

Subject-specific computational models of the musculoskeletal system have tremendous potential for clinical application

However, several challenges are limiting the uptake of musculoskeletal models in the clinic...

Challenges to clinical implementation

Generating subject-specific models is time-consuming and costly, and requires a high level of expertise

This talk will focus on building subject-specific bone geometry to best-match *sparse* motion capture and imaging data

An example problem

What are the hip contact pressures during walking for this subject?

╋

Motion capture data (mocap)

MR images of the hip

We want to **scale** or **generate** an OpenSim model to bestmatch mocap and imaging data

Overview

- The MAP framework and the MAP Client
- Introduction to shape modelling
- Constrained scaling using shape modelling
 - Example 1 scaling the hip joint with mocap
 - Example 2 scaling lower limb with mocap and imaging data of femur
- Muscle and joint parameters
- Limitations and points for discussion
- Community engagement

Our aim is to provide the biomechanics community with a tool to rapidly generate subject-specific musculoskeletal models for computational modelling

Demo 1 – scaling the hip joint using motion capture data

Results and summary of example 1

• Shape model constrains scaling to provide accurate estimate of **pelvis shape** and **hip joint centre**

Example 2 – scaling the lower limb with mocap and imaging data

Articulated Shape Model

Degrees of freedom

- Pelvis Rigid: 6
- Hip rotations: 3
- Knee flexion & abduction: 2
- Shape model scores: n

Points for discussion

- Complex joints (custom mobilizers)
- Scaling muscle-tendon parameters
- Body segment parameters (mass, CoM, moments of inertia)
- Where are the feet and other body parts?

How can you contribute?

- Download the MAP Client and start developing your own plug-ins
 - Free and open source (GPL3 license)
 - Developed in Python
 - Cross platform

https://github.com/MusculoskeletalAtlasProject/mapclient

- Collaborate with us to grow our model repository (e.g. send us segmented data)
- Develop plug-ins
 - New joint models
 - ...

Acknowledgements

- We are grateful to the Victorian Institute of Forensic Medicine (VIFM), and the Melbourne Femur Collection for providing the CT images for our shape models
 - John Clement
 - David Thomas
- Auckland Bioengineering Institute
 - Poul Nielsen
 - Duane Malcolm
- This work was funded by the US FDA (HHSF22320 1310119C) and NZ Ministry of Business Innovation & Employment (MBIE UOAX1407)

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

