infer how muscles are utilized for that
motion. To determine these internal forces and moments, the equations of motion for the
system are solved with external forces (e.g., ground reactions forces) and accelerations given
(estimated by differentiating angles and positions twice). The equations of motion are
automatically formulated using the kinematic description and mass properties of a
musculoskeletal model in Simbody™.

See Inverse Dynamics in the User’s Guide for full documentation for running ID in OpenSim.
Tutorial 3 - Scaling, Inverse Kinematics, and Inverse Dynamics walks through an example of
using ID for human walking.

2.4.3 Static Optimization

Static optimization is an extension of inverse dynamics that further resolves the net joint
moments into individual muscle forces at each instant in time based on some performance
criteria, like minimizing the sum of squared muscle forces. See Static Optimization in the User’s
Guide for more details.

2.5 The Forward Problem

OpenSim is also capable of generating muscle-driven forward simulations of gait and other
movements (figure below).

OpenSim Workshop, March 2012

9

In a forward dynamic simulation of motion, simulated muscle excitations are used to drive the
motion of a model to follow some observed movement.

The Forward Dynamics tool takes a set of controls (e.g., muscle excitations) to drive a model's
motion by integrating forward in time. Typically, muscle excitations are generated using the
Computed Muscle Control (CMC) tool. As a pre-cursor to running CMC, the Residual Reduction
Algorithm (RRA) is used to minimize the effects of modeling and marker data processing errors
that aggregate and lead to large nonphysical compensatory forces called residuals. Specifically,
RRA alters the torso mass center of a subject-specific model and permits the kinematics of the
model from inverse kinematics to vary in order to be more dynamically consistent with the
ground reaction force data. Thus the typical workflow for generating a muscle-driven simulation
after importing experimental data is Scale->IK->RRA->CMC->Forward Dynamics (figure
below).

Full documentation of Forward Dynamics, the Residual Reduction Algorithm, and Computed
Muscle Control is available in the respective sections in the User’s Guide.

2.6 Analyzing Simulations

Often, answering your research questions requires delving deeper into the details of a
simulation. Thus OpenSim includes an Analyze tool that allows you to estimate, for example,
muscle fiber or tendon lengths during a motion or the loads on the knee joint. The Analyze Tool
enables you to analyze a model or simulation based on a number of inputs that can include time
histories of model states, controls, and external loads applied to the model. The following
analyses are available in OpenSim:

OpenSim Workshop, March 2012

10

1. Body Kinematics: Reports the spatial kinematics (position and orientation, linear and
angular velocity, linear and angular acceleration) of specified bodies for the duration of
the analysis.

2. Point Kinematics: Reports the global position, velocity and acceleration of a point
defined local to a body during a simulation.

3. Muscle Analysis: Reports all attributes of all muscles. This includes: fiber length and
velocity, normalized fiber length, pennation angle, active-fiber force, passive-fiber force,
tendon force, and more.

4. Joint Reactions: Reports joint reaction forces. These are forces that enforce the
motion of the joint. The force applied to either parent or child and expressed in ground,
parent or child can be reported.

5. Induced Acceleration: Computes accelerations caused or "induced" by individual
forces acting on a model, for example, the contribution of individual muscle forces to the
mass center acceleration.

6. Force Reporter: Reports all forces acting in the model. For ligaments and muscles, the
tension along the path is reported and for ideal actuators the scalar force or torque is
reported. For all other forces, the resultant body forces (force and moment acting at the
center of mass of the body) are reported. For example, contact forces from an
ElasticFoundationForce element yields the resultant body force on the contacting bodies
separately, expressed in ground. For constraints, the same is true, except the forces are
expressed in the most distal common ancestor body. Whenever a constraint involves
ground, this is the ground body; however, if for example a model of the arm has a hand
with fingers touching via a point constraint, then the forces are expressed in the nearest
common ancestor, which would be the palm (if modeled as a single body).

More details about the analyses available in OpenSim are available in the
sections Analyses. Joint Reactions Analysis, and Induced Acceleration Analysis.

OpenSim Workshop, March 2012

11

3 Scaling
The Scale Tool alters the anthropometry of a model so that it matches a particular subject as
closely as possible. Scaling is typically performed based on a comparison of experimental
marker data with virtual markers placed on a model. In addition to scaling a model, the scale
tool can be used to adjust the locations of virtual markers so that they better match the
experimental data.

The Scale Tool is accessed by selecting Tools → Scale Model… from the OpenSim main menu
bar. Like all tools, the operations performed by the Scale Tool apply to the current model.

3.1 Overview

The figure below shows the required inputs and outputs for the Scale Tool. Each is described in
more detail in the following sections.

Inputs and Outputs of the Scale Tool. Experimental data are shown in green; OpenSim
files (.osim) are shown in red; settings files are shown in blue.

The file names are examples that can be found in the examples/Gait2354_Simbody
directory installed with the OpenSim distribution.

3.2 Settings Files

The subject01_Setup_Scale.xml file is the setup file for the Scale Tool. It contains settings,
described in detail in How Scaling Works in the User’s Guide, and refers to other files that
contain additional settings. These other files are listed below:

gait2354_Scale_MarkerSet.xml: Marker set for the Scale Tool. It contains the set of virtual
markers that are placed on the body segments of the model.

gait2354_Scale_Tasks.xml: Inverse kinematics tasks for the Scale Tool. In addition to
scaling the model, the Scale Tool moves the virtual markers on the model so that their positions
match the experimental marker locations. To do this, the Scale Tool must position the model so

OpenSim Workshop, March 2012

12

that it best matches the position of the subject. This requires an inverse kinematics problem to
be solved. This file contains the inverse kinematics tasks (i.e., a specification of which virtual
and experimental markers should be matched up during the inverse kinematics solution) and
their relative weightings. This file contains the inverse kinematics tasks describing which virtual
and experimental markers should be matched up during the inverse kinematics phase. The file
also contains marker weights, which are relative and determine how "well" the virtual markers
track experimental markers (i.e., a larger weight will mean less error between virtual and
experimental marker positions).

gait2354_Scale_MeasurementSet.xml: Measurement set for the Scale Tool. It contains
pairs of experimental markers, the distance between which are used to scale the generic
musculoskeletal model.

AND/OR

subject01_Scale_ScaleSet.xml: Scale set for the Scale Tool. It contains a set of manual scale
factors to be applied to the generic musculoskeletal model.

3.3 Inputs

Two data files are required by the Scale Tool:

subject01_static.trc: Experimental marker trajectories for a static trial. A static trial is
usually several seconds of data with the subject posed in a known static position. A segment of a
regular motion file can be used as a static trial if desired, but this is not typically done. The static
pose should include the subject wearing the full marker set. The marker trajectories are
specified in global frame.

gait2354_simbody.osim: OpenSim musculoskeletal model. This generic model will be scaled
to match the anthropometry of your subject.

You can also provide an additional, optional file:

subject01_static.mot: Experimental generalized coordinate values (joint angles) for a trial
obtained from alternative motion capture devices or other specialized algorithms. You can
specify coordinate weights in the Tasks file, if joint angles are know a priori. Coordinate weights
are also relative and determine how "well" a joint angle will track the specified angle.

3.4 Outputs

The Scale Tool generates a single file:

subject01_simbody.osim: OpenSim musculoskeletal model scaled to the dimensions of the
subject.

OpenSim Workshop, March 2012

13

3.5 Best Practices and Troubleshooting

3.5.1 Data Collection and Other Preparation:

1. When collecting data, take pictures of your subjects in the static pose. These picture are
valuable for evaluating the results of the Scale tool

2. Measure subject specifics, like height, mass, body segment lengths, mass distribution (if
DXA is available), and strength (if a Biodex is available). You can use this data, along
with marker positions, to best match the generic model to a specific subject.

3. Have your subjects perform movements to calculate functional joint centers at the hip,
knee, ankle, and/or shoulders and append the joint centers to your static trial data (see
Appending Data to a Motion).

3.5.2 Scale Settings:

1. Rely on markers that correspond to anatomical landmarks and functional joint centers
(FJC) to position and scale the generic model.

