
MOtoNMS

Matlab MOtion data elaboration TOolbox

for NeuroMusculoSkeletal applications

 User Manual

version 2.0

Alice Mantoan

Bioengineering of Human Movement Laboratory
Department of Information Engineering

University of Padova
ali.mantoan@gmail.com

Monica Reggiani
Rehabilitation Engineering Research Group

Department of Management and Engineering
University of Padua

monica.reggiani@unipd.it

mailto:ali.mantoan@gmail.com
http://www.gest.unipd.it/
http://www.unipd.it/
mailto:monica.reggiani@unipd.it

Table of Contents

Table of Contents

Redistribution: Terms and Conditions

Introduction

Getting Started

Architecture Overview

Supported Applications: OpenSim and CEINMS

Installation

Download

Requirements

Folders: organize your work

Code Organization

Data Organization

Acquisition Interface: describing your data

Warnings

How to run the program

Setup files

Laboratory

Markers Protocols

EMGs Protocols

C3DtoMAT: from C3D to MATLAB format

Warnings

How to run the program

Data Processing: elaborate your dynamic trials

Markers and Ground Reaction Forces Elaboration

EMG Processing

Elaboration Interface: configure your elaboration

Analysis Window Definition

Warnings

How to run the program

Setup files

EMGs Labels

Static Elaboration: process your static trials

Static Interface: configure your elaboration

Warnings

How to run the program

Setup Files

Joint Center Computation Methods

Error Messages

Appendix A: Setup Files

Acquisition Interface

Data Processing

Static Elaboration

Appendix B: Validation of Setup and Configuration Files

Appendix C: Revision History

Redistribution: Terms and
Conditions

Copyright © 2012-2014 A. Mantoan, M. Reggiani

MOtoNMS is free software: you can distributed it and/or modify it under the terms of the

GNU General Public License as published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later version.

MOtoNMS is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

details.

You should have received a copy of the GNU General Public License along with

MOtoNMS. If not see the GNU homepage.

The present user manual is under license cc by-sa, meaning Attribution Share Alike. You

can visit the creative commons page to get more information.

The latest version of this manual is available here:

https://docs.google.com/document/d/1Hs-lThX2YY6dtf2mX273wystP_ETcHbwA-

M8cpiXGLY/pub (short url: http://goo.gl/Ukrw5B)

http://www.gnu.org/licenses/
http://creativecommons.org/about/licenses/
https://docs.google.com/document/d/1Hs-lThX2YY6dtf2mX273wystP_ETcHbwA-M8cpiXGLY/pub
https://docs.google.com/document/d/1Hs-lThX2YY6dtf2mX273wystP_ETcHbwA-M8cpiXGLY/pub
http://goo.gl/Ukrw5B

Introduction

MOtoNMS (matlab MOtion data elaboration TOolbox for NeuroMusculoSkeletal

applications) is a freely available toolbox that aims at providing a complete tool for post-

processing of movement data for their use in neuromusculoskeletal software.

MOtoNMS has been design to be flexible and highly configurable, to satisfy the requests

of different research groups. Users can easily setup their own laboratory and processing

procedures, without constraints in instruments, software, protocols, and methodologies,

everything without change in the MATLAB code.

MOtoNMS also improves the data organization, providing a clear structure of input data

and automatically generating output directories.

The authors’ hope is that MOtoNMS may be useful to the research community, reducing

the gap between experimental data from motion analysis and musculoskeletal simulation

software, and uniforming data processing methods across laboratories.

Please help us in maintaining and updating the toolbox: provide feedback, comments,

suggestions, new modules through the simtk.org web page:

https://simtk.org/home/motonms or send an email to Alice Mantoan:

ali.mantoan@gmail.com

https://simtk.org/home/motonms
mailto:ali.mantoan@gmail.com

Getting Started

This section introduces MOtoNMS architecture and how to setup the software on the

computer.

Architecture Overview

MOtoNMS tries to clearly separate data processing from configuration of the execution.

This guarantees high configurability, flexibility, and a user friendly toolbox not requiring a

deep confidence with MATLAB for its use.

MOtoNMS has three main processing steps (Fig. 1 - orange boxes): (1) C3DtoMAT, (2)

Data Processing, and (3) Static Elaboration. Briefly, objectives of the three main blocks

are:

➢ C3DtoMAT: retrieves data from the input C3D files and store them in organized

MATLAB structures;

➢ Data Processing: works on dynamic trials processing markers trajectories,

ground reaction forces, and EMG signals and producing OpenSim files (.trc and

.mot format);

➢ Static Elaboration: processes static trials, computes joint centers, and stores

markers trajectories in the corresponding .trc file.

MOtoNMS configuration goes through user-friendly Matlab interfaces (Fig. 1 - blue

boxes), that create three different XML configuration files with the parameters required

as input by the processing steps (Fig. 1):

➢ acquisition.xml created by Acquisition Interface. Each data set must include

an acquisition.xml file. It gathers all information describing the acquisition

session as the number of force plates, coordinate system orientations, marker

sets, and EMG setups (refer to Acquisition Interface for details).

➢ elaboration.xml created by Elaboration Interface. This XML file includes all

the parameters that define the data processing. Examples of these parameters

are the identifiers of the trials to be processed, the cutoff frequencies for filtering

the different input data, the list of markers to be written in the .trc files, and the

method for gait event detection (refer to Elaboration Interface: configure your

elaboration for details).

➢ static.xml created by Static Interface. This XML file defines the parameters

for the static elaboration part (refer to Static Interface: configure your elaboration

for details).

All the files are encoded using the XML language. We have chosen this language for its

suitability in encoding information. XML files are easily readable but their editing might

be complex, therefore MOtoNMS provides user-friendly MATLAB interfaces that creates

these configuration files according to the proper semantic. Indeed, XML files must

respect the syntax of a grammar defined in XML Schema (XSD) files (see Appendix B:

Validation of Setup and Configuration Files for details on XML files validation).

Figure 1. MOtoNMS overview schema.

Supported Applications: OpenSim and
CEINMS

MOtoNMS has been design to support different output file formats and to be able to

integrate several musculoskeletal applications. Current version of MOtoNMS already

supports OpenSim (https://simtk.org/home/opensim) and CEINMS

(https://simtk.org/home/ceinms).

