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Abstract 
Modeling and simulation in computational neuroscience is currently a research enterprise, used to better 
understand neural systems, but not yet directly applicable to the problems of patients with brain disease.  In 
order to be used for clinical applications, there must not only be considerable progress in the field, but also a 
concerted effort to use best practices so as to be able to demonstrate model credibility to the FDA, to clinics 
and hospitals, to doctors, and to patients. In doing this, we can learn lessons from long-standing practices in 
other areas of simulation (aircraft, computer chips), from software engineering, and from other areas of 
biomedicine,  notably biomechanics.  We introduce some basic concepts that will be important in the 
development of credible clinical neuroscience models: Reproducibility & Replicability, Verification & 
Validation, Software/Model Configuration Control, and general Procedures & Processes for Credible 
Mechanistic Multiscale-Modeling.  We also discuss how garnering strong community involvement can 
promote model credibility. Finally, in addition to direct usage with patients, we note the potential for 
simulation usage in the area of Simulation-Based Medical Education, an area in which to date been primarily 
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reliant on physical models (mannequins) and scenario-based simulations rather than on numerical 
simulations. 

Introduction 
One hallmark of science is reproducibility. An experiment that cannot be reproduced by others may result 
from statistical aberration, artifact, or fraud. Such an experiment is not credible.  Therefore, reproducibility 
is the first stage to ensure credibility of an experiment.  However, reproducibility alone is not sufficient. 
For example, an  in vitro  experiment is generally performed to advance or aid the understanding of  in vivo 
conditions.  However, the  in vitro  results will in some cases be inapplicable to the living tissue due to the 
artifact of isolation: a single cell or a tissue slice extracted from its environment will not function in 
precisely the way it functioned in residence.  In medicine, animal models of a disease or treatment are 
frequently used, but may not be credible due to the many differences between the human and the monkey, 
rat, or other animal.  
 
Credibility of a simulation, model or theory depends strongly on the projected model use.  This is 
particularly true in going from research usage to clinical usage. In research, innovation and exploration are 
desirable. Computer models will be used in research to introduce or explore new hypotheses which have not 
been thought of before, ideally providing a new paradigm to test experimentally.  In this setting, the most 
important models may in some cases be the less credible ones -- these are the models that stretch 
understanding by challenging the common view of how a particular system works to offer a paradigm shift. 
Here,  prima facie  credibility is in the eye of the beholder, representing the views of the community (the 
dominant paradigm). 
 
In the clinical realm, by contrast, establishing credibility is of paramount importance.  For pharmaceuticals, 
credibility is currently established through evidence-based medicine (EBM), ideally through double-blind 
trials with large numbers of patients.  The downside of this statistical approach is that it necessarily lumps 
together the large number of disparate patients required to achieve statistical significance.  In some cases, 
this has resulted in tragedy as a subgroup with particular genetics has a fatal response to a drug that is 
beneficial in the overall group ( e.g.,  rofecoxib, brand-name Vioxx).  As EBM gives way to precision 
medicine, pharmaceutical credibility will be established in each subgroup to enhance safety.  However, in 
order to establish pharmaceutical reliability for personalized medicine (precision with a subgroup of n=1), 
data-mining will not work since there is by definition no one else to compare this patient to.  The only way 
to predict the response of that individual patient to a particular treatment will be through simulating that 
patient's individual response based on their genetics and various levels of epigenetics up through brain 
connectomics. The patient simulation would provide a prediction of the response of that patient's unique 
physiodynamics to a particular drug, surgical approach, or stimulation paradigm.  The credibility of such 
models will be essential. 
 
In addition to pharmacotherapy, brain disease treatment also utilizes other therapeutic modalities, ranging 
from neurosurgery to the talk therapy of psychiatry and clinical psychology.  While the latter will likely 
remain beyond the range of our modeling efforts, neurosurgery has already begun to benefit from modeling 
efforts to identify locations and pathways for epilepsy ablation surgery.  Another set of therapeutic 
approaches that are likely to benefit from modeling are the electrostimulation therapies that are finding 
increased use in both neurology and psychiatry -- deep brain stimulation (DBS),  transcranial magnetic 
stimulation (TMS), transcranial direct/alternating current stimulation (tDCS/tACS), and electroconvulsive 



therapy (ECT). Neurorehabilitation will also benefit from modeling to help identify procedures to encourage 
neuroplasticity at locations where change will have the greatest effect for relief of deficit. 
In most respects, the issues of credibility, replicability, reproducibility for computational neuroscience simulation are 
comparable to those faced by researchers using simulation to study other organ systems.  However,  the complexity of 
the brain and several special features provide unique challenges. As with modeling of other organ systems, there are a 
large number of scales from molecular (angstrom) level up through tissue levels (centimeters). Many experiments extend 
from the lowest to highest scales, for example evaluating performance on a memory task as a drug modifies ion channel 
activity at the molecular level.  Compared to other organ systems, there is a particularly broad range of temporal scales 
of interest: 100 microseconds of sodium channel activation up to years of brain maturation and learning.  In addition to 
physical scales of the central nervous system (CNS) itself, brain research includes further investigative levels of 
cognition, information, and behavior.  An additional aspect of nervous system organization involves overlap between 
scales, which prevents encapsulation of one scale for inclusion in the higher scale.  For example, spatiotemporal activity 
in apical dendrites of neocortical pyramidal cell (subcellular level) are co-extensive in both spatial and temporal scales 
with the scales of the local network (supracellular level).  
 
In this paper, we will focus on the many issues of model credibility from a biomedical and clinical 
perspective. We will use  model  here forward to mean mathematical model, primarily analyzed  in silico  via a 
simulation , the numerical instantiation of a mathematical model on a computer.  We will identify explicitly 
when discussing other types of models: verbal models, animal models, physical models,  etc.   Currently, 
there are still relatively few models of brain disease, and those still remain in the research domain, rather 
than being critical clinical tools.  Therefore, we are largely developing and considering policy and practice 
for clinical computational neuroscience, based on the current uses of computational neuroscience in basic 
biomedical research, and on the clinical usage of simulations in other domains of medicine.  In doing this, 
we will introduce some basic concepts that are important in development of credible models: 
Reproducibility & Replicability and Verification & Validation.   In addition to direct usage with patients, we 
note the great potential for simulation in the area of  simulation-based medical education (SBME), an area in 
which the  simulations  have to date been primarily physical models (body dummies) and scenarios rather 
than numerical simulations. 