1. See Scale Factors Pane for information about defining the measurement set for
scaling.

2. See Scale Static Pose Weights Panel for information about setting weights when
positioning the model in the static pose

2. Some segments, like the pelvis and torso, are often best scaled non-uniformly. For
example, see the torse scale settings in the Scale Factors Pane.

3. Review How Scaling Works, The Control Panel, and Scale Factors Pane for more
information about Scale Settings.

3.5.3 Evaluating your Results:

1. Scaling a model is an iterative process. Use the "preview static pose" option in the GUI.
See the section on "Previewing Scale" in the Settings Pane section for more
information. After running preview, perform steps 2 to 5 described below.

2. Check the messages window, which has information about the results of scaling,
including the overal RMS marker error and the maximum marker error.

1. In general, maximum marker errors for bony landmarks should be <2 cm.
2. RMS error should typically be less than 1 cm.
3. Pay close attention to errors in the bony landmark and FJC markers when

assessing the quality of your scaling results.
3. Visualize the scaled model's anatomical marker positions relative to the corresponding

experimental markers to see how well the model "fits" the data. Use the pictures you took
to assess the results, comparing the joint angles in the "Coordinates" window to the
angles you observe in the pictures.

1. Do the hip, knee, and ankle angles from scale match what you observe in the
picture?

OpenSim Workshop, March 2012

14

2. Are there any large mismatches between experimental and model markers? Can
these mismatches be explained by examining the pictures you took?

3. If pictures aren't available, use what you know about a typical static pose capture.
For example, the ankle angle is generally less than 5º and hip flexion angle is less
than 10º.

4. Again, pay close attention to errors in the landmark and FJC markers when
assessing the quality of your scaling results.

4. After examining the messages window and performing a visual comparison, adjust the
virtual markers and marker weightings to improve your results:

1. Again, avoid adjusting the positions of the landmark and FJC virtual markers to
match the experimental markers.

5. Once you've adjusted the virtual marker positions and the scale settings, preview the new
static pose. Re-assess your results using steps 2 to 4 above. Once you are happy with
your results, hit "Run" to generate a scaled model and adjust the virtual markers on the
model to match all of the experimental markers.

3.5.4 Troubleshooting Tips:

1. It is common to iterate through Scale and Inverse Kinematics to fine-tune segment
dimensions and marker positions that yield low marker errors for the task of interest.

2. Use coordinate tasks (Static Pose Weights) to set joint angles for troublesome joints that
are very sensitive to how the markers are placed (commonly the ankle joint and lumbar
joint). For example if it is known that the foot is flat, an ankle angle can be provided and
then the markers adjusted in order to match the known pose.

3. If using coordinates from a motion capture system make sure that the joint/coordinate
definitions match otherwise you may cause more harm than good.

4. The model has a built in assumption that the global Y axis is up. If your data doesn't fit
this, then consider transforming it. You can use Previewing Motion Capture (Mocap)
Data to determine the proper transform to apply.

OpenSim Workshop, March 2012

15

4 Inverse Kinematics
The Inverse Kinematics Tool steps through each time frame of experimental data and positions
the model in a pose that "best matches" experimental marker and coordinate data for that time
step. This "best match" is the pose that minimizes a sum of weighted squared errors of markers
and/or coordinates. Getting accurate results from the IK tool is essential for using later tools like
Static Optimization, Residual Reduction Algorithm, and Computed Muscle Control.

To launch the IK Tool, select Tools → Inverse Kinematics from the OpenSim main menu
bar.

4.1 Overview

Inputs and Outputs of the IK Tool. Experimental data are shown in green; OpenSim files
(.osim) are shown in red; settings files are shown in blue.

The file names are examples that can be found in the examples/Gait2354_Simbody
directory installed with the OpenSim distribution.

4.2 Inputs

The primary inputs to IK are the following files:

1. subject01_simbody.osim: A subject-specific OpenSim model generated by scaling a
generic model with the Scale Tool or by other means, along with an associated marker
set containing adjusted virtual markers.

2. subject01_walk1.trc: Experimental marker trajectories for a trial obtained from a
motion capture system, along with the time range of interest

3. gait2354_IK_tasks.xml: A file containing marker weightings. As in the scale tool,
marker weights are relative and determine how "well" the virtual markers track
experimental markers (i.e., a larger weight will mean less error between virtual and
experimental marker positions).

OpenSim Workshop, March 2012

16

4. subject01_coords.mot (optional): Experimental generalized coordinate values (joint
angles) for a trial obtained from alternative motion capture devices or other specialized
algorithms. You can optionally specify relative coordinate weights in the Tasks file, if
joint angles are known a priori.

4.3 Outputs

1. subject01_walk1_ik.mot: A motion file containing the generalized coordinate
trajectories (joint angles and/or translations) computed by IK.

4.4 Best Practices and Troubleshooting

4.4.1 Data Collection and Other Preparation

1. When collecting experimental data, place three non-collinear markers per body segment
that you want to track. You need at least three markers to track the 6 DOF motion
(position and orientation) of a body segment.

2. Place markers on anatomical locations with minimum skin/muscle motion.

4.4.2 Inverse Kinematics Settings

1. Weight "motion" segment markers, for example from a triad placed on the thigh
segment, more heavily than anatomical markers affixed to landmarks like the greater
trochanter and the acromion, which can be helpful for scaling, but are influenced by
muscle and other soft tissue movements during motion.

2. Relative marker weightings are more important than their absolute values. Therefore, a
weighting of 10 vs. 1 is 10 times more important whereas 20 vs. 10 is only twice as
important. Markers are not necessarily tracked better because they both have higher
weightings.

3. See How Inverse Kinematics Works and How to Use the IK Tool for more information
about IK settings.

4.4.3 Evaluating your Results

1. Total RMS and max marker errors are reported in the messages window. Use these
values to guide changes in weightings, or if necessary to redo marker placement and
possibly scaling. Maximum marker error should generally be less than 2-4 cm and RMS
under 2 cm is achievable. These guidelines will vary depending on the nature of the
model and the motion being examined.

2. If using coordinates from a motion capture system make sure that the joint/coordinate
definitions match otherwise you may cause more harm than good.

3. Compare your results to similar data reported in the literature. Your results from an
unimpaired average adult should generally be within one standard deviation.

OpenSim Workshop, March 2012

17

4. If you are unsatisfied with the results, recheck the results of Scale.

OpenSim Workshop, March 2012

18

5 Inverse Dynamics
The inverse dynamics tool determines the generalized forces (e.g., net forces and torques) at
each joint responsible for a given movement. Given the kinematics (e.g., states or motion)
describing the movement of a model and perhaps a portion of the kinetics (e.g., external loads)
applied to the model, the tool uses these data to perform an inverse dynamics analysis. Classical
mechanics mathematically expresses the mass-dependent relationship between force and
acceleration, F = ma , with equations of motion. The inverse dynamics tool solves these
equations, in the inverse dynamics sense, to yield the net forces and torques at each joint which
produce the movement.

To launch the ID Tool, select Tools → Inverse Dynamics from the OpenSim main menu bar.

5.1 Overview

This figure shows the required inputs and outputs for the Inverse Dynamics Tool.

Inputs and Outputs of the Inverse Dynamics Tool. Experimental data are shown
in green; OpenSim files (.osim) are shown in red; settings files are shown in blue; files generated
by the workflow are shown in purple.

The file names are examples that can be found in the examples/Gait2354_Simbody
directory installed with the OpenSim distribution.

5.2 Settings File

The subject01_Setup_InverseDynamics.xml file is the setup file for the Inverse Dynamics
Tool. It contains settings, as described in detail in How to Use the Inverse Dynamics Tool.