MOtoNMS processes data collected with different gait instrumentations and produces

input files for OpenSim (.trc and .mot, standard OpenSim file formats). When available,

EMG signals are also processed and exported in a text format compatible with the

CEINMS toolbox (https://simtk.org/home/ceinms), but easily suitable for other

applications.

Installation

Download

MOtoNMS is released under GNU General Public Licence v. 3 or any later version. An

archive of the latest release is available at the project webpage at the SimTk.org website

(https://simtk.org/home/motonms/). We also provided a set of dataset to play with. If you

are interested in collaborate with the development, the latest version of the software is

also available at the GitHub repository: https://github.com/RehabEngGroup/MOtoNMS.

Requirements

MOtoNMS requires one of the following software for the C3D2MAT part:

● C3Dserver (http://www.c3dserver.com/), which works only with Matlab 32bit and

in Windows.

● b-tk Biomechanical Toolkit (https://code.google.com/p/b-tk/). You can download

the BTK version for your system from the BTK project site:

https://code.google.com/p/b-tk/wiki/MatlabBinaries.

You also need to add the correct BTK folder to the path of Matlab.

Type the command help btk in the Matlab’s command window to verify that BTK

is loaded in MATLAB. You should see the main documentation for the BTK

toolbox. If it is not the case, check the path that you add to the list of the

directories loaded by MATLAB to register the BTK toolbox.

You can choose to install either C3Dserver or BTK. According to your choice, you must

use the corresponding C3D2MAT implementation, with C3Dserver

(C3D2MAT_c3dserver) or with BTK (C3D2MAT_btk).

Laboratory requirements:

● Data collected with a motion capture and force plate system must be labeled and

then exported as a C3D file, which is the input format for MOtoNMS. Markers’

labels MUST not include spaces (e.g. ‘LLM’ and not ‘L LM’) and duplicates of

marker labels are NOT acceptable in the same markerset.

https://simtk.org/home/opensim
https://simtk.org/home/ceinms
https://simtk.org/home/ceinms
http://simtk.org/
https://simtk.org/home/motonms/
https://github.com/RehabEngGroup/MOtoNMS
http://www.c3dserver.com/
https://code.google.com/p/b-tk/
https://code.google.com/p/b-tk/wiki/MatlabBinaries
http://www.c3dserver.com/
https://code.google.com/p/b-tk/

Folders: organize your
work

Before starting with the description of MOtoNMS components, let’s have a look to

MOtoNMS code structure and how to organize your experimental data folders.

Code Organization

Fig. 2 shows MOtoNMS code structure. It is organized in three parts:

➢ Source Code (MOtoNMS/src/) directories include MOtoNMS code. Functions

are organized in several directories reflecting the main parts of the toolbox, that

will be described in the next chapters: Acquisition Interface (Fig. 1 - blue box)

and C3D2MAT, Data Processing and Static Elaboration (Fig. 1 - orange boxes).

Two implementations for C3D2MAT are available, each one using a different tool

(C3Dserver and BTK) to access C3D files. A folder (src/shared) is also

dedicated to group MATLAB functions common to more than one processing

step.

➢ Setup Files (MOtoNMS/SetupFiles/) directory that includes files describing the

laboratory setup, markers and EMG protocols, EMG output labels depending on

the final application (see Setup Files in Data Processing) and information for join

center computation methods (see Setup Files in Static Elaboration). Their

organization in folders matches the source code structure. Several setup files are

already available in the toolbox distribution (Appendix B: Validation of Setup and

Configuration Files) and are often used as examples in the manual. If you need

to create new ones, refer to the Setup Files sections in each chapter as a

reference for their editing.

➢ Licences (MOtoNMS/Licenses/) directory which includes Licenses for tools

used by MOtoNMS and developed by other authors.

The following chapters of the manual describe in details each part of MOtoNMS: its

objectives, how it works, configuration files involved, and required setup files.

http://www.c3dserver.com/
https://code.google.com/p/b-tk/
https://docs.google.com/document/d/19ORuQ0sBlmLjhusRZ23CMQ56wRGirpkbQWvQveGWb6c/edit#heading=h.1qaeeh3q5trg

Figure 2: Overview of MOtoNMS Code Organization. The distribution of MOtoNMS includes an

additional folder (TestData) with data from four different laboratories to test the toolbox.

Data Organization

An additional advantage of MOtoNMS is that it helps in keeping your experimental data

folder well organized. Data storage is a common and important issue, especially when

large amount of data are involved or when the collaboration among research teams

leads to sharing of data sets and results.

Thus, we have decided to force some simple rules in the storage of collected data. This

allow an automatic generation of output directories with a well defined structure.

Therefore, the use of MOtoNMS forces the arrangement of the processed data sets with

the same structure, facilitating the retrieval of information and results and the sharing of

your work with other research teams.

The only real rule that you have to follow is to place the folders of your collected data in

a folder called InputData.

We then encourage users to create a different folder for each acquisition, named with

the date when data were collected. These folders should then be stored in another folder

named with the subject identifier.

Fig. 3 shows a representation of how MOtoNMS suggests to organize the data set: in

black is the path of data from a single acquisition session. Inside the folder, together with

the expected C3D files, you must include the acquisition.xml file (Fig. 3 - red) that

fully describe the collected data (see Acquisition Interface).

The execution of MOtoNMS automatically creates new folders (Fig. 3 - green). The new

path for the output folder is created based on the input file path just replacing

InputData with ElaboratedData (Ex: MyData\ElaboratedData\subjectXXX\

Year-Month-Day\). Then the execution of the different tools create new

subdirectories. C3D2MAT extracts data from the C3D files and stores them in mat format

in the subfolder sessionData (MyData\ElaboratedData\subjectXXX\ Year-

Month-Day\sessionData\). staticElaborations subfolder stores the output of

Static Elaboration executions. Finally the results of the multiple executions of Data

Processing, with different configurations for the same input data, are stored in different

subfolders, each one named with an identifier chosen by the user through the user

interface (Elaboration Interface: configure your elaboration).

Figure 3: Data Folders Organization. In black the input data that the user must provide. In red the

configuration files created by MOtoNMS and in green the output folders generated by the toolbox.

Acquisition Interface:
describing your data

During this step a graphical user interface (GUI) will follow you in the creation of a file

describing the acquisition session (acquisition.xml).

This file must be created and included in the folder with the C3D data before running the

next steps (Fig. 3). Furthermore, acquisition.xml helps when the data are shared

with other researchers as they can easily figure out all the details about the acquisition

session.