Reproducibility and Replicability indicate Reliability 
Replicability is the ability to achieve a fully identical result.  Replicability is a design desideratum in 
engineering when one wants to make sure that a system being distributed runs identically to a prototype 
system. (R. A. McDougal, Bulanova, and Lytton 2016; Drummond 2009; Crook, Davison, and Plesser 2013) 
Reproducibility, in contrast, is the ability of a simulation to be reproduced by others.  Replicability and 
reproducibility are inversely related.  A turnkey system, provided on a dedicated hardware or a dedicated 
virtual machine, will run identically every time and therefore be fully replicable. However, such a system 
will not be reproducible by outsiders, and may in some cases have been encrypted in order to make it 
difficult to reverse engineer.  Generally, the higher level the representation, the more readily other groups 
can reproduce and understand a simulation, but the less likely they are to obtain an identical result -- lower 
replicability and usability.  Representations using equations -- algebra, linear algebra, calculus -- are 
identical worldwide and therefore can provide the greatest degree of reproducibility by any group anywhere. 
However, differences in numerical a lgorithms used in  computer implementations of the equations will lead 
to somewhat different results for different instantiations of the equations.  From there one goes through 
various levels of software representations including dedicated packages providing a declarative description 
of a simulation, or dedicated packages with procedural descriptions.  The former will generally be more 
understandable and more easily ported than the latter.  A general-purpose interpreted language such as 
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Python will provide a more easily understood and reproduced simulation than will a compiled language such 
as C or FORTRAN.  Finally, we reach the level of a turn-key system which is likely to only provide machine 
code with no easily understood (source) code provided and little likelihood of reproducibility. 

 
Some difficulties with precise replicability of simulations are common to many different simulation systems. 
In particular, a model that uses pseudo-random numbers will not replicate precisely if a different randomizer 
is used, if seeds are not provided or if randomizers are not handled properly when going from serial to 
parallel implementations.  One difficulty peculiar to neural simulation is related to the strong nonlinearities 
(and numerical stiffness) associated with action potential spike thresholding due to positive feedback 
through fast voltage-gated activation of sodium channels leading to further membrane depolarization. 
Spiking networks are sensitive to round-off error since a single time-step change in spike time will 
propagate to produce changes in the rest of the network. (London et al. 2010) 
 
In general, specific simulation programs have enhanced reproducibility by providing purpose-built software 
to solve the particular problems of the computational neuroscience domain. These packages will generally 
couple ordinary differential equation solvers (ODEs) for simulating individual neurons with an event-driven 
queuing system to manage spike event transmission to other neurons in neuronal networks.  These facilities 
are provided by a number of neuronal network simulators such as BRIAN  (Goodman and Brette 2008) , 
PyNN  (Davison et al. 2008) , and NEST  (Plesser et al. 2015) , which allow spiking neurons to be connected 
together in networks of varying size.  (Note that these simulators are very different from the Artificial 
Neural Networks used in deep learning which do not implement spiking neurons).  Some other packages 
also add the ability to do more detailed cellular simulation for the individual neurons by adding the partial 
differential equations (PDEs) needed to simulate the internal chemophysiology that complements the 
electrophysiology of spiking.  Packages such as NEURON  (Carnevale and Hines 2006)  and MOOSE 
(Dudani et al. 2009)  provide this additional functionality. However, many simulations in computational 
neuroscience are still carried out using general purpose mathematical software, e.g., Matlab, or more general 
computer languages such as FORTRAN, C or C++, limiting their reproducibility, reusability, and 
extensibility. 
 
Since computational neuroscience simulations are often very large, extensibility to high performance 
computing resources (HPCs) is also desirable.  Some current simulator tools offer a direct path to these 
larger machines.  NetPyNE, a declarative language built on top of NEURON, provides a general description 
of a network that can be run directly either on a serial processor or, via MPI (message passing interface), on 
an HPC  (William W. Lytton et al. 2016) .  The Neuroscience Gateway Portal provides a shared, 
NSF-supported resource that simplifies HPC for a variety of simulators, including NetPyNE, NEURON, 
NEST, BRIAN and others, by obviating the need for the user to know MPI usage  (Carnevale et al. 2014) . 
 
Journal articles should permit reproducibility since equations are given in the methods section.  However, 
full details are generally not provided due to the enormous complexity of detail with many different cell 
types and complex network connectivity  (R. A. McDougal, Bulanova, and Lytton 2016) .  Furthermore, 
parameters and equations may be given for one figure but not for all figures shown. Papers may also have 
typographical or omission errors. And even when the paper version is complete and entirely without error, 
errors are likely to creep in when reproduction is attempted and the model is typed or scanned to get it back 
into a computer.   For all of these reasons, an electronic version of a model is both more accurate and more 
immediately usable than a paper copy.  Some journals, and many individual editors or reviewers in the field, 
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require software sharing as part of the publication process.  However, some authors resist this mandate 
desiring to retain exclusive access to their   intellectual property. 
 
Databases of models and parts of models have become important in encouraging reproducibility in 
computational neuroscience  (Gleeson et al. 2017) .  Additional value is added by utilizing formal model 
definitions such as  ModelML, CellML, NeuroML, VCML, SBML  (Moraru et al. 2008; Hucka et al. 2003; 
Lloyd et al. 2008; Zhang, Bakshi, and Prasanna 2007; Cannon et al. 2014; Gleeson et al. 2010) .   Major 
databases are being provided by the Human Brain Project, the Allen Brain Institute, the  International 
Neuroinformatics Coordinating Facility, and others . Other databases include the NeuroMorpho.Org database 
of neuronal morphologies, the ModelDB database of computational neuroscience models (see this issue) in a 
variety of simulation packages and languages, and the Open Source Brain database for collaborative 
research  (Gleeson et al. 2012; Gleeson, Silver, and Cantarelli 2015; Gleeson et al. 2018)    We discuss these 
resources further below under "Role of the Community." 
 
A recent initiative to encourage reproducibility in science is the new  ReScience Journal 
(rescience.github.io), which only publishes papers that replicate computational studies.  By hosting the 
journal on github, new implementations are directly hosted along with the paper, and any ancillary materials 
identifying provenance or providing documentation. Recently Shimoura  et al.  ported the classic 
Potjans-Diesmann cortical microcircuit model from NEST to BRIAN, reproducing and confirming the 
primary results  (Cordeiro et al. 2018) . 

Good Practices Contributing to Simulation Credibility 

Verification and Validation (V&V) 
Verification and validation (V&V) helps users demonstrate the credibility of a computational model within 
the context of its intended use.  This is accomplished by assessing the quantitative and qualitative aspects of 
the model that influence model credibility.  The process of establishing the model’s capability to represent 
the real system is accomplished through the processes of verification, validation, uncertainty propagation, 
and sensitivity analysis.  Of these, V&V represent the most well-known, and potentially confused, aspects of 
model assessment. 
 
Computational models may be implemented using open-source or commercial (off-the shelf) software, 
custom (in-house) code, or a combination of the two (modified off-the shelf software).  Verification provides 
assurance that a computational model accurately represents the underlying mathematical equations and their 
solution on a specific code platform.  Software implementation of model concepts should follow best 
practices of the developing organization, using established software quality assurances practices and 
processes such as those described in the Capability Maturity Model Integration 
( https://www.sei.cmu.edu/cmmi/ ).  In the case of ground-up model development, this ensures proper 
construction, error checking, and version management has been followed, and is communicated to the user. 
Verification also focuses on confirmation of parameter specification, and the accurate translation of model 
data from model data sources into the model application. 
 