5.3 Inputs

Three data files are required as input by the inverse dynamics tool:

subject01_walk1_ik.mot: Motion file containing the time histories of generalized
coordinates that describe the movement of the model. This file could be generated by the

OpenSim Workshop, March 2012

19

Inverse Kinematics Tool, or manually. The file does not need to contain values for all
coordinates. The coordinates that were not specified are assumed to have default values by the
Tool.

subject01_walk1_grf.xml: xternal load data (i.e., ground reaction forces, moments, and
center of pressure location). Note that it is necessary to measure and apply or model all external
forces acting on a subject during the motion to calculate accurate joint torques and forces. This
file includes the name of the ground reaction force-data file (e.g. subject01_grf.mot) as well as
the names of the bodies they are applied to. Options to specify the forces, point of application,
and torques in a global or body local frame (relative to the body to which the force is being
applied) are also defined here. Details are provided in How to Use the Inverse Dynamics Tool.

subject01_simbody.osim: A subject-specific OpenSim model generated by scaling a generic
model with the Scale Tool or by other means, along with an associated marker set containing
adjusted virtual markers. The model must include inertial parameters. Note that forces like
contact, ligaments, bushings, and even muscles will be applied to the model based on the
kinematic state of the model and defaults for the muscle states, unless these forces are
specifically excluded in the calculation.

5.4 Outputs

The Inverse Dynamics Tool generates a single file in a folder specified in the setup file:
subject01_walk1_InverseDynamics_force.sto: Storage file containing the time histories
of the net joint torques and forces, acting along the coordinate axes that produce the
accelerations estimated (via double differentiation) from your measured experimental motion
and modeled and external forces applied.

5.5 Best Practices and Troubleshooting

1. Filter your raw coordinate data, since noise is amplified by differentiation. Without
filtering, the calculated forces and torques will be very noisy.

2. Compare your results to data reported in the literature. Your results should be within
one s.d. of reported values.

3. Inspect results from Inverse Dynamics to check if ground reaction forces were applied
correctly or not. Are there large and unexpected forces at the pelvis? For gait, applying
ground reaction forces should help reduce the forces computed by Inverse Dynamics at
the pelvis.

4. See How Inverse Dynamics Works and How to Use the Inverse Dynamics Tool for more
information about using the Inverse Dynamics Tool.

OpenSim Workshop, March 2012

20

6 Static Optimization
Static optimization is an extension to inverse dynamics that further resolves the net joint
moments into individual muscle forces at each instant in time. The muscle forces are resolved by
minimizing the sum of squared (or other power) muscle activations.

To launch the Static Optimization Tool, select Static Optimization… from the Tools menu.
The Static Optimization Tool dialog window, like all other OpenSim tools, operates on the
current model open and selected in OpenSim

6.1 Overview

The figure below shows the required inputs and outputs for the Static Optimization Tool. Each is
described in more detail in the following sections:

Inputs and Outputs of the Static Optimization Tool. Experimental data are shown
in green; OpenSim files (.osim) are shown in red; settings files are shown in blue; files generated
by the workflow are shown in purple. To run static optimization, you use the analyze command.

The file names are examples that can be found in the examples/Gait2354_Simbody
directory installed with the OpenSim distribution.

6.2 Inputs

Three files are required as input by the Static Optimization Tool:

subject01_walk1_ik.mot: Motion file containing the time histories of generalized
coordinates that describe the movement of the model. This can be kinematic data (i.e., joint
angles) from IK or states (i.e., joint angles AND velocities) from RRA and the time range of
interest.

subject01_walk1_grf.xml: External load data (i.e., ground reaction forces, moments, and
center of pressure location). Note that you must measure or model all external forces acting on a
subject during the motion to calculate accurate muscle forces. The xml file describes how to
apply the measured ground reaction forces to the model during the analysis.

OpenSim Workshop, March 2012

21

subject01_simbody.osim: A subject-specific OpenSim model generated by scaling a generic
model with the Scale Tool or by other means, along with an associated marker set containing
adjusted virtual markers. The model must include inertial parameters (segment masses, etc.).

x: The exponent for the activation-based cost function, to be minimized (i.e., the criteria used to
solve muscle force distribution problem).

6.3 Outputs

The Static Optimization Tool generates three files in a specified folder:

subject01_walk1_StaticOptimization_controls.xml: Contains the time histories of
muscle activations. These controls were minimized by the Static Optimization Tool.

subject01_walk1_StaticOptimization_activation.sto: Storage file containing the time
histories of muscle activations.

subject01_walk1_StaticOptimization_force.sto: Storage file containing the time
histories of muscle forces.

6.4 Best Practices and Troubleshooting

6.4.1 Static Optimization Settings

1. You can use IK or RRA results as input kinematics. If using IK results, you usually need
to filter them, either externally or using the OpenSim analyze/static optimization
field. If using RRA results, you usually do not have to filter.

2. For gait and many other motions, you need to add (append) residual actuators to the
first free joint in the model (typically the ground-pelvis joint).

1. There should be one actuator for each degree of freedom (e.g. FX, FY, FZ, MX,
MY, MZ).

2. These residual actuators are required because there is dynamic inconsistency
between the estimated model accelerations and the measured ground reaction
forces. This inconsistency can result from marker measurement error, differences
between the model and subject's geometry and intertial parameters.

3. Running RRA will reduce, but not eliminate these residuals, thus appending
actuators is still necessary.

3. See How Static Optimization Works and How to Use the Static Optimization Tool for
more information.

6.4.2 Troubleshooting

1. If the residual actuators or the model's muscles are weak, the optimization will take a
long time to converge or will never converge at all.

OpenSim Workshop, March 2012

22

1. If the residual actuators or weak, increase the maximum control value of a
residual, while lowering its maximum force. This allows the optimizer to generate
a large force (if necessary) to match accelerations but large control values are
penalized more heavily. In static optimization, ideal actuator excitations are
treated as activations in the cost function.

2. If the muscles are weak, append Coordinate Actuators to the model at the joints
in the model. This will allow you to see how much "reserve" actuation is required
at a given joint and then strengthen the muscles in your model accordingly.

3. If troubleshooting a weak model and each time, optimization is slow, try reducing
the parameter that defines the max number of iterations.

2. StaticOptimization works internally by solving the InverseDynamics problem, then
trying to solve the redundancy problem for actuators/muscles using the accelerations
from the InverseDynamics solution as a constraint. If a constraint violation is reported,
this could be a sign that the optimizer couldn't solve for muscle forces while enforcing
the InverseDynamics solution.

1. This likely means that there is noise in the data or there is a sudden jump in
accelerations in one frame.

2. In this case you should examine the Inverse Dynamics solution to examine the
problematic frame, and fix/interpolate the data during this portion of the motion.

6.4.3 Evaluating your Results

1. Are there any large or unexpected forces residual actuator forces?
2. Find EMG or muscle activation data for comparison with your simulated activations.

Does the timing of muscle activation/deactivation match? Are the magnitudes and
patterns in good agreement?

OpenSim Workshop, March 2012

23

7 Residual Reduction Algorithm
The purpose of Residual Reduction is to minimize the effects of modeling and marker data
processing errors that aggregate and lead to large nonphysical compensatory forces called
residuals. Specifically, residual reduction alters the torso mass center of a subject-specific model
and permits the kinematics of the model from inverse kinematic to vary in order to be more
dynamically consistent with the ground reaction force data.

The residual reduction algorithm tool is accessed by selecting Tools → Residual Reduction
Algorithm… from the OpenSim main menu bar. Like all tools, the operations performed by the
computed muscle control tool apply to the current model.

7.1 Overview

The figure below shows the required inputs and outputs for performing the residual reduction
algorithm. Each is described in more detail below.

Inputs and Outputs for performing residual reduction. Experimental data are shown
in green; OpenSim files (.osim) are shown in red; settings files are shown in blue; files generated
by the workflow are shown in purple.

7.2 Settings File

The subject01_Setup_RRA.xml file is a setup file for the RRATool, which specifies settings,
inputs, and outputs that affect the behavior of the residual reduction algorithm, which can be
defined using the GUI or by hand. Details of the settings are described in the section on using
the Graphical User Interface.

The setup file identifies the actuators (i.e., the ideal residual and reserve joint actuators required
by RRA) as well as the kinematic tracking tasks. Furthermore, control constraints on the
actuators (to limit the maximum residual force) can be specified.