Most of the procedure is quite simple to understand. You will go through a sequence of

questions about the tracked subjects, people that collected the data, marker and EMG

protocol, laboratory characteristics, etc.

The only tricky thing to understand is about the prefilled setup files. Information about

the laboratory setup, markers and EMG protocols are usually common to several

acquisitions. Therefore, instead of writing again and again the same values for each

acquisition, these data are stored in setup files that can be selected with the GUI (Fig. 4).

Thus, before running the Acquisition Interface you need to have already all the

necessary setup files. A few examples are available in the directories:

➢ MOtoNMS\SetupFiles\AcquisitionInterface\Laboratories

(Laboratory Configurations)

➢ MOtoNMS\SetupFiles\AcquisitionInterface\MarkersProtocols

(Markers Protocols)

➢ MOtoNMS\SetupFiles\AcquisitionInterface\EMGsProtocols (EMG

Protocols).

If you need setup files which are not already in these folders, you can add your own

setup files to these directories following the instruction provided in the sections Setup

Files of the proper chapter.

 Figure 4 : Acquisition Interface schema. The user uses the Acquisition Interface GUI to create

acquisition.xml. Information about Laboratory configuration and Markers and EMG

Protocols are stored in prefilled setup files to avoid reentering data common to multiple

acquisitions.

Warnings

Please pay ATTENTION to the following IMPORTANT NOTES:

★ Input files folder MUST include the acquisition.xml file before running Data

Processing and Static Elaboration steps.

★ The acquisition.xml file is NOT required for C3D2MAT, so you can run

Acquisition Interface or C3D2MAT in any order.

★ Trials must be named as: trial type (walking, running, fastwalking, etc.) + sequential

number. Examples: walking1, fastwalking5, …

★ The sequential number MUST not include any 0 in the front (write 1 not 001),

otherwise errors may occur in the processing.

★ Trial names in the acquisition.xml MUST correspond to the actual input file

names.

★ Gait trials gathered along the negative direction of motion are not currently

supported: they may be processed without errors, but the results will not be

correct.

How to run the program

1. Set Matlab path to src\AcquisitionInterface folder

2. Run mainAcquisitionInterface.m

3. Fill in the required information

mainAcquisitionInterface.m calls AcquisitionInterface.m, the core

program.

Output: acquisition.xml file (saved in the input data folder).

At the beginning, the graphical interface asks if the user wants to reload an

acquisition.xml file. This is a useful functionality when the user wants to start with

information stored in a file already available.

The resulting XML file is considered valid only when all the information are included

(Appendix B: Validation of Setup and Configuration Files). However,

mainAcquisitionInterface.m only requires the data which are mandatory for the

following processing allowing to skip some information.

Setup files

The following files speed up the process of compiling the acquisition.xml file that

describes your acquisition session. If MOtoNMS has been already used in your

laboratory to collect data with EMG and marker protocols do not go further: someone

else should have already created these files. If you are not lucky and you have to write

your own setup files, do not be scared: it is a simple procedure if you carefully follow the

description in the next sections. Additionally, once you are done, you can check that the

final XML file respect the required syntax with the validation procedure (see Appendix B:

Validation of Setup and Configuration Files).

Laboratory

This XML file describes the characteristics of the laboratory where data are collected. It

has been introduced to avoid re-entering same data for each acquisition carried on in

the laboratory. Its name should uniquely identify the laboratory to whom it refers.

Therefore, the best choice is to use a combination of laboratory name, department,

university.

The following information must be included (Lst. 1):

1. Orientation of the coordinate system (<CoordinateSystemOrientation> tag,

Lst.1, line 4)

The coordinate system orientation refers to the global or laboratory coordinate system.

We used the following convention:

 - 1st axis: direction of motion

 - 2nd axis: vertical axis

 - 3rd axis: right hand rule

with the assumption that the 1st axis has the same verse of OpenSim 1st axis, i.e. it

should be the positive direction of motion (Fig. 5). This convention requires that for any

combination of the three axes (e.g. YZX, XZY, YXZ, etc...), the first axis must always be

the direction of motion in your lab, the second one your vertical axis, and the last the one

results from the right hand rule (Fig. 5). The adopted convention follows ISB

recommendation1. Lst. 1 line 4 shows an example of definition of coordinate system

orientation.

Fig. 5 Convention for Coordinate System Orientation: example of interpretation.

Current version of MOtoNMS only manages data collected along the positive

direction of motion. Gait trials gathered along the negative direction of motion may be

processed without any output error, but the results will not be correct.

2. Type of force platforms (<Type> tag, Lst. 1 lines 10 and 22)

Force platform (FP) type must be indicated because it influences output data (refer to

The C3D File Format User Guide, by Motion Lab Systems, pag. 88

1
 Ge Wu and Peter R. Cavanagh, ISB Recommendation for standardization of kinematic data in the

reporting, Vol. 28 No. 10. pp. 1257-1261, 1995

http://www.projects.science.uu.nl/umpm/c3dformat_ug.pdf and to your force platform

manual).

MOtoNMS recognizes and processes data from force platforms of type 1, 2, 3, and 4.

Each plaform returns different data as shown in the following:

● type 1: [Fx Fy Fz Px Py Mz]

● type 2 and 4: [Fx Fy Fz Mx My Mz]

● type 3: [Fx12 Fx34 Fy14 Fy23 Fz1 Fz2 Fz3 Fz4]

where F are the measured reaction forces, M the moments, and P the center of pressure

(CoP) along the three directions. Numbers in type 3 platform refers to the sensors (refer

to the C3D File Format User Guide for additional information).

If your force platform includes a plate pad on the surface you need to correct CoP

computation (please refer to http://www.kwon3d.com/theory/grf/pad.html for additional

information). Future version of MOtoNMS will include this functionality. Please contact

the authors if you need it earlier.

3. Rotation between the force platform and the global coordinates

(<FPtoGlobalRotations> tag, Lst. 1, lines 12-17 and 24-33)

It is well known that each FP has its own coordinate system (Fig. 6) and that C3D files

store FP data in the corresponding FP coordinate system. Therefore, the configuration

file about the laboratory must provide also the transformation to rotate each FP

reference system to the global one (Lst. 1, lines 12-17 and 24-33).

Figure 6: Bertec Plate Coordinate System

(from Bertec Force Plates Manual, version 1.0.0, March 2012,

http://bertec.com/uploads/pdfs/manuals/Force%20Plate%20Manual.pdf).