The verification process is divided into two sequential steps: code verification and calculation verification. 
Code verification  ensures that the numerical algorithms implemented by the code developer are a faithful 
representation of the underlying physical or conceptual model.  In other words, code verification establishes 
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the reliability of the source code in representing the conceptual model, including relevant physics, for the 
problem.  During this phase, benchmark problems with analytical solutions are typically employed to ensure 
that the computer code generates the correct solution at the specified order of accuracy.  For example, a 
common reference example in Computational Fluid Dynamics (CFD) is laminar flow in a straight pipe with 
circular cross-section, whose analytical solution is well-known. (Stern, Wilson, and Shao 2006)  CFD 
modeling techniques are used for neurosurgical modeling of cerebral artery aneurysms. (Babiker et al. 2013) 
Unfortunately, for most Computational Neuroscience applications no analytic solutions are available. 
Therefore, one is restricted to comparing results from one numerical approximation to that of another 
without reference to any ground truth  (Brette et al. 2007) . 
 
Next,  calculation verification  aims to estimate numerical errors associated with the conceptual model 
implementation,  i.e.,  the computational model representing the target application.  Going back to the laminar 
pipe flow example, one would generalize the geometry, material properties, and loading conditions such that 
the problem no longer has an analytical solution but can be solved numerically.  Various aspects of the 
model numerics are investigated and refined until the model is deemed to be accurate within a pre-specified 
tolerance.  Upon completion of the calculation verification step, the user has established (and should 
document) that due diligence has been followed to ensure a software-bug free implementation of the model 
concepts with contextually substantiated parameter values. 
 
Everyday vernacular often equates or confuses the terms “verification” and “validation”.  As described in 
the previous paragraphs,  verification  seeks to ensure that the quality of the implementation of the conceptual 
model.  Similarly,  validation  seeks to assess how well the conceptual model and its implementation on a 
specified code platform represent the real-world system for a defined application.  More rigorously stated, 
validation is an assessment of the degree the model and simulation is an accurate representation of the 
response of the real system within the intended context of application.  In this case, validation is a 
comparative process that defines a qualitative or quantitative measure of how the model differs from an 
appropriate experimental or other data source, i.e. a  referent .  Validation also helps to ensure that the 
computational model has  sufficient  rigor for the context of use.  Since a more rigorous model is not 
necessarily more credible, this optimizes the investment of resources to achieve validation. 
 
The definition of an appropriate referent is a critical aspect of model validation.  Ideally, a validation referent 
is associated with the context of use of the real system in that it should consist of data that is obtained for a 
system with high similarity to the system being modeled and represent data obtained within an environment 
similar to that of that real system.  It should also be considered of high quality by the model end-user 
community and represent data not used in model development, separating  design data  from  testing data 
(also called fit vs benchmark data, or calibration vs validation data).  This is not always possible, and clarity 
must be communicated regarding the limitations imposed due to inadequacies of the validation referent. 
Practitioners should also keep in mind that a model validation, or the understanding of the variability of the 
model in predicting the real world response, exists only in the area of the referents used in the validation 
process, as illustrated by the Validation Domain in Fig. 1.  The Application Domain shown in Fig. 1 
establishes the range of input and output parameters relevant to the context of use of the computational 
mode.  As application of the model deviates from the situational context described by the referent, the 
influence of the model validation information should also change. 
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Figure 1. Validation domain of a computational model for range of input parameters and outputs 
(system responses).  Red diamonds represent the validation set points, where comparisons between the 
computational model and applicable referents were conducted by discrete simulations performed in 
each referent sub-domain.  The range of parameters evaluated establish the Validation Domain (green 
ellipse), which will define the extent of the Application Domain (large blue ellipse) where model 
performance has established credibility.  Applications of the model outside of the Application Domain 
lack validation and have lesser credibility. 
 
In most cases, the more quantitative the comparison, the stronger the case that a model and simulation is 
contextually valid. Organizations such as the American Society of Mechanical Engineers have developed 
standards to guide the model practitioner in performing successful model validation activities.  These 
comparisons range from qualitative, graphical comparative measures, to quantitative comparative measures 
relying on statistical analysis of referent and model variance, the latter obtained over a wide range of input 
parameter variation  (Oberkampf and Roy 2010) .  In practice, the end-user community and regulatory 
agencies should play a role in assessing the applicability of the validation comparison based on the context 
of expected application and the influence the model has on critical decision-making. 

Aspects of Good Practice for Credibility 

Software Aspects 
Credibility of simulation results require reliability of simulation protocols and software tools. Good software 
practices include version control; clear, extensive documentation and testing; use of standard (thoroughly 
tested) software platforms; and algorithms for particular types of numerical solutions. It is also desirable to 
rely on existing industry standards and guidelines, and to compare simulation results against competing 
implementations. To maintain the highest level of credibility, one would establish and follow these practices 
at every step of the development, V&V, and during utilization of the simulation tools.  
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Version control is an approach for preserving model development and use histories, including tracing the 
provenance of model parameters and scope of applicability. There exists a large number of version control 
systems (VCS) which provide on-site, remote, or distributed solutions ( e.g.,  GIT, SVN, Mercurial). In 
general terms, these systems provide tools for easy traceability of changes in individual files, attribution of 
modifications and updates to the responsible author, and versioning of specific snapshots of the complete 
system. Use of a VCS is recommended for both development (troubleshooting of bugs) as well as the 
day-to-day use of the modeling tools (monitoring of modeling progress).  
 
One of the important aspects of establishing model credibility that is often overlooked in the computational 
science community is testing of the model scripts and binary codes. Researchers tend to focus their attention 
on V&V in the context of simulation results, but omit testing the functionality of the software modules 
themselves. This process can be implemented as a suite of tests which verify functionality of individual 
functions and modules (unit tests) and their integration within the system (integration tests).  It is common 
practice to automate the testing procedures using any of the existing automated testing frameworks and 
perform these tests after each version update. 
 
While VCS provides modeling tool traceability, extensive documentation adds usability and insight into the 
model structure and its expected behavior.  Good documentation practice requires maintenance of a detailed 
electronic laboratory notebook (e-notebook), which ideally provides automatic coordination with software 
versions and data output.  The notebook will also include informative records of model development and 
implemented assumptions, model mark-up, detailed descriptions of the input and output formats, and testing 
procedures.  Depending on the complexity of the modeling tools and/or approach, the model description may 
be augmented with case studies, verification problems, and tutorials to ensure that other 
researchers/practitioners use the model as intended by the original authors.  
 
It should be noted that even models developed and used strictly following the aforementioned guidelines, 
could have some application bugs and usability issues. Thus, it is important to also cross-verify simulation 
results using alternative execution strategies and competing model implementations ( e.g.,  run the simulation 
using both NEURON and NEST). This step would reduce the chance of obtaining spurious simulation 
results, while simultaneously also providing a greater insight into the obtained results. In addition to the 
inter-model verification, some of the simulation steps could be governed by generally-applicable or 
discipline-specific standard operating procedures, guidelines, and regulations. These guidelines should be 
adopted to conform to existing standards and promote the reproducibility and in turn credibility. 