7.3 Inputs

OpenSim Workshop, March 2012

24

Several files are required as input to the RRA Tool to perform residual reduction:

subject01_walk1_ik.mot: Contains the time histories of model kinematics including the joint
angles and pelvis translations.

gait2345_RRA_Tasks.xml: A tracking tasks file specifying which coordinates to track and
the corresponding tracking weight (weights are relative and determine how "well" a joint angle
will track the specified joint angle from IK). A couple key considerations:

1. Selection of kp and kv are not arbitrary. They define the behavior of the error dynamics
for each q as a second order linear system. We can write the kp and kv for the desired
system behavior in terms of system poles. For a (stable) critically damped system (real
negative poles) kp = lambda^2 and kv = -2*lambda.

2. This enables kinematics of joints (coordinates) for which we have high confidence (e.g.
knee flexion, hip flexion) to be weighted more heavily compared to those of less
confidence (e.g. hip internal rotation and ankle inversion).

gait2345_RRA_ControlConstraints.xml: Contains limits on the RRA actuators. The
actuator constraints file specifying the maximum and minimum "excitation" (i.e., control signal)
for each actuator. A few key considerations:

1. Note that the maximum/minimum force or torque generated by an ideal actuator is the
product of the max/min force and max/min excitation.

2. Joint torques (and muscles) have a maximum magnitude of 1.
3. Residuals have bounds exceeding their anticipated force requirement. Weightings are

implicit in this description. A high optimal_force means that large output force (torque)
does not require a large control value (i.e. low cost). Conversely, residuals with low
optimal force require high control values that incur higher costs.

subject01_walk1_grf.xml: ExternalLoads file specifying the measured ground reaction
forces that should be applied to the model during simulation and how to apply them.

subject01_simbody.osim: A subject-specific OpenSim model generated by scaling a generic
model with the Scale Tool or by other means, along with an associated marker set containing
adjusted virtual markers. The model must include inertial parameters.

gait2345_RRA_Actuators.xml: Ideal joint actuators used to replace muscles. The Actuator
Set specifies the residual and reserve actuators to be applied and their parameters, like
maximum/minimum force and body or joint, or location, depending on the actuator type. A few
key considerations:

1. Each degree of freedom in the model should have an ideal torque or force (reserve)
actuator. This includes the 6 DOFs of the model's base segment, which are called the
residual actuators.

OpenSim Workshop, March 2012

25

2. In most circumstances, these Ideal joint actuators used to replace the muscles in the
model (by checking "Replace model actuators" in the Actuators tab.

3. Optimal forces are the maximum output of ideal actuators (torques, linear forces).
Torque (force) applied is optimal_force x control_value

4. Residual at pelvis should be applied at scaled location of COM

7.4 Outputs

Residual reduction generates the following outputs:

subject01_RRA_states.sto: Adjusted kinematics (i.e., joint angles) and corresponding model
states of the simulated motion (i.e., joint angles AND velocities).

subject01_adjusted.osim (optional): A model with adjusted mass properties.

subject01_RRA_forces.sto: Actuator forces and torques (i.e., joint torques corresponding to
adjusted kinematics).

subjcet01_RRA_controls.xml: Actuator excitations (i.e., control signals needed to generate
actuator forces and torques)

7.5 Best Practices and Troubleshooting

7.5.1 RRA Settings

1. You should replace the muscles in your model with residual actuators and ideal joint
actuators. Residual reduction is a form of forward dynamics simulation that utilizes a
tracking controller to follow model kinematics determined from the inverse kinematics.
Computed muscle control (CMC) serves as the controller, but without muscles the
skeleton of the model can be used to determine a mass distribution and joint kinematics
that are more consistent with ground reaction forces.

2. Optimal forces for residuals should be low to prevent the optimizer from "wanting" to
use residual actuators (an actuator with large optimal force and low excitation is "cheap"
in the optimizer cost).

3. To help minimize residuals, make an initial pass with default inputs, then check
residuals and coordinate errors. To reduce residuals further, decrease tracking weights
on coordinates with low error. You can also try decreasing the maximum excitation on
residuals or the actuator optimal force.

4. Typically, you should lock” the subtalar and mtp joints in *.osim file.
5. Make sure “use_fast_optimization_target” is false (unchecked). This allows the

kinematics to be slightly adjusted to account for dynamic inconsistencies. This is the
default in settings files distributed with OpenSim or created from the GUI. See How
CMC Works for a comparison of the "slow" and "fast" targets.

OpenSim Workshop, March 2012

26

6. The “cmc_time_window” in the settings file should be 0.001 s for RRA. This is the
default in settings files distributed with OpenSim or created from the GUI.

7. See How RRA Works and How to Use the RRA Tool for more information about RRA
settings.

7.5.2 Troubleshooting

1. Check the pelvis COM location in Actuator files.
2. If RRA is failing, try increasing the max excitation for residuals by 10x until the

simulation runs. Then try working your way back down while also "relaxing" tracking
weights on coordinates.

3. If residuals are very large (typically, this is greater than 2-3x BW, depending on the
motion), there is probably something wrong with either i) the scaled model, (ii) the IK
solution, or (iii) the applied GRFs. To double check that forces are being applied
properly, visualize GRFs with IK data (you can use the Previewing Motion Capture
(Mocap) Data function in the GUI).

4. If there is pelvis drift and/or FY is not centered around zero, check that the body mass
and force calibration are correct.

5. When using the example RRA actuators XML file, you should note that residual forces
are applied to the center-of-mass (COM) of the unscaled pelvis. However, if you scale the
model, the COM of the pelvis can change. Although the effect may be small, you should
change the location of the residual force actuators in the your RRA actuators file to
correspond to the scaled pelvis COM.

7.5.3 Evaluating your Results

1. RMS difference in joint angle during the movement should be less than 2-5º (or less than
2 cm for translations).

2. Peak Residual Forces should typically be less than 10-20 N. Average residuals should
typically be less than 5-10 N.

1. The size of residuals will depend on the type of motion being studied. For
example residuals for high speed activities, like sprinting, will typically be larger
than walking.

2. Residuals will also be larger if there are external forces that you have not
accounted for, like a subject walking with a handrail.

3. Compare the residual moments from RRA to the moments from Inverse Dynamics. You
should see a 30-50% reduction in peak residual moments.

4. Compare the joint torques/forces to established literature (if available). Try to find data
with multiple subjects. Your results should be within one standard deviation of the
literature

The table below shows an example of threshold values used to evaluate RRA results for full body
simulations of walking and running:

OpenSim Workshop, March 2012

27

OpenSim Workshop, March 2012

28

8 Computed Muscle Control
The purpose of Computed Muscle Control (CMC) is to compute a set of muscle excitations (or
more generally actuator controls) that will drive a dynamic musculoskeletal model to track a set
of desired kinematics in the presence of applied external forces (if applicable).

The Computed Muscle Control tool is accessed by selecting Tools → Computed Muscle
Control… from the OpenSim main menu bar. Like all tools, the operations performed by the
Computed Muscle Control tool apply to the current model.

8.1 Overview

The figure below shows the required inputs and outputs for the Computed Muscle Control Tool.
Each is described in more detail in the following sections.

Inputs and Outputs of the Computed Muscle Control Tool. Experimental data are
shown in green; OpenSim files (.osim) are shown in red; settings files are shown inblue; files
generated by the workflow are shown in purple.

The file names are examples that can be found in the examples/Gait2354_Simbody
directory installed with the OpenSim distribution.

8.2 Settings File

The subject01_Setup_CMC.xml file is a setup file for the CMC Tool, which specifies settings,
inputs, and outputs that affect the behavior of the tracking controller to determine actuator
(including muscles) controls. These can be defined using the GUI or by hand. Details of the
settings are described in the section on the Graphical User Interface.

The setup file identifies the actuators (i.e., the residual actuators, such as required for dynamic
consistency) as well as the kinematic tracking tasks. Furthermore, control constraints on the
actuators (to limit the maximum residual force) can be specified.