Lst. 1 shows an example on how to configure two Bertec force platforms. Their relative

position and coordinate systems is shown in Fig. 6. Lines 12-17 (FP 1) and 24-33 (FP 2)

list the required rotations. When more than one rotation is required, they are listed in

sequence and estimated around moving axes (lines 24-33).

http://www.projects.science.uu.nl/umpm/c3dformat_ug.pdf
http://www.projects.science.uu.nl/umpm/c3dformat_ug.pdf
http://www.kwon3d.com/theory/grf/pad.html
http://bertec.com/uploads/pdfs/manuals/Force%20Plate%20Manual.pdf

Figure 7: FP and global coordinate systems orientation of UNIPD Laboratory.

1<Laboratory xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Name>UNIPD</Name>

3 <MotionCaptureSystem>BTS</MotionCaptureSystem>

4 <CoordinateSystemOrientation>ZYX</CoordinateSystemOrientation>

 <NumberOfForcePlatforms>2</NumberOfForcePlatforms>

 <ForcePlatformsList>

 <ForcePlatform>

 <ID>1</ID>

 <Brand>Bertec</Brand>

10 <Type>1</Type>

 <FrameRate>960</FrameRate>

12 <FPtoGlobalRotations>

 <Rot>

 <Axis>X</Axis>

 <Degrees>-90</Degrees>

 </Rot>

17 </FPtoGlobalRotations>

 </ForcePlatform>

 <ForcePlatform>

20 <ID>2</ID>

 <Brand>Bertec</Brand>

22 <Type>1</Type>

 <FrameRate>960</FrameRate>

24 <FPtoGlobalRotations>

 <Rot>

 <Axis>X</Axis>

 <Degrees>-90</Degrees>

 </Rot>

 <Rot>

 <Axis>Y</Axis>

 <Degrees>180</Degrees>

 </Rot>

33 </FPtoGlobalRotations>

 </ForcePlatform>

 </ForcePlatformsList>

 </Laboratory>

Listing 1: An example of an XML file with information about the laboratory (available at

SetupFiles\AcquisitionInterface\Laboratories\UNIPD.xml).

Markers Protocols

Each marker protocol must be defined in a separate XML file. Lst. 2 shows an example

where markers set for both Static (<MarkersSetStaticTrials> tag, line 3) and

Dynamic Trials (<MarkersSetDynamicTrials> tag, line 4) are defined. Names of the

markers must correspond to the labels used to identify the markers in the C3D files.

The labels of the markers cannot include spaces as this would prevent the creation of

this configuration file.

 <MarkersProtocol>

2 <Name>UWA-Fullbody</Name>

 <MarkersSetStaticTrials>LASI RASI LPSI … </MarkersSetStaticTrials>

4 <MarkersSetDynamicTrials>C7 RACR LPSI … </MarkersSetDynamicTrials>

 </MarkersProtocol>

Listing 2: An example of an XML file with information about the marker protocols (available at

SetupFiles\AcquisitionInterface\MarkersProtocols\UWA-Fullbody.xml)

EMGs Protocols

EMG protocol must be defined in an XML file. Lst. 3 shows an example including

information about the name of the protocol (line 2), the list of the muscles (lines 3-10)

and the instrumented leg (line 11). Muscles names (Lst. 3, lines 4-8) MUST be those

assigned during the acquisition session and, therefore, must agree with labels in the

C3D files.

 <EMGsProtocol>

 <Name>UWA-16muscles-r</Name>

 <MuscleList>

4 <Muscle>Vast Lat</Muscle>

 <Muscle>Gluet Max</Muscle>

 <Muscle>Gluet Med</Muscle>

 <Muscle>TFL</Muscle>

8 <Muscle>Sart</Muscle>

 </MuscleList>

11 <InstrumentedLeg>Right</InstrumentedLeg>

 </EMGsProtocol>

Listing 3: An example of an XML file with information about the EMG protocol (available at

SetupFiles\AcquisitionInterface\EMGsProtocols\UWA-16muscles-r.xml).

The instrumented leg must always be defined when EMG data are collected. Depending

on the leg with EMG sensors its value will be Right, Left, Both, None. These are the only

acceptable strings. When EMG signals are not collected during the acquisition session,

this configuration file is not required, and the user just sets at 0 the number of EMG

systems on the Acquisition Interface GUI (Fig. 8).

Figure 8: Acquisition Interface: how to set the Number of EMGs System used during the

acquisition.

C3DtoMAT: from C3D to
MATLAB format

This step retrieves data from the input C3D files and store them in organized MATLAB

structures (.mat files). This avoid to have continuous accesses to C3D files, which are

computationally expensive and redundant. Setup and configuration files are not required

in this step.

C3D2MAT only requires to specify the input file path. If not already available, it

generates corresponding folders for the elaborated data (Folders: organize your work,

MyData\ElaboratedData\subjectXXX\Year-Month-Day\) and then converts all

the data in mat format and stored them in the sessionData folder

(MyData\ElaboratedData\subjectXXX\Year-Month-Day\sessionData\). For

each trial (i.e. C3D file in the input folder), a new subfolder is created with Markers

(Markers.mat), Force Platform Data (FPdata.mat) and all data stored in the analog

channels (AnalogData.mat). When C3D files include events, they are converted and

stored as well (Events.mat).

You can add events to your C3D files using Mokka, a freely available software for

biomechanical data analysis (http://b-tk.googlecode.com/svn/web/mokka/index.html),

which supports many different file formats and allows to write on C3D files with a very

user-friendly interface.

Information common to all the trials of the session are saved in the sessionData folder.

This includes markers labels of dynamic trials (dMLabels.mat), analog data labels

(AnalogDataLabels.mat), force platform information (ForcePlatformInfo.mat),

rates (Rates.mat), and the trials list (trialsName.mat). If any inconsistency is found,

it is pointed out in the MATLAB Command Window.

Two implementations for C3D2MAT are available, one using C3Dserver software and

one exploiting BTK. They return the same results, but are based on two different tools to

access C3D files. You can choose among the two alternatives according to your system

requirements (refer to Installation).

http://b-tk.googlecode.com/svn/web/mokka/index.html
http://www.c3dserver.com/
https://code.google.com/p/b-tk/

Warnings

Please pay ATTENTION to the following IMPORTANT NOTES:

★ Input files folder MUST be inside a folder named InputData (Folders: organize

your work).