Developing Credible Mechanism-Oriented Multiscale Models: Procedure and Process 

In science, explanation can be inductive, proceeding from repeated observation.  Ideally, however 
explanation precedes prediction, permitting deductive reasoning  (Hunt et al. 2018) .  Simulation of a 
mechanistic multiscale model provides an explicit way of connecting a putative explanatory mechanism to a 
phenomenon of interest. 

Credibility and reproducibility can be enhanced by taking note of the many factors and workflows required 
to build a credible simulation to be used in a clinical application. One of these, often overlooked, is the role 
of exploratory (incredible) simulations in building credible simulations.  We would argue that most of the 
simulations that have been done in computational neuroscience are of the exploratory kind, and that we can 
now begin winnowing and consolidating these to create credible simulations for clinical application.  
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Unfortunately, the problems in biology and particularly in neuroscience are characterized by 1. imprecise, 
limited measures; 2. complex observations whose relevance is sometimes unclear; 3. sparse, 
incommensurable and sometimes contradictory supporting information; and 4. high degree of uncertainty 
(left of the ranges in Fig. 2).  These limitations contrast with the more solid information, concepts, 
observables and lower uncertainty associated the "classical" engineering of man-made devices such as 
computers, cars and aircraft.  

 

Figure 2.  Spectra to characterize biological aspects of interest.  Classical engineering problems lie at 
the right side of each range, working with precise measures, strong expectations, detailed information 
and low uncertainty.  Unfortunately, most neuroscience problems lie far to the left with weak 
measures, unclear phenomenology, sparse information and high uncertainty.  

As can be seen in Fig. 3, the procedures that we identify for the building of a credible simulation involve 
many sub-workflows and processes.  One can spend years in Box  d , building tools and running exploratory 
simulations that only lay the groundwork for future credible models.  Nonetheless, it is important not to lose 
site of the goals, which is to explain brain phenomenology at one or more levels of description: electrical 
rhythms, movement, behavior, cognition,  etc.  

The first task is to specify phenomena to be explained  (a) .  From this perspective, potentially relevant 
biological aspects are then organized together with relevant information and data into incipient explanations 
( c ).  In the computational neuroscience community, there are multiple perspectives regarding what 
information is to be considered relevant. For example, some argue that dendritic morphology and the details 
of ion channels are critical for understanding cortical networks  (Amunts et al. 2017) , while others consider 
that one need only consider simplified spiking cells (Cain et al. 2016)   (Diesmann, Gewaltig, and Aertsen 
1999)   (Potjans and Diesmann 2014) , and still others that it is best to work with high-level dynamical 
representations of populations  (Shenoy, Sahani, and Churchland 2013)  or mean-field theory  (Robinson, 
Rennie, and Rowe 2002) .  Indeed all of these perspectives can be regarded as part of the explanatory 
modeling that will find its way into new concepts of: 1. what is considered to be a relevant observation or 
measurement (arrow from  c  to  a ) and 2. what will be considered to be the form of an eventual causal 
explanation (arrow from  c  to  b ).  Development of this incipient explanation will involve establishing 
mappings and drawing analogies between features of the explanation and particular measurements.    These 
mappings and analogies may then be extended to provide working hypotheses and to actual preliminary 
biomimetic simulations for the eventual causal explanations.  

A set of additional considerations ( d ) provide the bridge from the exploratory activities of  c  to final credible 
models of  e .  Although illustrated towards the bottom, these aspects of project formulation should also be 
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considered from the very beginning.  For example, in computational neuroscience, potential use cases are 
still being developed and differ considerably across the four major clinical specialties with interest in this 
area.  Some of these are considered below -- they will include epilepsy surgery; rational 
phamacotherapeutics in epilepsy, schizophrenia and other diseases; use of electrical and optogenetic 
stimulation; and changes in the approach to physiatry.   As the field identifies the users, specific use cases, 
requirements and specifications, we will identify a variety of phenomena to be considered (arrow from  d  to 
a ).  For example, if users will have access to electroencephalography (EEG) data but not 
electrocorticography (ECoG) data, that difference in the observables will alter not only the type of software 
to be developed ( d  and  e ) but also alter the types of explanations that are to be sought (arrow from  d  to  b ). 
Use cases will also need to be organized based on expectations, separating near-term and long-term needs. 
Many new users, use cases and applications will arise since all specialties and subspecialties have an interest 
in better understanding the innervation of their organ system of interest  (Barth et al. 2017)   (Samineni et al. 
2017)   (Ross et al. 2018)   (Vaseghi et al. 2017) .  

While identification of users and use cases remains relatively underdeveloped in computational 
neuroscience, the development of simulation tools is quite sophisticated.  The need to combine a variety of 
numerical techniques (ODEs, PDEs, events, graph theory, information theory  etc. ) has resulted in the 
development of a number of simulation platforms.  The software and numerical descriptions in  d  are needed 
both for development of exploratory simulations in  c  and for the resultant credible software in  e .  These 
simulation techniques have been developed over more than a  half century, starting with the pioneering work 
of Hodgkin and Huxley  (Hodgkin and Huxley 1952) , Rall  (Rall 1962) , Fitzhugh  (Fitzhugh 1961) , and 
others.  Today we have a large variety of simulators with different strengths  (Bower and Beeman 2012) 
(Goodman and Brette 2008)   (Carnevale and Hines 2006)   (Davison et al. 2008)   (Plesser et al. 2015)   (Brette et 
al. 2007)   (Tikidji-Hamburyan et al. 2017)  that can be used individually or in combination,  cf.  MUSIC 
(Djurfeldt et al. 2010) .  

During the final stage of credible model development ( e ), we demonstrate that the model provides the 
desired outputs to represent observations (arrow from  e  to  a ).  A typical requirement is that simulation 
outputs agree with target phenomenon measurements within some tolerance.  Since the simulation system 
will be multi-attribute and multiscale, it will at the very least begin providing mechanism-based, causal 
understanding across measures.  To the extent that the model is truly biomimetic, direct mappings will exist 
to specific biological counterparts (arrow from  e  to  b ).  Although  e  appears to be the end of the road, actual 
practice will require that the resulting software system undergoes many  rounds of verification, validation, 
refinement and revision before even being released to users.  From there, continued credibility requires 
continuing work on documentation, tutorials, courses, bug reports and bug fixes, requested frontend 
enhancements, and identified backend enhancements. 
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Figure 3.  Mechanistic multiscale modeling process;  (a) Observables of phenomena to be explained. 
(b) causal explanation to be discovered;  (c) process (workflow) to identify and organize related 
information into descriptions, this process will involve simulation; (d) meta-modeling workflows 
required for defining the extent of the final model  (e) credible simulation which matches target 
phenomenon within some tolerance.   