OpenSim Workshop, March 2012

29

8.3 Inputs

Several data files are required as input by the Computed Muscle Control Tool:

subject01_walk1_RRA_Kinematics_q.sto: Contains the time histories of model
kinematics including the joint angles and pelvis translations from RRA.

gait2345_CMC_Tasks.xml: The tracking tasks file specifying which coordinates to track and
the corresponding tracking weight (weights are relative and determine how "well" a joint angle
will track the specified joint angle from RRA).

gait2345_CMC_ControlConstraints.xml: Contains limits on model actuators, which
include muscles, reserve and residual actuators. The control constraints file specifies the
maximum and minimum "excitation" (i.e., control signal) for each actuator. Control constraints
can also be used to enforce when certain actuators are "on" or "off" and the range in which they
can operate.

subject01_walk1_grf.xml: External load data (i.e., ground reaction forces, moments, and
center of pressure location). See Inverse Dynamics for more details.

subject01_simbody_adjusted .osim: A subject-specific OpenSim model generated by
scaling a generic model with the Scale Tool or by other means, along with an associated marker
set containing adjusted virtual markers. The model must include inertial parameters. The model
should have an adjusted torso center of mass to reduce residuals

gait2345_CMC_Actuators.xml: Contains the residual and reserve actuators, as in RRA.

8.4 Outputs

The Computed Muscle Control Tool tool primarily reports the necessary controls:

subject01_walk1_controls.xml: Contains the excitations to individual muscles as well as
controls for any residual and/or reserve actuators.

subject01_CMC_forces.sto: Muscle forces and reserve/residual forces and torques.

For completeness, CMC outputs the state trajectories (these are joint coordinate values and their
speeds, as well as muscle states such activation and fiber length) :

subject01_walk1_states.sto: Model states and muscle states of the simulated motion (i.e.,
joint angles AND velocities, muscle fiber lengths AND activations).

8.5 Best Practices and Troubleshooting Tips

OpenSim Workshop, March 2012

30

8.5.1 CMC Settings

1. The reserve actuators are torques that are added about each joint to augment the
actuator’s force in order to enable the simulation to run (reserves turn on when an
actuator cannot produce the needed at a given time point). To help minimize reserve
torques, make an initial pass with default inputs, and then check reserves, residuals, and
joint angle errors. To reduce reserves further, decrease tracking weights on coordinates
with low error.

2. Optimal forces for reserves should be low to prevent the optimizer from "wanting" to use
reserve actuators (an actuator with large optimal force and low excitation is "cheap" in
the optimizer cost). If larger forces are needed for a successful simulation, increase the
maximum control value of residuals. The residuals will then be able to generate sufficient
force, but will be penalized for doing so.

3. If you are still getting high reserves for a particular degree-of-freedom during a
particular time range in the simulation, it may be useful to examine more closely the
muscles which span the degree-of-freedom during that time region (see
TipsForDebuggingMuscleActuatedSimulations.pdf). In particular:

1. Check passive muscle force (i.e., quadriceps). Large passive forces (from large
knee flexion angles) may induce active forces in the antagonistic muscles (i.e.
hamstrings, gastrocnemius) which may not be desired. Passive forces cannot be
controlled in CMC - they are purely a function of the whole body kinematics of
the motion. Although tempting, do not increase the maximum isometric force
excessively unless you know its consequences in the muscle model. Because the
passive muscle force is modeled as a function of maximum isometric force, if you
increase the maximum isometric force in the hope of making your active muscles
stronger, you will be increasing the passive forces in the muscles as well. To
decrease passive muscle forces, you should reduce the passive muscle stiffness
property of muscle (or more specifically, increase the FmaxMuscleStrain
parameter in the Thelen2003Muscle).

2. Check normalized fiber length during the motion (plotter tool). Is the muscle
acting at sub-optimal fiber lengths (i.e. less than 0.8 or greater than 1.2) at the
time where the reserves are being generated? If so, then you may consider
modifying either the tendon slack length or the optimal fiber length of the muscle
so that it is operating more optimally (and thus capable of generating a greater
force) during this time in the simulation. Although many cadaver studies report
the optimal fiber length of a muscle, the tendon slack length is almost never
reported, even though it is especially sensitive to the operating region on the
force-length curve. Small adjustments to the tendon slack lengths can therefore
be justified in reducing the reserves on the basis that we don't have as much
confidence in this value to begin with.

4. You should almost always use the "fast" target for CMC. This requires the joint
accelerations at each time step are matched to the RRA results. Fast target should work
for normal subjects, slow target may be needed for subjects with pathologies

5. Start CMC at least 0.03 seconds before point where you want to start analyzing your
data, as CMC requires a 0.03 sec time for initialization.

OpenSim Workshop, March 2012

31

6. See How CMC Works and How to Use the CMC Tool for more information.

8.5.2 CMC Troubleshooting

1. If CMC is failing, try increasing the max excitation for reserves and residuals by 10x until
the simulation runs. Then try working your way back down while also "relaxing" tracking
weights on coordinates.

8.5.3 Evaluating your Results

1. Peak reserve actuators torques should typically be less than 10% of the peak joint torque.
2. Peak residual forces should typically be less than 10-20 N and peak residual moments

less than 75Nm, depending on the type of motion.
3. Double check your kinematics, in comparison to RRA. Generally, they should match well

as long as you are using the "fast" target.
4. If performing an Induced Acceleration Analysis, you should verify that reserves and

residuals contribute less than 5% to the net acceleration of interest.
5. Compare the simulated activations to experimental EMG data (either recorded from

your subject or from the literature). Activations should exhibit similar timing and
magnitude to EMG data. You can also compare your muscle activations and/or forces to
other simulations from SimTK or the literature.

The table below shows an example of threshold values used to evaluate CMC results for full body
simulations of walking and running:

OpenSim Workshop, March 2012

32

9 Forward Dynamics
Given the controls (e.g., muscle excitations) computed by the Computed Muscle Control (CMC)
or another approach, the Forward Dynamics Tool can drive a forward dynamic simulation. A
forward dynamics simulation is the solution (integration) of the differential equations that
define the dynamics of a musculoskeletal model. By focusing on specific time intervals of
interest, and by using different analyses, more detailed biomechanical data for the trial in
question can be collected.

To launch the Forward Dynamics Tool select Forward Dynamics… from the Tools menu.
The Forward Dynamics Tool dialog like all other OpenSim tools operates on theCurrent
Model open and selected in OpenSim.

9.1 Overview

The figure shows the required inputs and outputs for the Forward Dynamics Tool. Each is
described in more detail in the following sections.

Inputs and Outputs of the Forward Dynamics Tool. Experimental data are shown
in green; OpenSim files (.osim) are shown in red; settings files are shown in blue; files generated
by the workflow are shown in purple.

The file names are examples that can be found in the examples/Gait2354_Simbody
directory installed with the OpenSim distribution.

9.2 Inputs

Four data files are required as input by the Forward Dynamics Tool:

subject01_walk1_controls.xml: Contains the time histories of the model controls (e.g.,
muscle excitations) to the muscles and/or joint torques. It is possible to specify the controls as
.sto file instead with columns corresponding to desired excitations. This file may be generated by
the user, Static Optimization Tool, or Computed Muscle Control Tool. If no controls are
provided they are assumed to be zero for any actuators in the model.

OpenSim Workshop, March 2012

33

subject01_walk1_states.sto: Contains the time histories of model states, including joint
angles, joint speeds, muscle activations, muscle activations, muscle fiber lengths, and more.
These states are used by the Forward Dynamics Tool to set the initial states of the model for
forward integration. Alternately, the simulation can begin from the default pose of the
model without providing initial states. Muscle states can be estimated by solving for muscle-
fiber and tendon force equilibrium when the Solve for equilibrium for actuator states is
checked.

subject01_walk1_grf.xml: An xml file describing the External Loads applied based (for
example) on measured ground reaction forces that should be applied to the model during
simulation

subject01_simbody_adjusted.osim: Subject-specific OpenSim model generated by scaling
a generic model with the Scale Tool or by other means, along with an associated marker set
containing adjusted virtual markers. The model must include inertial parameters (segment
masses, etc.).

The subject01_Setup_Forward.xml file is the setup file for the Forward Dynamics Tool. It
contains settings, as described in How to Use the Forward Dynamics Tool, and refers to another
settings file, gait2354_CMC_Actuators.xml which contains a set of actuators that
supplement the muscles of the model. Refer to Computed Muscle Control for more details.
These actuators must be included in the forward simulation so that the CMC solution can be
reproduced.