★ The execution of C3D2MAT does not overwrite information common to the

acquisition session, i.e. that must be the same for all trials collected during an

acquisition, as trialsName.mat, Rates.mat, dMLabels,

AnalogDataLabels.mat, ForcePlatformsInfo.mat. Cancel the

sessionData folder before running again the program if you add trials or

modify your data set.

★ Different events MUST have different name (Analysis Window Definition,

WindowFromC3D).

★ Events for foot strike and foot off must identify frames with non-zero force values

(Analysis Window Definition, StanceOnFPfromC3D).

★ If you are using C3D2MAT_c3dserver, remember to install C3Dserver software

(Installation) and that it works only on Matlab 32 bit.

★ If you are using C3D2MAT_btk, remember to download the correct BTK version

for your system and to add it to the path of MATLAB. Type the command help

btk in the Matlab’s command window to verify that BTK is loaded in MATLAB

(Installation).

★ Data gathered using FP of type 4 are stored in the C3D files in V

(http://www.c3d.org/pdf/c3dformat_ug.pdf). C3D2MAT retrieves and directly

converts force data in N and N*mm or N*m (according to the used distance

unit). Be aware that the scale of results saved in FPdata.mat does not match

with the one you see in the input C3D files.

★ C3D files storing data gathered with FPs of type 4 must include information

about the corresponding FP calibration matrix. This is required to convert force

data from V to N and N*mm or N*m.

https://docs.google.com/document/d/1x_kFPu_ua3iq7_Geq1mf7zJ5n6yh0AnVJuFxRADX3rQ/edit#heading=h.opw7es4ap5yw
http://www.c3dserver.com/
https://code.google.com/p/b-tk/
http://www.c3d.org/pdf/c3dformat_ug.pdf

How to run the program

1. Set Matlab path on src\C3D2MAT_btk (or C3D2MAT_c3dserver) folder

2. Run C3D2MAT.m

3. Select your C3D input data folder

Output: data from C3D files in the specified data folder are converted and saved in mat

format.

Data Processing:
elaborate your dynamic
trials

Starting from motion data stored as MATLAB structures by C3DtoMAT, Data Processing

(Fig. 9) produces .trc and .mot files for OpenSim, storing respectively markers and forces

information. When collected, it also processes EMG signals. Data Processing is only

responsible for handling dynamic trials, static trials are managed by Static Elaboration.

Markers and Ground Reaction Forces
Elaboration

This section provides a description of the elaboration steps for marker trajectories and

ground reaction forces (Fig. 9 - left column). At first, markers trajectories undergo

piecewise cubic interpolation to fill any possible gap; a text file

(InterpolationNote.txt) with information about the procedure is also saved.

Interpolation is executed in the range between the first and last frames where marker

occurs, while the values outside this range are set to zero.

The Analog Data Splitting step (Fig. 9) handles GRF data generated by the most

common force plate types (http://www.projects.science.uu.nl/umpm/c3dformat_ug.pdf).

First, the plate moments and centers of pressure are computed with different procedure

depending on the FP type and its output. Then, the pre-processed marker data and raw

GRFs are filtered with a zero-lag second order low pass butterworth filter at

customizable cut-off frequencies (Elaboration Interface: configure your elaboration).

The analysis window definition sub-block (Fig. 9) selects the portion of the data to be

processed. Different methods are available and described in a dedicated section

(Analysis WIndow Definition).

At this step, plots of the computed values (i.e., raw EMG, envelopes, and raw and

filtered forces, CoP, and moments) are stored for offline visual inspection.

Processed GRFs are used to compute free torques based on filtered forces, moments

and CoP for the selected frames.

Finally, marker and GRF data are projected from laboratory or FP reference system to

the global reference system of the selected musculoskeletal application, i.e. OpenSim.

Required rotations depend in the laboratory setup described in the Laboratory setup file.

http://www.projects.science.uu.nl/umpm/c3dformat_ug.pdf

Figure 9: Flowchart of steps in the Data Processing part.

EMG Processing

When available, EMG signals are also processed for EMG-driven neuromusculoskeletal

applications. Currently, MOtoNMS supports CEINMS input format

(https://simtk.org/home/ceinms) but the text file can be easily adapted to other

applications.

A subset of all the acquired muscles can be selected. Maximum value for each EMG

signal is estimated from one or more trials defined by the user: when available, a trial of

maximal voluntary isometric contraction can be used, as well as a subset of the input

trials. Envelopes for the EMGs are computed and then normalized with their estimated

maximum value. Obtained normalized envelopes are stored in a text file (emg.txt)

according to CEINMS input file format (https: simtk.org home ceinms), with output labels

that can be defined by the user (for details refer to Setup Files in this chapter).

Elaboration Interface: configure your
elaboration

The execution of Data Processing block is univocally defined by a set of parameters

selected by the user. All these parameters are saved in the elaboration.xml

configuration file (Lst. 4), which guarantees the high configurability and the fully

reproducibility of the toolbox behavior.

This configuration file can be obtained running a user-friendly graphical interface (GUI).

The first thing the GUI will ask is to select the input data folder and next to enter an

identificator for the current elaboration (Fig. 10). The identificator will be used to name a

new folder in ElaboratedData storing the results of this elaboration (e.g.

elaboration01ID and elaboration02ID in Fig. 3, Folders: organize your work).

Figure 10 : Elaboration Interface: setting the Elaboration Identificator.

Then, the GUI will ask you the parameters required for the elaboration, which are briefly

described in the following:

● Trials to be processed: a subset of the C3D files in the input folder

● Cutoff frequency for markers filtering specified for each trial type (walking,

https://simtk.org/home/ceinms
https://simtk.org/home/ceinms‎

running,...) (Optional)

● Cutoff frequency for force filtering specified for each trial type (walking, running,..)

(Optional)

● Cutoff frequency for CoP filtering depending on FP type (Optional)

● Analysis Window Computation method, with its own parameters (offset, C3D

events labels, frames for the manual method). Available methods are further

described in a dedicated section (Analysis Window Definition)

● List of markers to be written in .trc file

When EMG data are available:

● Trials for the computation of the maximum value of EMG signals

● Muscles to be considered in the processing (a subset of the acquired EMGs).

● EMG output labels. Different application names EMG signals differently. To avoid

typing output labels several times, translation between EMG protocol labels (in

C3D files) and application labels is stored in a setup file (see EMGs Labels) that

can be selected from the GUI.