Role of the Community  
Community involvement is important in order to to establish the credibility of models and modeling and 
simulation processes. The peer-review publication process serves as a traditional starting point for engaging 
the community. However, sharing the models themselves, along with the data used to build and evaluate 
them, provides greater opportunities for both the discipline-specific and the broader communities to directly 
assess their credibility. The role of sharing models and related resources has been acknowledged in the 
neurosciences community  (Callahan et al. 2017; R. A. McDougal, Bulanova, and Lytton 2016) . These 
related resources include the documentation of the model (commonly provided in English) and its 
implementation encoded in its original markup (if in a formal language). With access to the model and its 
associated data and documentation, interested parties can then assess the reproducibility and replicability of 
the models and the simulation workflow first-hand. Further, reuse of the models and extensions of the 
modeling and simulation strategies for different applications can reveal previously unknown limitations and 

https://paperpile.com/c/pomHcu/n88b+u1l7


reinforce strengths of the model. Each of these various community contributions help build up the credibility 
of a model. 
 
It is also important to note the necessity of cross-community fertilization to establish a common ground for 
credible modeling and simulation practices, to conform to and evolve standards that promote a unified 
understanding of model quality. Such standards enable individuals to easily exchange and reuse a given 
model on its own or in combination with other models. Especially in multi-scale modeling efforts, for 
example connecting the molecular, organelle, cellular, and tissue-level processes to predict potential drug 
targets  (Neymotin, Dura-Bernal, Lakatos, et al. 2016; Neymotin, Dura-Bernal, Moreno, et al. 2016) , (Anwar 
2017) , the ability to trust and build upon existing models can accelerate the development of these 
larger-scale efforts. Organizations, such as the Committee on Credible Practice for Modeling and Simulation 
in Healthcare  (Mulugeta and Erdemir 2013) , are leading efforts to establish such standards.  
 
Most community involvement has come through the establishment of databases and other resources that 
have encouraged submissions from the overall community of researchers.  For example, the Scholarpedia 
resource established by Izhikevich and collaborators has hosted articles on computational neuroscience 
concepts and techniques that have been used to share concepts, modeling techniques, and information about 
particular modeling tools  (Wilson 2008; Seidenstein, Barone, and Lytton 2015; Gewaltig and Diesmann 
2007) . The Open Source Brain project provides a central location for collaborators working on modeling the 
nervous system of particular brain areas or of whole organisms, notably the OpenWorm project for modeling 
the full nematode nervous system  (Szigeti et al. 2014) .  The Human Brain Project, an EU project based in 
Switzerland, has established a number of "Collaboratories" to encourage community involvement in 
coordinated projects.  One of these projects aims to identify the parameters underlying individual synaptic 
events recorded in voltage clamp experiments  (Lupascu et al. 2016) .  The Allen Brain Institute, another large 
modeling and data collection center, shares all results with the community, even before publication.  Most of 
the major simulator projects encourage contributions from the community to provide either simulator 
extensions or additional analytic tools.  For example, the SenseLab project hosts a SimToolDB alongside 
ModelDB for sharing general simulation code  (Nadkarni et al. 2002) .  ModelDB itself is a widely used 
resource which specifically solicits model contributions and then provides a starting point for many new 
modeling projects that are extensions or ports of existing models  (Robert A. McDougal et al. 2016; Peterson 
et al. 1996) .  
 
The above databases are used to provide completed models that are designed to be stand-alone but could 
also in the future be used as components of larger models.  By contrast, anatomical cell models or ion 
channel models are generally made available as starting points for other models and are used in combination 
to build models at higher scales.  Examples of these include the NeuroMorpho.Org database of neuronal 
morphologies and the Channelpedia database of voltage-sensitive ion channels  (Ranjan et al. 2011; Ascoli, 
Donohue, and Halavi 2007) .  
 
The availability of these valuable resources is a testament to the successful engagement of the computational 
neuroscience community.  Now the challenge is to provide mechanisms for choosing among the existing 
hundreds of models. Here again, community involvement can play a critical role by providing the feedback 
and assessments of a model and its credibility to aid others in deciding whether or not to re-use that model.  
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Use of Simulation in Medical Education 
Simulation-based medical education (SBME) is rapidly growing in application for training medical students, 
residents, and in some cases for planning highly-specialized medical and surgical procedures   (Jones, 
Passos-Neto, and Braghiroli 2015; Yamada, Fuerch, and Halamek 2017) .  However, the use of the word 
simulation  here differs from our usage.  SBME is referring to  simulated reality , ranging from purely paper 
exercises based on protocols, to re-enactments with live actors of physical exams or major disasters, to 
detailed computer-based virtual reality training similar to video games.  Virtual-reality simulators make use 
of some numerical simulation to establish the trajectory of a football in a video game or the elasticity of 
tissue in a surgical simulator.  Nonetheless, the technologies and tools used to administer SBME have been 
slower to adapt to current advances in modeling and simulation technologies, including mechanistic 
multiscale modeling. This has been especially problematic in neurology because of the added complexity of 
the symptoms associated with neurological conditions.  Even the most advanced mannequins and 
computer-generated simulations have very limited capacity to produce a realistic focal neurological deficit 
or combination of signs and symptoms  (Ermak et al. 2013; Micieli et al. 2015; Konakondla, Fong, and 
Schirmer 2017) . Additionally, the fidelity and credibility of these models and simulations can vary 
significantly. 
 
Epilepsy is one of the most successfully modeled disorders in neurology and neurosurgery  (W. W. Lytton 
2008) .  In particular, Jirsa and colleagues have pioneered models of individual patients prior to epilepsy 
surgery, an example of modeling for personalized medicine  (Jirsa et al. 2017; Bernard and Jirsa 2017; Proix 
et al. 2017; W. W. Lytton 2017) .   Such simulations could now be extended into training protocols for 
neurology and neurosurgery residents, offering an opportunity for melding educational simulation with 
computational neuroscience.  
 
Current SBME efforts in this domain have utilized a mannequin to train medical students to manage 
differential diagnoses and emergency procedures for handling status epilepticus and acute stroke  (Ermak et 
al. 2013) . The mannequin used in that SBME study was not actually designed for neurology training and 
was not capable of mimicking visible, or electrographic, signs of stroke or seizures. Instead the designers 
focused on a different level of  verisimilitude, asking  the student to read into the scenario to assess the 
medical condition based on data from charts and simulation actors playing the part of family members, with 
a focus on recognition and management of the neurological emergency.  Debriefing of students was 
conducted in accordance with the ten conditions ( i.e.,  best practices) for effective implementation of SBME 
(Barry Issenberg et al. 2005) .  On this basis, the authors concluded that the proposed protocol provided a 
framework for how SBME can be used in neurology, despite the shortcomings of current technology. 
However, the simulation necessarily falls short on the tenth condition of effective implementation of SBME: 
the degree to which the simulation has a “real-life” feel.  
 