9.3 Outputs

The Forward Dynamics tool generates results in a folder specified in the setup file:

Results: Additional data can be generated and written to files by adding analyses to the
Forward Dynamics Tool. These analyses are specified in the setup
file (subject01_Setup_Forward.xml) and are discussed in the Analyses section.

9.4 Best Practices and Troubleshooting Tips

1. Forward dynamics simulations are sensitive to initial conditions and it is good practice
to double check that they your ICs appropriate for the desired simulation.

2. If the Forward Tool fails gracefully (i.e., without crashing OpenSim) or the output of the
Forward Tool drifts too much (i.e., the model goes crazy), shorten the interval over which
the Forward Tool runs (i.e., make initial_time and final_time closer to each other in the
Forward Tool setup dialog box or setup file). Open-loop forward dynamics tends to drift
over time due to the accumulation of numerical errors during integration.

OpenSim Workshop, March 2012

34

10 Checklist - Evaluating your
Simulation

The following are a set of necessary, but not sufficient, questions for evaluating your simulation.
You may not be able to answer "yes" to all of the questions. But if the answer is "no", you should
be able to provide a plausible explanation to convince yourself (and reviewers).

10.1 Scaling

1. If you are using any coordinates from a mo-cap system, do the definitions match your
model?

2. Is maximum marker error for bony landmarks and functional joint centers less than 2
cm?

3. Is the RMS error less than ~1 cm?
4. Do the joint coordinates in the static pose match your knowledge about experimental

data collection (comparison to photos, etc.)?

10.2 Inverse Kinematics

1. If you are using any coordinates from a mo-cap system, do the definitions match your
model?

2. Is maximum marker error less than 4 cm?
3. Is the RMS error less than ~2 cm?
4. Is there data for similar motions in the literature or other past studies? Are your results

within 1 SD?

10.3 Inverse Dynamics

1. Are there any large or unexpected forces at the pelvis (how large)?
2. Is there data for similar motions in the literature or from other past studies? Are your

results within 1 SD?

10.4 Static Optimization

1. Are there any large or unexpected forces residual actuator forces?
2. Find EMG or muscle activation data for comparison with your simulated activations.

Does the timing of muscle activation/deactivation match? Are the magnitudes and
patterns in good agreement?

OpenSim Workshop, March 2012

35

10.5 RRA

1. Is the RMS difference between experimental and simulated joint angles less than 2-5º
(or less than 2 cm for translations)?

2. Are the peak residual forces less than 10-25N? Are the RMS residual forces less than 5-
15N?

3. Are the peak residual moments less than 75 Nm? Are the RMS residual moments less
than 50 Nm?

4. Are the residual moments reduced 30-50% compared to inverse dynamics?
5. Is there joint torque data for similar motions in the literature or from other past studies?

Are your results within 1 SD?

10.6 CMC

1. Are the peak reserve actuators torques less than 10% of the corresponding peak joint
torques?

2. Is the RMS difference between experimental and simulated joint angles less than 2-5º
(or less than 2 cm for translations)?

3. Are the peak residual forces less than 10-20N? Are the average residual forces less than
5-10N?

4. Are the peak residual moments less than 75 Nm? Are the average residual moments less
than 50 Nm?

5. Find EMG or muscle activation data for comparison with your simulated activations.
Does the timing of muscle activation/deactivation match? Are the magnitudes and
patterns in good agreement?

OpenSim Workshop, March 2012

36

11 Extending the Capabilities of
OpenSim

11.1 Overview

OpenSim provides several mechanisms for extending its existing capabilities either by adding
new model elements, computing new quantities, or computing existing quantities in a new way.
For example, you may want to model the drag acting on bodies moving through a fluid, which
OpenSim does not provide. Another example is being able to extract the linear and angular
momentum of the model during a simulation. In order to extend to OpenSim, it is important to
know what functionality exists and to have a sense of where to add new functionality.

11.2 Organization of OpenSim

OpenSim is built on the computational and simulation core provided by SimTK. This includes
low-level, efficient math and matrix algebra libraries such as LAPACK as well as the
infrastructure for defining a dynamical system and its state. One can think of the system as the
set of differential equations and the state comprised of its variables.

Empowering the computational layer is SimbodyTM, an efficient multibody dynamics solver,
which provides an extensible multibody system and state. The OpenSim modeling layer maps
biomechanical structures (bones, muscles, tendons, etc.) into bodies and forces so that the
dynamics of the system can be computed by Simbody.

The three interface layers of OpenSim built on SimTK:

OpenSim Workshop, March 2012

37

OpenSim is essentially a set of modeling libraries for building complex actuators (e.g. muscles)
and other forces (e.g. contact) and enabling the motion (kinematics) of highly articulated bodies
(bones). Actuators can then be controlled by model controllers (e.g. Computed Muscle Control)
to estimate the neural control and muscle forces required to reproduce human movement. An
analysis layer is equipped with solvers and optimization resources for performing calculations
with the model and to report results. At the highest level these blocks are assembled into
specialized applications (ik.exe, forward.exe, analyze.exe) to simulate and analyze model
movement and internal dynamics. The OpenSim application is a Java based program that calls
Tools, Models, and underlying computations in SimTK to provide an interactive graphical user-
interface (GUI).

11.3 OpenSim Model and ModelComponents

The job of an OpenSim::Model is to organize (hierarchically) the pieces (components) of a
musculoskeletal system and to create a representative computational (mathematical) system
that can be solved accurately and efficiently using Simbody and the flat SimTK::System
framework.

Organizational Context vs. Computation

By separating the contextual organization of a model from its computational representation,
OpenSim can exploit the conceptual benefits of hierarchically organized models and software
without sacrificing computational efficiency. One can then think of the system as the set of
system equations while the state is a coherent set of system variable values that satisfies the
system equations. Model components know about the parts they add to the multibody system
(for example, another rigid body, a force, or a constraint) and are free to mix and match. For

OpenSim Workshop, March 2012

38

example, a Coordinate component knows how to access its underlying degree-of-freedom value,
velocity and even its acceleration, given the system has been "solved" for accelerations. A
Coordinate also adds different constraints to the underlying system, in the case that Coordinate
is locked or if its motion is prescribed. It provides context to organize locking constraints with
the Coordinates being locked, but computationally it is just another constraint equation. The
Coordinate therefore acts to manage the bookkeeping (which DOF, constraint, etc.) and provide
an interface that has context.

OpenSim Model and its ModelComponents

All model components in OpenSim have a similar responsibility to create their underlying
system representation (createSystem()). A setup() method ensures that a model is appropriately
defined (for example, a Body is being connected to a parent that exists) before creating the
system. Two additional methods allow the ModelComponent to initialize the state of the system
(from default properties) and also to hold the existing state in the ModelComponent's defaults.
For example, a Coordinate's default may indicate that it should be locked, in which case its
initState would set the state of its underlying constraint as "enabled". Similarly, after performing
an analysis to find the coordinates to satisfy a static pose, calling setDefaultsFromState(state)
will update the Coordinate's default values for the coordinate value from the desired state. Next
time the model is initialized, it will be in the desired pose.

11.4 OpenSim Application Programming Interface (API)

In order to build custom components, it is necessary to have a general understanding of which
objects (classes) are responsible for what actions/behaviors. The functions (methods) that
OpenSim's public classes provide (that other applications/programs can call) define its
Application Programming Interface or API.

We have already seen four methods that a model component must implement to behave as a
ModelComponent in OpenSim. This defines the ModelComponent interface. Each type of
ModelComponent, in turn, specifies additional methods in order to satisfy that type of
component. For example, a Force in OpenSim must implement a computeForce() method (in

OpenSim Workshop, March 2012

39

addition to the ModelComponent methods), a Controller must implement computeControls(),
etc. The set of all Classes and their interfaces defines the OpenSim API.

The OpenSim API is undergoing rapid development and improvement. We therefore rely on
Doxygen to automatically generate html documentation of the latest source, which describe the
classes that are available and the accessible methods. The Doxygen pages can be viewed using a
web browser and are available with your OpenSim installation in:
<OpenSim_Install_Dir>/sdk/doc/index.html.