An example of elaboration.xml configuration file is shown below.

 <?xml version="1.0" encoding="utf-8"?>

 <elaboration>

 <FolderName>.\InputData\subjectX\dateX</FolderName>

4 <Trials>Walking1 Running1 Walking3 Walking4 Walking5</Trials>

5 <Filtering>

6 <Trial>

 <Name>Walking1</Name>

 <Fcut>

 <Markers>8</Markers>

 <Forces>8</Forces>

 <CenterOfPressure>7</CenterOfPressure>

 </Fcut>

 </Trial>

 <Trial>

 <Name>Running1</Name>

 <Fcut>

 <Markers>10</Markers>

 <Forces>10</Forces>

 <CenterOfPressure>7</CenterOfPressure>

 </Fcut>

 </Trial>

https://docs.google.com/document/d/19ORuQ0sBlmLjhusRZ23CMQ56wRGirpkbQWvQveGWb6c/edit#heading=h.tngpzf50x18f

 </Filtering>

25 <WindowSelectionProcedure>

26 <StanceOnFPfromC3D>

 <Leg>Right</Leg>

28 <LabelForHeelStrike>Foot Strike</LabelForHeelStrike>

 <LabelForToeOff>Foot Off</LabelForToeOff>

30 <Offset>20</Offset>

 </StanceOnFPfromC3D>

 </WindowSelectionProcedure>

34 <Markers>C7 RA LA L5 RPSIS LPSIS RASIS LASIS RGT LGT... </Markers>

36 <EMGMaxTrials>Walking1 Walking2 Walking3 Walking4</EMGMaxTrials>

38 <EMGsSelection>

 <EMGSet>UNIPD-CEINMS</EMGSet>

 <EMGs>

 <EMG>

 <OutputLabel>addmag_r</OutputLabel>

 <C3DLabel>Right Adductor Longus</C3DLabel>

 </EMG>

 ...

 </EMGs>

 </EMGsSelection>

49 <EMGOffset>0.2</EMGOffset>

 </elaboration>

Listing 4: Example of an elaboration.xml

The only parameter that cannot be modified by the GUI is the EMGOffset (Lst. 4, line

49). MOtoNMS stores the EMG values starting EMGOffset second before the initial

frame. While MOtoNMS has not been designed to synchronize markers, ground reaction

forces and EMGs, it accounts for the need of follow-up applications to deal with the

electromechanical delay of muscles providing EMG data from an anterior offset in time.

Default value is set to 0.2 seconds. This setting does not allow to define analysis

windows starting at the first frame. If you do not need to consider the electromechanical

delay in your research, you can manually set EMGOffset to 0 in your

elaboration.xml file. This also enables the elaboration of data from the first frame.

Analysis Window Definition

Different methods to define the analysis window are available. If events are stored in

C3D files, they may be selected as start and end frames of the analysis, otherwise

desired frames can be inserted manually. An automatic detection of gait events is also

possible based on a thresholding algorithm based on force plate data2. The following

explains the available methods with additional details.

ComputeStancePhase: automatic detection of stance phase using a thresholding

algorithm based on force plate data. This method needs only to know the leg of the

stance. When only one leg is instrumented (see EMGs Protocols), this information can

be automatically obtained from the acquisition.xml file. When both legs are

instrumented, the user is asked to indicate the leg he/she wants to consider. Once that

the leg is defined, the stance phase is selected based on force data from the FP struck

by this leg (Lst. 5, line 3). It is also possible to add an offset to the stance phase such

that the analysis window will start offset frames before the heel strike and end offset

frames after the toe off (Lst. 5, line 2).

1 <ComputeStancePhase>

 <Offset>20</Offset>

3 <Leg>Right</Leg>

 </ComputeStancePhase>

Listing 5: Example of ComputeStancePhase tag in an elaboration.xml file

StanceOnFPfromC3D: method for the selection of analysis window based on events

stored in C3D files. It looks for the windows defined by the selected events and chooses

the one when the instrumented leg struck the force plate.

Events must be specified by the user and correspond to the label used in the C3D files

(Elaboration Interface: configure your elaboration). Instrumented leg can be selected

from the EMG protocol (EMGs Protocols, Lst. 3, line 11) or defined by the user when

both limbs are instrumented.

Events must precisely define the stance window: MOtoNMS checks force platform

values to ensure the validity of the events on the C3D files and errors may be raised.

Finally, this method allows to add an offset to the selected events to consider a wider

analysis window (Lst. 6, line 5).

2
 Rueterbories J et al., Medical Engineering & Physics 32: 545-552, 2010

 <StanceOnFPfromC3D>

2 <Leg>Right</Leg>

 <LabelForHeelStrike>Foot Strike</LabelForHeelStrike>

 <LabelForToeOff>Foot Off</LabelForToeOff>

5 <Offset>5</Offset>

 </StanceOnFPfromC3D>

Listing 6: Example of StanceOnFPfromC3D tag in an elaboration.xml file

WindowFromC3D: this method allows to select any kind of events stored in the C3D

files. It differs from the previous one since it does not focus on specific gait events such

as foot strike or foot off. Thus, force data and the instrumented leg are not checked

during the elaboration.

The identification of the right event in the C3D files requires that different labels are used

for the automatic selection of events. The user is asked to state the full labels (i.e., the

Context, which might be Right, Left, or General, + Label) associated to the start and

stop events he/she wants to select for the Analysis Window (Lst. 7, lines 2-3). Offset can

also be applied to this method (Lst. 7, line 4).

1 <WindowFromC3D>

 <FullLabelForStartEvent>Right Foot Strike</FullLabelForStartEvent>

 <FullLabelForStopEvent>Right Foot Off</FullLabelForStopEvent>

4 <Offset>0</Offset>

 </WindowFromC3D>

Listing 7: Example of WindowFromC3D tag in an elaboration.xml file

Manual: a manual definition of frames to be considered for the elaboration has been

implemented as well. It requires to specify start and end frame for each trial (Lst. 8, lines

4-5). This gives the user the full freedom in the choice of the analysis window, but it has

the drawback to be quite long and complex in the compilation of the elaboration.xml

file, especially in the case of several trials, as start and end frame must be defined for

each one.

 <Manual>

2 <TrialWindow>

 <TrialName>Walking1</TrialName>

4 <StartFrame>133</StartFrame>

5 <EndFrame>196</EndFrame>

 </TrialWindow>

 ...