In the future, life-like and highly immersive SBME will facilitate the learning of highly-demanding and 
dangerous medical procedures, including emergencies and recovery from mistakes, in the way that is 
currently done with simulators used to train pilots, astronauts and flight controllers.  Ideal neurology and 
neurosurgery (and eventually psychiatry and physiatry) SBME systems must be able to perform the task it 
advertises, in its entirety, separate novices from experts and have these learned skills be transferable to 
patient care  (Konakondla, Fong, and Schirmer 2017) .  The predictive validity of the simulation  can then be 
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assessed by comparing  performance measured under simulation condition and with real patients 
(Konakondla, Fong, and Schirmer 2017) . 
 
Another example of SBME in clinical neuroscience training is the Neuro-Touch surgical training system 
developed by the National Research Council of Canada  (Konakondla, Fong, and Schirmer 2017) , built 
around a stereoscope with bimanual procedure tools that provide haptic feedback and a real-time 
computer-generated virtual tissue that responds to manipulation. As the surgeon is working through a 
surgical scenario, the simulator records 13 metrics that are currently being collected for detailed analysis in 
order to develop benchmarks that differentiate medical students, junior or senior residents and attending 
neurosurgeons. However, because the evaluation is only being conducted within the confines of the 
simulations, the authors warn that  the insights that may be drawn should only be viewed as the skill level of 
the learner using the simulator, and not a clear indication of skill performance. There have been examples in 
aircraft simulators where a particular technique which served to "game" the simulator resulted in a fatal 
accident when used in real life  (Wrigley 2013) . Hence, mastery of the simulation by a junior physician may 
only indicate that the learner has learned the behavior of the simulator and should not be interpreted as the 
learner having matched the skill level of a seasoned neurosurgeon. Furthermore, substantial work would be 
needed to determine whether seasoned practitioners can have similar benefits as early learners for acquiring 
medical skills and improving clinical care. 
 
The Neurological Exam Rehearsal Virtual Environment (NERVE) virtual patient SBME tool was developed 
to teach first- and second-year medical students how to diagnose cranial nerve deficits. This virtual patient 
SBME was found to be an effective teaching tool  (Reyes 2016)  when evaluated using a questionnaire-based 
validation test specifically designed for virtual patient simulators  (Huwendiek et al. 2014) .  An interesting 
future extension would be to provide an underlying simulator that would take account of the many complex 
neurological deficits found in patients due to the anatomical confluence of tracts in the brainstem.  Such a 
simulator would be useful for neurology residents as well as for medical students. 
 
Overall, although there are works that show great promise for SBME to prepare healthcare providers to 
successfully complete difficult medical procedures  (Yamada, Fuerch, and Halamek 2017) , the nuances of 
designing and implementing credible SBME tools and curricula should not be underestimated. This has 
proven to be especially challenging in neurology  (Ermak et al. 2013; Chitkara et al. 2013; Fuerch et al. 2015; 
Konakondla, Fong, and Schirmer 2017) .  As Micieli et al. pointed out, when simulators are not adequately 
designed to give the practitioner appropriate feedback and decision-making information, the number of 
errors can rise significantly, which in turn can increase risk to the patient  (Micieli et al. 2015) . Considering 
that there are about 400,000 medical error related deaths every year in the US, it is paramount to design and 
implement credible SBME systems and curricula that are targeted at improving clinical outcomes  (Jones, 
Passos-Neto, and Braghiroli 2015; Konakondla, Fong, and Schirmer 2017) . In doing so, we suggest that 
SBME systems and curricula begin to incorporate multiscale models that simulate realistic physiologic 
responses that physicians can expect to encounter clinically. 
 
In an effort to advance both the technologies and methodologies applied in SBME, the Society for 
Simulation in Healthcare (SSH) recently established the Healthcare Systems Modeling & Simulation 
Affinity Group.  The Committee on Credible Practice of Modeling and Simulation in Healthcare  (Mulugeta 
and Erdemir 2013)  has been collaborating with the SSH community by providing guidance on how to design 
and implement explicit multiscale computational models into traditional SBME systems.  Additionally, the 
Congress of Neurological Surgeons have formed a Simulation Committee to create simulations for resident 
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education  (Konakondla, Fong, and Schirmer 2017) .  The US FDA and the ASME have also been working to 
publish standards and guidelines for regulatory submissions involving computational models and 
simulations for healthcare applications  (Hariharan et al. 2017) . 
 
There are no SBME systems currently available that incorporate computational models to simulate realistic 
physiologic response of virtual patients and mannequins to brain disease and to interventions.  In order to 
use SBME to train medical students and practitioners to appropriately respond to these medical conditions, 
we need to move towards the incorporation of physiologically accurate mathematical models into the overall 
architecture of SBME systems and curricula.  

Use of Modeling in Clinical Domains of Brain Disease 
Simulations in the clinical neuroscience domain have largely focused on accounting for the neural activity patterns 
underlying brain disease.  Testing the predictions arising from simulation is dependent on technological advances in 
neuromodulation, pharmacology, electrical stimulation, optogenetic stimulation,  etc . Neuropharmacological intervention 
is generally systemic with effects wherever receptors are found, often peripherally as well as centrally.  Although 
targeted treatment with an implanted cannula is possible, it is not currently used clinically.  By contrast, electrical 
stimulation can be highly targeted with local placement of electrodes.  Development of closed-loop systems and devices 
for brain stimulation  (Dura-Bernal et al. 2015) , are currently being used and show promise in treating a wide range of 
neurological diseases and disorders including Parkinson, depression, and other disorders  (Choi et al. 2015) 
(Johansen-Berg et al. 2008; Shils, Mei, and Arle 2008) .  Nontargeted electrostimulation using transcranial electrodes is 
also being widely used but remains controversial, and still lacks precise clinical indications  (Lafon et al. 2017; Huang et 
al. 2017; Santos et al. 2017; Esmaeilpour et al. 2017; Lefaucheur et al. 2014) .  Consideration is also being given to 
future use of optogenetic stimulation therapies that would offer still greater precision compared to electrical stimulation 
-- targeting not only a particular area but a particular cell type or set of cell types within that area  (Samineni et al. 2017; 
Kerr et al. 2014; Vierling-Claassen et al. 2010) 
  
Successful application of models in the clinical domain will depend on the use of credible practices to 
develop, evaluate, document and disseminate models and simulations, using the principles outlined above. 
However clinical applications will also need to be verified and validated by trial in the clinical context in 
order to be utilized. 
 
As an illustrative case for evaluating the credibility of a simulation study, we consider a mechanistic 
multiscale model of multi-target pharmacotherapy for disorders of cortical hyperexcitability  (Neymotin, 
Dura-Bernal, Lakatos, et al. 2016) . The study assessed hyperexcitability in an exploratory manner.  We 
therefore did not pre-define a single clinical context but left ourselves open to exploration of cortical 
activation for dystonia and seizures.  Dystonia is a movement disorder that produces involuntary muscle 
contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, 
and sensory and motor cortices.  We focused only on primary motor cortex, noting that this was one 
common output area for potentially distributed pathology.  
 