11.5 What is an OpenSim plug-in?

When creating a new component (like a force, controller) or a new analysis, you may want to
include it in an existing model, run it with existing tools, and/or share your contribution with
colleagues. An OpenSim plug-in is a way of packaging of your code in a dynamically linked
library so that an existing OpenSim application can recognize it, load it, and make your code
"runnable". For an example of creating an analysis as a plug-in please see
<OpenSim_Install_Dir>/sdk/examples/plugin.

11.6 What is an OpenSim "main" program?

A main program in C/C++ results in a standalone executable that you can run from a command
prompt or by double clicking in Windows. All C/C++ programs have a main() function, which
can be as simple as printing "Hello World" or it can invoke several libraries to produce complex
applications, like Word and Excel. By including the OpenSim libraries, your main program can
call the OpenSim API, and you may also include any other (C++) libraries that provide
additional computational and/or visualization resources. Main programs are extremely flexible,
but they are particularly useful for streamlining/automating processes independent of the GUI.
For example, ik.exe, id.exe, and cmc.exe (available with the OpenSim distribution) are main
programs that take setup files and perform tasks related to the OpenSim workflow.
Alternatively, users have created their own main programs to systematically scale strengths of
all muscles in a model, run forward simulations with their own controllers, perform design
optimizations, etc. An advantage of a main program (compared to a plug-in) is that any classes
you define in the project are immediately useable by your program. This can make prototyping
and testing of your new component or analysis faster and easier without having to wrap, load,
and call your plug-in from the GUI.

11.7 OpenSim Developer's Guide

The developer's guide provides a step-by-step example of calling the OpenSim API to build a
model, including muscles and contact forces, and to perform a simulation in a main program.
Please refer to the OpenSim Developer's Guide for more details.

OpenSim Workshop, March 2012

40

11.8 Command Line Utilities

All of the OpenSim Tools are available as command-line utilities that take as input the same
setup (or settings) file loaded into or saved from the OpenSim GUI application. For example, to
perform Inverse Kinematics from the command line (the Command Prompt in Windows) one
can execute the following command:

ik –S arm26_Setup_InverseKinematics.xml

Similarly, this command line arguments work for CMC or any other tool, with the complete set
of command line executables available in <OpenSim_Install_Dir>/bin. In addition to the –
Setup option, there are –Help , -PrintSetup and –PropertyInfo options. Help provides this list
of options. Print Setup prints a default setup file for that Tool with all available properties (XML
tags) for Tool settings.

The –PropertyInfo option can be a very handy resource to obtain information about existing
settings for Tools and ModelComponents including the XML tags needed in the model and/or
setup file. This is the same information listed in the "Available Objects…" panel under the Help
menu in the OpenSim GUI. Executing ik –PI lists all the available classes (components,
analyses, utilities and tools) available in OpenSim. For more information about a particular
object, such as adding a point constraint to the model, executing

ik	 –PI	 PointConstraint

yields:

PROPERTIES FOR PointConstraint (5)	
1. isDisabled	
2. body_1	
3. body_2	
4. location_body_1	
5. location_body_2	

The information returned lists the properties for defining a point constraint in OpenSim.

11.9 MATLAB Utilities for Data Import

There are several MATLAB scripts for reading .trc, .c3d, .mot, and .sto files into MATLAB and
writing out the data file formats required by OpenSim. Scripts provided by the Neuromuscular
Biomechanics Lab at Stanford are available on the OpenSim Utilities project on SimTK.org:
https://simtk.org/home/opensim-utils. Additional utilities by OpenSim users are posted on
SimTK.org and can be found using the search tool on SimTK.org.

OpenSim Workshop, March 2012

41

12 Example: Forward
Simulation with RRA and CMC

Creating a Muscle-Driven Simulation of the Stance Phase of Gait
A. Opening the Model and Viewing the Data

1. Load the leg6dof9muscles.osim model from the
examples directory (e.g., examples
\Leg6Dof9Musc)

2. Preview the kinematics and ground-reaction
forces with the model

a. Load the motion file
leg69_IK_stance.mot and hit play.

b. Under File, choose Preview Motion
Data and select leg69_stance_grf.mot

c. Sync the two motions by selecting both
motions: hold the control key, right
click to sync motions, and hit play.

B. Use Inverse Dynamics to determine the amount of
residual force that is required for the model’s
dynamics to be consistent with applied ground
reaction forces:

1. Right click the leg69 model and make it the current model.
2. Launch the Inverse Dynamics tool.
3. Under Input select Motion→Loaded motion→ ik trial.
4. Check the box to filter kinematics at 6Hz.
5. Specify the time range as 0.5s to 1.5s, the period in which ground reaction forces are

defined.
6. Specify an output directory (e.g. <YourWorkingDir>\Stance\ID_Results)
7. Select the External Loads tab and check the External Loads box.
8. Edit the External Loads settings by clicking the pencil icon.

a. Select the leg69_stance_grf.mot as the Force data file. This file describes the
force applied at the foot’s center of pressure.

b. Select leg69_IK_stance.mot as the Kinematics for external loads.
c. Select Filter kinematics and specify 6Hz.
d. Forces listed in the motion file are added as individual forces by hitting the Add

button.
i. Provide a name (e.g., “Right_GRF”)

ii. Applied to body (e.g., calcn_r)
iii. Check Applies Force and select Point Force
iv. Force Columns select “ground_force_vx”, y & z selected automatically

Leg6Dof9Musc.osim: The model we’ll use in

this exercise is of a right leg and pelvis with 6

coordinates and 9 muscles.

OpenSim Workshop, March 2012

42

v. Point Columns select “ground_force_px”
vi. The GRF free moment is a torque, so check “Applies Torque”

vii. Torque Columns, scroll down and select “ground_torque_x”
viii. Both the GRF and CoP are expressed in the ground (lab) frame

ix. Click OK
e. Hit Save and enter a filename for the External Force (e.g., leg69_right_GRF.xml)

9. Save settings (e.g. leg69_Setup_ID_stance.xml), then hit Run.
10. Plot the forces acting on the pelvis (e.g., pelvis_tilt_moment, pelvis_tx_force, etc.) and

the net joint moments for the hip, knee and ankle from inverse_dynamics.sto.
Which is the largest residual? What accounts for the large residual forces?

C. Use the RRA tool to reduce residuals. In other words, adjust the model to compensate for
model inconsistency with the applied GRFs.

1. Launch the Reduce Residuals tool.
2. Specify Desired Kinematics, which is the IK motion leg69_IK_stance.mot.
3. Check the box to filter kinematics at 6Hz.
4. Specify the tracking tasks for RRA. Specify the task file provided in Stance/Reference/	

leg69_Tracking_Tasks.xml. This file specifies the coordinates to be tracked and the
corresponding weights. Use an XML editor (e.g., Notepad++) to view the tasks.

5. Specify Actuator control constraints file leg69_residuals_motors_control_limits.xml.
These constraints define the maximum and minimum control limits for all actuators.

6. Check “Adjust model”. Click on the folder icon, make sure you are in the Stance folder,
and specify a new model name (e.g. leg6dof9musc_adjusted_COM_pelvis.osim). Click
Save.

7. Specify the Body COM to adjust as pelvis. The center-of-mass of this body will be
adjusted to reduce residual. Typically we choose the segment incorporating the torso.

8. Specify the time range as 0.5s to 1.5s.
9. Specify an output directory (e.g. Stance\RRA)
10. Select the Actuators and External Loads tab and choose “Replace model’s force set” to

replace the model’s muscles with residual and joint motor actuators since we are creating
a torque-driven simulation. Click Edit, then click Add. Then click the folder button next
to the red text box. Select leg69_RRA_residuals_motors.xml. Click OK.

11. Check the External Loads box and specify the file you created for Inverse Dynamics (e.g.
leg69_right_GRF.xml).

12. Save your settings to an RRA setup file (e.g., leg69_Setup_RRA_stance.xml).
13. Hit Run.

Why does the model “float” down and up?
14. With the original model, preview the model motion with the GRF again.

Are all of the forces being applied correctly? Thinking about this model and
motion, what time range of the gait should you restrict your RRA analysis?