 </Manual>

Listing 8: Example of Manual tag in an elaboration.xml file

Warnings

Please pay ATTENTION to the following IMPORTANT NOTES:

★ C3D files MUST be converted in mat format before the execution of Data

Processing (C3D2MAT).

★ Input data folder requires an acquisition.xml file. This can be generated with

mainAquisitionInterface.m (Acquisition Interface: describing your data).

★ Static trial MUST NOT be selected: Data Processing is only for dynamic trials. To

process static trials use Static Elaboration.

★ Only trials along the positive direction of motion can be correctly processed

(Laboratory).

★ Selection of the first 0.2 sec is NOT possible due to the EMGOffset. Be careful to

select an Analysis Window with at least 0.2 sec time before the start frame.

This value can be changed in the elaboration.xml file.

★ If your application does not need data to manage the electromechanical delay,

you can set the EMGOffset to 0 in your elaboration.xml file.

How to run the program

Create settings file for elaboration (Elaboration Interface)

1. Set Matlab path on src\DataProcessing folder

2. Run ElaborationInterface.m

Output: it generates elaboration.xml file, which will be saved in the elaboration

folder. It also asks if the user wants to run the data processing code using parameters

from the elaboration.xml file just created.

Run processing

If you already have the XML settings file, you can skip the execution of the Elaboration

Interface and run directly the code through the command:

runDataProcessing(ElaborationFilePath)

where ElaborationFilePath is the path of the folder where the elaboration.xml file

you want to run is located.

Example

runDataProcessing(‘C:\MOtoNMSv10\TestData\ElaboratedData\GUsubjec

t\date\testRightStanceFromC3D’)

Output: .trc, .mot, and emg.txt for each trial

Additional files are also created for further possible analysis:

➢ InterpolationNote.txt information about the marker interpolation step;

➢ filtered data within the analysis window and the analysis window frames in mat

format;

➢ Plot comparing raw and filtered force plate data within the analysis window;

➢ Plot of EMG raw;

➢ Plot of EMG envelopes within the analysis window;

➢ maxemg.txt/maxemg.mat, storing the maximum EMG values for each

muscle.

Setup files

The only setup file required for this step is about the EMGs. Thus, if you didn’t collect

EMGs, you can skip this part.

EMGs Labels

If you gathered EMG signals, probably you need to process them and use the results of

the processing for some investigations and/or other applications. Some applications

require predefined names for their input data. For example, CEINMS software used fixed

labels for each EMG signal in input, that usually differ from those assigned during the

acquisition session. Therefore, after the execution of Data Processing, you would be

required to manually change the original EMG labels stored in your results according to

the needs of CEINMS or any other application you want to use.

MOtoNMS allows you to avoid this tedious manual process, and does it for you. The

toolbox can save results changing EMG labels coming from the acquisition (stored in the

C3D files) in those desidered by the user. You just have to specify the labels you need in

your results, and the emg.txt output file will be saved using them.

However, you are not asked to input this information, usually common for a set of

elaboration, each time you are running the Elaboration Interface GUI. It would be time

consuming, boring and therefore error prone, especially considering the number of EMG

signals that can be acquired during an acquisition. Instead, this association between

EMG labels stored in C3D files and those required for an application is defined in a XML

setup file, that can be selected through the GUI.

This file MUST be saved in SetupFiles\DataProcessing\EMGsLabels\ and

named with the sequence of EMG protocol and application names. (e.g., UWA-

CEINMS.xml). The name stands for the EMG labels collected in a certain laboratory that

must be translated in those required for a certain application.

An example of how to compile it is shown in Lst. 9. You have to manually edit this file but

it is fairly easy and you can check your file with respect to the required syntax with the

validation procedure (see Appendix B: Validation of Setup and Configuration Files).

 <EMGSet>

2 <EMG>

3 <OutputLabel>addmag_r</OutputLabel>

4 <C3DLabel>Add Magnus</C3DLabel>

 </EMG>

 <EMG>

 <OutputLabel>bicfemlh_r</OutputLabel>

 <C3DLabel>Biceps Fem</C3DLabel>

 </EMG>

 </EMGSet>

Listing 9: Example of setup file for EMG processing:

SetupFiles\DataProcessing\EMGsLabels\UWA-CEINMS.xml

Static Elaboration: process
your static trials

OpenSim requires static trials for the scaling procedure (http://simtk-

confluence.stanford.edu:8080/display/OpenSim/Getting+Started+with+Scaling). The

objective of the elaboration of these trials is to produce for each static trial a markers

trajectories file (.trc), optimized for the Scaling in OpenSim.

Starting from the mat structures created by C3D2MAT, Static Elaboration apply the

same filter procedure used in Data Processing. The main step is then joint centers (JC)

estimation. These are points required to improve the accuracy of the OpenSim scaling

procedure.

In the current toolbox version, methods for hip (HJC), knee (KJC), ankle (AJC), elbow

(EJC), shoulder (SJC) and wrist (WJC) joint centers computation are available. More

specifically, HJC can be assessed exploiting Harrington3, while the others can be

computed as the mid points between anatomical landmarks specified in the

corresponding setup files (Setup Files). However, the structure of the software

intentionally allows an easy integration of other algorithms for both lower and upper

limbs joints.

The resulting trajectories are then added to the markers list defined by the user (Static

Interface: configure your elaboration). The updated list is finally rotated into OpenSim

reference system and stored in the output .trc file.

Static Interface: configure your
elaboration

As Data Processing (Elaboration Interface: configure your elaboration), the execution of

the Static Elaboration block is fully defined by a set of parameters selected by the user.

All these parameters are enclosed in the static.xml configuration file (Lst. 10), which can

be obtained running a graphical user interface.

The GUI will ask first to select the input data folder and next to enter an identifier for the

current elaboration. The identifier will be used to name the new folder storing the results

of this elaboration (e.g. staticelaboration01ID, staticelaboration02ID in

Fig. 3, Folders: organize your work). As shown in Fig. 3, all static elaborations are

grouped in the staticElaboration folder to avoid confusion with the output folders of Data

Processing.