The multiscale model included molecular, cellular, and network scales, containing 1715 compartmental 
model neurons with multiple ion channels and intracellular molecular dynamics. Data used to develop the 
model was taken from a large number of sources including different species, different preparations (slice, 
cell culture,  in vivo, ex vivo ), different age animals, different states, different conditions. None of the data 
was taken from the clinical disorders in question due to limitations of human experimentation. As the model 
lacked a description of the motor output, the simulations could not be systematically evaluated in the context 
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of dystonia.  We suggested that the model may be applicable to epilepsy due to the appearance of the cortical 
activity patterns in the simulations. Beta activation in the cortex was used as a surrogate feature to evaluate 
whether simulations can account for activity patterns relevant to dystonia. The model lacked representations 
of spinal cord or limb, as well as many pharmacological parameters, particularly with respect to role of 
neuromodulators (known unknown), brain states (less known unknown) and metabolic parameters. 
Simulations reproduced patterns of heightened cortical activity seen in dystonia. The corresponding 
pathological parameter sets were identified by independent random variations in parameters. These 
simulations demonstrated degeneracy, meaning that there were many combinations of parameters that 
yielded the pathological syndrome.  
 
The primary result was that no individual parameter alteration could consistently distinguish between 
pathological and physiological dynamics. A support vector machine (SVM) machine learning approach 
separated the physiological from pathological patterns in different regions of high-dimensional space, 
suggesting multitarget routes from dystonic to physiological dynamics. We interpreted these results as 
suggestive of the need for a multitarget drug-cocktail approach to intervene in dystonia. In order to enable 
replication and aid in reproducibility of the model, we utilized Mercurial, a versioning system which was 
used to track parameter variations and match to corresponding simulations  (Hinsen, Läufer, and 
Thiruvathukal 2009; Waltemath et al. 2013) .  The model was disseminated via publication and meeting 
presentations with the code made available via ModelDB resource (reference #189154).  Limited 
documentation was also made available at a level conforming to ModelDB requirements, consistent with 
practices generally accepted by the Computational Neuroscience community. Due to the nature of the 
clinical domain, the parameter provenance was partial; details of parameter sources were included in the 
paper. Model replicability was tested by ModelDB curators, but was not tested directly by the manuscript 
reviewers. There have not yet been any third-party studies reproducing the model. There are unexploited 
opportunities to compare the model with alternative implementations, for example by considering a simpler 
modeling formalisms for single-neuron activity. Credibility of the simulations and insights from the results 
would be enhanced by follow-on work that reproduces the simulations using similar or alternative 
implementations. Of course, these studies would have to follow the replicability and reproducibility 
principles outlined here to enable a meaningful comparison of simulations towards improving credibility. 
 
As a contrast to above examination of the credibility practices as applicable to a mechanistic multiscale 
model, we considered these issues in the context an individualized phenomenological model of seizure 
propagation by Proix and colleagues  (Proix et al. 2017) , implemented using The Virtual Brain platform 
(Sanz-Leon et al. 2013) . The study was aimed at demonstrating that patient-specific virtual brain models 
derived based on information from diffusion magnetic resonance imaging (MRI) technique have sufficient 
predictive power to improve diagnosis and surgery outcome in cases of drug resistant epilepsy. Data from 
individual patient tractography and EEG was utilized to parameterize the each individual model separately. 
The diffusion MRI-based connectivity observed between the parcellated brain regions in each individual was 
used to setup the patient-specific connectivity matrix that related distinct autonomous oscillators 
("Epileptors") at each brain region. The resultant patient-specific virtual brain model was evaluated for its 
consistency in predicting seizure-like activity patterns in that patient.  
 
Considering that the Epileptor model is a phenomenological description of oscillatory patterns of activity in 
a bulk tissue (neural mass model), there are no explicit parameters or variables that directly arise from 
specific molecular, cellular and metabolic pathways. However, the autonomous oscillator model switched 
between interictal and ictal states because of a slow  permittivity variable  that was hypothesized to relate to 
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local tissue metabolism. Alternative connectivity matrices and weightings were considered based on data 
from control subjects, shuffling the data, changing the weights while preserving the topology of the 
connectivity, and log-transformation. Based on these validations, the authors demonstrated that prediction of 
seizure patterns was improved when the patient-specific topology of the connectivity matrix was utilized. 
The study also considered alternative models based on fast coupling, no time scale separation, and a generic 
model that shows saddle-node bifurcation. Based on the simulations considering these alternative models, 
the authors concluded that weak coupling is necessary for the predictions on the recruited networks.  
The Virtual Brain platform is made available in a public repository using the widely-employed git 
distributed version control system. The model and the results were disseminated as part of the published 
manuscript as well as through conference presentations and posters. While the manuscript was 
peer-reviewed, it is not readily apparent if the model was tested directly in simulations by the manuscript 
reviewers. Credibility of the simulations and insights from the results would be enhanced by follow-on work 
that reproduces the simulations based on data from additional patients, as well as using alternative model 
formalisms that incorporate details at the biochemical or cellular scales. In order to permit a meaningful 
comparison, such follow-on studies would have to follow the replicability and reproducibility principles 
outlined here. 
 
As the computational models of neurological conditions become increasingly reproducible and credible, the 
potential for utilizing the model simulations for therapeutic development becomes a viable proposition. For 
example, development of safe and therapeutically effective neurostimulation protocols requires 
identification of suitable, if not necessarily optimal, ranges of parameters, e.g., strength, duration, frequency, 
waveform, location, iterations, schedule, reference activity,  etc.  It is not feasible to evaluate the large and 
high-dimensional stimulus parameter space empirically through experimentation in animals or in humans to 
identify the most appropriate stimulation protocol. Hence, computational modeling and simulation of the 
response of micro- and macro-scale neural circuits in the brain to neurostimulation becomes an essential 
component of the stimulation development workflow. The simulation-based approach can narrow down the 
ranges of stimulation parameters appropriate for each neurological context, potentially in a patient-specific 
fashion. In this manner, credible practice computational models can transform the intractable challenge of 
developing effective neurostimulation approaches into a feasible pursuit of techniques for testing and 
implementing prioritized ranges of desirable neurostimulation parameters. 

Actionable Recommendations and Conclusions 
The potential of modeling and simulation in clinical application and medical education are promising. 
However, this potential is mainly being tapped in the areas that are close to traditional engineering domains, 
such as computational fluid dynamics and stress analysis.  For this reason areas of medicine that are related 
to blood flow, biomechanics and orthopedics have benefited most.  By contrast,  the brain has an 
idiosyncratic evolved set of mechanisms that are extremely difficult to reverse engineer and which draw on 
many areas of engineering, some of which have not been invented yet.  Therefore, computational 
neuroscience remains primarily in the research domain, with  only fragmented translations from 
computational neuroscience to clinical use or to medical education.  As medical practice moves toward 
precision and then personalized healthcare, multiscale modeling will be necessary for simulating the specific 
patient's response to a disease and treatment.  To move towards this goal, we must cultivate credible 
modeling and simulation practices taken from traditional areas of engineering. 