15. Repeat RRA with the original model over the new time interval (and save the new
settings). Close the RRA Tool.
Does the model still “float” up or down? If so, what else could be causing
this?

OpenSim Workshop, March 2012

43

16. Open up the messages window and locate the recommendation from the last run of RRA
(e.g., “dmass = 44.037”). Note, the units are in kilograms (kg).
What is the recommended mass adjustment? Why would the mass
adjustment be so large?

17. Edit the adjusted model to make the recommended mass adjustments by RRA to the
pelvis body.

a. To make mass adjustments open the Property Editor (Window→Properties).
Navigate to the pelvis Body of the adjusted model. Edit the mass of the pelvis and
save the model. Alternatively, use an XML editor to edit the model file.

b. Rename the model in the Navigator window (e.g. leg6dof9musc_adjusted) by
right clicking on the current model name and selecting Rename.

18. Re-run RRA with the adjusted model. Be sure to close and re-open the RRA Tool so you
are working on the adjusted model.
Is the mass adjustment suggested by RRA smaller than before?

19. Plot the RRA residual actuator forces (i.e., MZ, FX, FY) from
leg6dof9musc_Actuation_Force.sto.
How do they compare to the forces acting on the pelvis from your ID
results?

20. Plot tracking kinematics outputted by RRA from	 leg6dof9musc_Kinematics_q.sto vs.
kinematics from IK. You can also get the tracking error values directly from the file
leg6dof9musc_pErr.sto.
Which coordinates have large tracking errors?

21. Increase the tracking task weights for coordinates that show poor tracking (via Edit →
File). Decrease the tracking weight for coordinates that are within a degree, since the
optimizer can use this to reduce residuals. Note: The plotter will display most angles in
radians. 1 degree = 0.017 radians. See the handout for more information about getting
good results from RRA.

22. Re-run RRA. Repeat steps 19 and 20 to check the residual forces and tracking errors.
Are the residual forces and tracking improved?

D. Use the Computed Muscle Control (CMC) Tool to determine the muscle excitations,
activations and forces that generate a forward dynamics simulation of the stance-phase of
gait.

1. Load the final adjusted model from RRA
2. Consider the residual and motor actuators necessary for CMC (e.g., modify

leg69_RRA_residuals_motors.xml using Edit→File or an XML editor)
a. With muscles present, reduce the optimal force of joint motors to 1 so that they

are penalized during CMC and muscles are favored to generate joint moments.
b. Save the edited the actuators as a new file (e.g.,

leg69_CMC_residuals_motors.xml).
3. Launch the CMC Tool.
4. Specify Desired Kinematics as output from RRA (e.g., leg6dof9musc_Kinematics_q.sto).

Note, no filtering is required as the kinematics are smooth since they result from a
simulation.

OpenSim Workshop, March 2012

44

5. Apply tracking tasks. Use the same tasks file as for RRA.
6. Include limits on muscle actuators by using

leg69_muscles_residuals_motor_control_limits.xml as Actuator constraints. Open the
file in an XML editor to compare with the Actuator constraints used for RRA.
What is the difference between the actuator constraints file used in CMC
and the file for RRA?

7. Define time range for the stance simulation (use the same range you determined from
Step 14 in RRA).

8. Specify the output directory (e.g., Stance\CMC).
9. Under the Actuators and External Loads tab, select “Append to the model’s force set” to

include joint motor and residual actuators in addition to existing muscles in the model.
Use the Edit button to specify leg69_CMC_residuals_motors.xml to be appended.

10. Specify the external loads (same as for RRA).
11. Save your settings to a file.
12. Run CMC. If CMC does not execute completely, review the tips and tricks in the handout

for help with troubleshooting.
13. Plot the muscle activation patterns from the states file,

leg6dof9musc_added_mass_states.sto. Tip: Using the pattern filter in the plotter
selection tool, type “activation” to quickly select the activations.
Are the simulated activations close to what you expected?

14. Check the quality of the simulation by examining the tracking errors, the residual forces,
and the motor moments (i.e., reserves). The motor moments are in
leg6dof9musc_added_mass_Actuation_force.sto
How do the kinematics compare to the IK solution for stance? How big are
the residuals forces from CMC? How do they compare to residuals from
RRA? Are the motor moments (i.e., reserves) at the hip, knee and ankle
significant? Are the residuals below 2% of body-weight?

15. If time permits, run a forward simulation with the controls from CMC and initial states
from CMC. Running Forward Dynamics after CMC is a method of verifying that the
controls from CMC generate a forward simulation consistent with the observed
kinematics and applied GRFs.
How do the kinematics from Forward compare to the original IK solution?

OpenSim Workshop, March 2012

45

13 Example: Model Editing

13.1 Purpose

In this example, you will add a body and an actuator to an existing OpenSim model by editing its
xml file. You can find the model file (arm26.osim) in the examples folder under your OpenSim
installation directory.

You will need to download an XML editor to work through this example. Some free options
include:

• notepad++ (http://notepad-plus.sourceforge.net/uk/site.htm)
• XMLMarker (http://symbolclick.com/download.htm)

13.2 Connecting an Additional Segment to the Model

• Open Model File in XML. Use an XML editor (e.g., Notepad++) to open the OpenSim
model file (e.g., arm26.osim). When collapsed to the 3rd level (e.g., Alt+3 in Notepad+),
your model file should look like the figure below.

• Explore the Model. The Model tag has five main sets named, ForceSet, BodySet,
ConstraintSet, MarkerSet, and ContactGeometrySet.

OpenSim Workshop, March 2012

46

• Explore the Body Set. The BodySet tag has three Body objects named ground,
r_humerus, and r_ulna_radius_hand.

• Add New Body. Add a new Body named bucket immediately below the Body named
r_ulna_radius_hand.

• Specify Mass Properties. Add tags and enter values for the mass, mass_center,
inertia_xx, inertia_yy, inertia_zz, interia_xy, inertia_xz, and inertia_yz for
the bucket as seen below:

• Specify Joint. Add tags and names for the PinJoint and parent_body, and tags and
values for location_in_parent, orientation_in_parent, location, and
orientation as seen below:

OpenSim Workshop, March 2012

47

The location_in_parent and orientation_in_parent tags define the position and
orientation of the joint with respect to the parent body origin. In the above example, the vector
from the parent body r_ulna_radius_hand to the joint r_handle is [0.031 -0.031 0.07] and the
orientation of the joint (in a zero pose) is exactly the same as the orientation of the parent body
(in a zero pose). The location_in_parent and orientation_in_parent vectors should be
given in the coordinate frame of the parent body. In most cases,
the location_in_parent and orientation_in_parent tags are all that's required to specify
the new joint (in which case, the child body origin, e.g., bucket, would be located at the joint
center of r_handle). Additionally, the local location and orientation offset of the joint center
with respect to the child body origin can be specified using the location and orientation tags.
The above description of joints in OpenSim is illustrated below:

OpenSim Workshop, March 2012

48

• Specify Generalized Coordinate. Add a tag and name for the Coordinate, and add
tags and values for motion type, default_value, default_speed_value,
initial_value, range, clamped, and locked as seen below:

• Specify Geometry File. Add a tag for VisibleObject and add the appropriate tags for
GeometrySet and other properties as seen below:

• Specify DisplayGeometry including Geometry_File in the GeometrySet

OpenSim Workshop, March 2012

49

• Save Model File. From the XML editor, save the OpenSim model file (e.g.,
arm26_with_bucket.osim). Now open your new model in OpenSim to see the bucket!

13.3 Adding an Additional Actuator

• Explore the ForceSet. The ForceSet tag has six Thelen2003Muscle objects
named TRIlong, TRIlat, TRImed, BIClong, BICshort, and BRA.

• Add New Actuator. Add a CoordinateActuator object named
r_handle_rot_force immediately below the Thelen2003Muscle named BRA.
Associate this CoordinateActuator with the r_handle_rot coordinate and specify
an optimal_force of 1000.

OpenSim Workshop, March 2012

50

• Save Model File. From the XML editor, save the OpenSim model file (e.g.,
arm26_with_bucket.osim).

	Workshop_Cover
	Workshop_Handout_Body