Model Configuration Management 
Since many models will be built within the context of a simulation platform, we refer here to "Model 
configuration."  However, all of these points apply  a fortiori  to models being built from scratch in a 
general-purpose programming language. 

1. Use  version control : git or mercurial (hg) are preferred.  github can be used to host projects  (Dabbish 
et al. 2012) .  In shared projects version control establishes who is responsible for which pieces of 
code. 

2. Use an  electronic notebook  (enotebook) with clear documentation of every stage of model 
development (including mistakes) 

3. Include  provenance  of parameters in enotebook and via version control -- parameters may be 
changed due to new experimental data and it is valuable to have a clear record of when and why the 
change was made and what the consequence was for the model. 

4. Perform testing of model components: for example, demonstrate that the cell-types show proper 
firing characteristics before incorporating into networks. 

5. Later in the process develop a test suite for further testing. Ideally, model testing should be 
performed at every version update.  A test suite can be linked to standard testing frameworks to 
automate this testing.  

6. Whenever possible, use reliable model development platforms such as NEST, BRIAN, NEURON, 
MOOSE, NENGO, PyNN,  etc.  This will increase the likelihood of accurate simulation and will 
enhance sharing.  Similarly model components should be taken from reliable databases of 
morphologies, channels and other components. 

7. Later in the process, encourage other groups to compare simulation results on alternative platforms 
or with different implementations.  

Verify and Validate Models 
1. Simulation platform developers generally verify the adequacy of the numerics.  Some simulators 

offer alternative numerical solvers which can be tested to assess qualitative similarity of results.   For 
example, one problematic area is the handling of fixed and variable time steps for spike handling in 
networks. (W. W. Lytton and Hines 2005) 

2.  Verify algorithms you develop.  For example, when developing a neuronal network, make sure that 
the network design is correct before moving to actual simulation. 

3. Verify that the results make sense -- verify that the simulation is a reasonable implementation of the 
conceptual model.  It is tragically easy to move on to the analysis phase of the study without first 
looking at the raw output to make sure it is reasonable. 

4. Validate based on data from a  real-world system.  In some cases, it may be important to distinguish 
simulation results from same model for different situations,  e.g., in vitro  slice  vs. in vivo  background 
activation. 

5. Test robustness of a model to parameter changes in order to ascertain whether a particular result is 
only seen with a particular set of parameter choices.  

Although all of these steps are valuable, it is important to understand that higher model fidelity and V&V 
rigor do not automatically translate to higher credibility. 
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Share Models and Data 
1. Submit models to shared databases such as ModelDB or via github.  Share widely -- you can submit 

the same model to various databases and submit components such as cells and ion channel 
definitions to component databases.  

2. Document thoroughly -- the Methods section of a paper will provide an overall gloss but will not 
generally go into sufficient detail with regard to software design and use.  Comment code.  Provide a 
README on how to launch the simulation.  

3. Disseminate -- publish, of course, and present posters and talks to various audiences. In a 
multidisciplinary area such as computational neuroscience, the same model will say different things 
to different audiences -- physiologists, anatomists, cognitive neuroscientists, neurologists, 
psychiatrists, other modelers.  

4. Join communities via organizations such as Society for Neuroscience,  Computational and Systems 
Neuroscience ( CoSyne), Organization for Computational Neuroscience (OCNS). 

5. Obtain independent reviews of models. This is difficult and time consuming but some grants are now 
providing funding explicitly to pay for consultants to review models.  

Define Context of Use and Simulation Requirements 
We distinguished above between  exploratory models ,  done by an individual researcher in order to provide 
ideas and new hypotheses, and  context models , purpose-built models for external users in a given 
environment, for example clinical or medical education use.  In the latter case, it is essential to be clear 
about who the users are and which usage patterns (sets of use cases) are to be targeted and which ones are to 
be excluded or to be left as part of longer-term goals. However even exploratory models can benefit from 
these considerations, envisioning yourself (and perhaps your experimental collaborator) as the user. 

1. Identify the  users .  Even if you are the only user at the beginning of the project, you will be sharing 
the model later, so you may want to take account of other users who are not as familiar with your 
domain.  For clinical use, a clinical assistant for epilepsy would be different for neurosurgeons vs 
neurologists. 

2. Identify the  context of use .  For example, will this model primarily be used to study dynamics, or will 
it be extended into information theory or will it be expected to perform a memory function,  etc. 

3. Identify  intended uses.   You may have one intended use for yourself as a modeler to generate new 
theoretical hypotheses and another for your experimental colleague.  In the context of a educational 
application, an SBME for medical students will be very different than an application for residents or 
for continuing medical education. 

4. Attempt to identify  usage patterns  -- it is often the case that underprepared users who have not read 
the manual use a program in unintended, and sometimes dangerous, ways. 

 

Translation of computational neuroscience models for clinical and medical 
education use 
In the preceding sections we have given examples of particular clinical and educational/training scenarios 
that may be ripe for the introduction of simulation technology.  Here we list both those already mentioned 
and others that have potential for future applications.  This list is by no means complete. 



1. Education: Integration of modeling into mannequins and online virtual patients to reproduce 
neurological deficits in SBME.  Initial versions of this would not require mechanistic 
multiscale modeling but could be done with phenomenological modeling.  Future versions 
would incorporate mechanistic modeling in order to also incorporate the time-course of signs 
and symptoms (dynamics of the system).  

2. Training: Virtual reality simulators with haptic feedback for neurosurgery training.  
3. Personalized patient simulations to decide on surgery vs interventional radiology (coiling) for 

aneurysms. 
4. Clinical decision making: Personalized patient simulations to decide on surgical approach for 

epilepsy surgery. (Jirsa et al. 2017) 
5. Simulation for seizure prediction in Epilepsy Monitoring Unit (EMU). 
6. Personalized patient simulation to determine therapies for Parkinson disease to include 

combinations of surgical, electrical and pharmacological therapy  (Grill and McIntyre 2001; 
Kerr et al. 2013; Holt and Netoff 2017; Hammond, Bergman, and Brown 2007; Van Albada et 
al. 2009; Shils, Mei, and Arle 2008)  

7. Head, brain and neural modeling for understanding effects of different kinds of electrical 
stimulation including transcranial stimulation  (Huang et al. 2017; Esmaeilpour et al. 2017; 
Lafon et al. 2017) . 

8. Modeling vagal and peripheral nerve stimulation for treatment of systemic disorders (NIH 
SPARC program, commonfund.nih.gov/sparc). 

9. Psychiatry: identifying the varying roles of disorder in dopaminergic, glutamatergic, 
inhibitory and other deficits in schizophrenia to develop new multi-target therapies  (Lisman 
et al. 2010) . 

10. Neurorehabilitation (physiatry) Modeling the interface between neural and musculoskeletal 
models to treat spasticity or dystonia  (van der Krogt et al. 2016) . 
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