3
 Harrington ME, et al., Journal of Biomechanics,Biomechanics 40:595–602, 2007

http://simtk-confluence.stanford.edu:8080/display/OpenSim/Getting+Started+with+Scaling
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Getting+Started+with+Scaling

Then, the GUI will ask the user the parameters required for the elaboration, which are

briefly described in the following:

● Static trial to be processed

● Cutoff frequency for markers filtering (Optional)

● Joints for center computation

● Methods for the computation of the joint centers, which are defined selecting the

corresponding setup file (Setup Files)

● List of markers to be written in .trc file

An example of static.xml configuration file is shown in Lst. 10. Before going into

details about this file we need to give you some additional information about JC

computation. Different methods for the computation of the different JC may require

different input data. Usually these input data includes the markers position during the

static acquisition. However, different marker protocols use different labels to identify the

same body landmark. Thus, it is necessary to define the connection between the marker

required by a method (i.e. the left and right anterior and posterior superior iliac spine for

the Harrington method) and their names according to the markers protocol used for the

data collection. As it would be too complex and error prone to do it for each elaboration,

this information is stored in a setup file (see Setup Files in this chapter), one for each JC

computational method. Each file describes how the landmarks of interested are named

in different marker protocols. A user can add new protocols to the file when required.

Static Elaboration retrieved from the Setup File of the selected JC computation method

the marker labels in the marker protocol used in the static trial selected for the

processing and save them in the static.xml file (Lst. 10, lines 12-16, 24-28 and 36-39).

The list of markers to be stored in the .trc file (Lst. 10, line 44) MUST NOT include the

estimated JC labels, as it will be automatically updated.

 <?xml version="1.0" encoding="utf-8"?>

 <static>

 <FolderName>.\InputData\MassSart\2010\</FolderName>

4 <TrialName>Static1</TrialName>

5 <Fcut>8</Fcut>

6 <JCcomputation>

 <Joint>

 <Name>Ankle</Name>

9 <Method>AJCMidPoint</Method>

10 <Input>

 <MarkerNames>

 <Marker>LLMAL</Marker>

 <Marker>RLMAL</Marker>

 <Marker>LMMAL</Marker>

 <Marker>RMMAL</Marker>

 </MarkerNames>

 </Input>

 </Joint>

19 <Joint>

 <Name>Hip</Name>

 <Method>HJCHarrington</Method>

 <Input>

 <MarkerNames>

 <Marker>LASI</Marker>

 <Marker>RASI</Marker>

 <Marker>LPSI</Marker>

 <Marker>RPSI</Marker>

 </MarkerNames>

 </Input>

 </Joint>

31 <Joint>

 <Name>Knee</Name>

 <Method>KJCMidPoint</Method>

 <Input>

 <MarkerNames>

 <Marker>LeLFC</Marker>

 <Marker>RiLFC</Marker>

 <Marker>LeMFC</Marker>

 <Marker>RiMFC</Marker>

 </MarkerNames>

 </Input>

 </Joint>

 </JCcomputation>

44 <trcMarkers>C7 CLAV LACR LASH LPSH LUA1 LUA2....</trcMarkers>

 </static>

Listing 10: Example of a static.xml

Warnings

Please pay ATTENTION to the following IMPORTANT NOTES:

★ For any JC computation method, a setup file MUST be predefined (see Setup

Files).

★ The marker protocol used in the data collection of the static trial must be among

the one in the setup file for the selected JC computation method (see Setup

Files).

★ Be careful to specify list of markers within the MarkerNames tag in the same

order of the list of markers within the MarkersFullNames tag (Lst. 11, lines 4-

9).

★ The plot of estimated JCs is based on data from the first frame: if JCs plot seems

wrong there could be a problem on data in the first frame

★ C3D2MAT code MUST be run on the static trial before the static elaboration.

How to run the program

Create settings file for static elaboration (Static Interface)

1. Set Matlab path on src\StaticElaboration folder

2. Run mainStaticElaboration.m

mainStaticElaboration.m is the program implementing the Static Interface.

Output: it generates static.xml file.

At the end of the program the user is prompt with the request if he/she wants to run the

elaboration code with the just created static.xml file.

Run static elaboration

If you have already the configuration file with the parameters of your elaboration

(static.xml) , you can run directly the static elaboration with the command:

runStaticElaboration(ConfigFilePath)

where ConfigFilePath is the full path of the folder where your static.xml file is

located.

Output: static.trc, with the processed markers trajectories and the computed JC

Additional files are also generated to help in validation of obtained results:

➢ computed joint centers coordinate in .mat format

➢ plot of estimated JCs in the laboratory reference system

Setup Files

The main information that the user have to define for a static elaboration is the joint

centers he/she is interested in computing, the methods to be used for their computation

and the parameters each method requires. The last one might be very long and error

prone to be edited at each elaboration, so we decided that it would be easier to enclose

this parameters in a setup file. The Static Interface will thus ask you to select a setup file

for each JC computation. The following explains how to fill these setup files.

Joint Center Computation Methods

Each implemented JC computation method requires a file that list how the required input

markers are labelled in each marker protocol. This file MUST be saved in

SetupFiles\StaticElaboration\JCcomputation\ within the folder of the

corresponding joint, as shown in Fig. 11. While not mandatory, our suggestion is to

name the file with the acronym of the joint name followed by the identifier of the JC

computation method. When only a method is available for a joint, the Static Interface will

not ask to choose the setup file and select the only one available in the folder.

Figure 11: Setup files organization for the Static Elaboration code.

Lst. 11 is an example of a setup file created for the Harrington method at the hip joint.

The file first lists the input required for the method (<Input> tag - Lst. 11, lines 3-10).

Required markers are listed with their full name within the <MarkersFullNames> tag

(Lst. 11, lines 4-9). Then, a tag named MarkersDefinition follows (Lst. 11, line 11). It

consists of a list of protocols and MUST include, for each of them, the corresponding

input markers names. When new protocols are available, they must be added to the list

of the method used for joint computation.

 <Method>

2 <Name>HJCHarrington</Name>

 <Input>

4 <MarkerFullNames>

 <Marker>Left Anterior Superior Iliac Spine</Marker>

 <Marker>Right Anterior Superior Iliac Spine</Marker>

 <Marker>Left Posterior Superior Iliac Spine</Marker>

 <Marker>Right Posterior Superior Iliac Spine</Marker>

 </MarkerFullNames>

 </Input>

11 <MarkersDefinition>

12 <Protocol>

 <Name>UWA-Fullbody</Name>

 <MarkerNames>

15 <Marker>LASI</Marker>

 <Marker>RASI</Marker>

 <Marker>LPSI</Marker>

 <Marker>RPSI</Marker>

 </MarkerNames>

 </Protocol>

21 <Protocol>

 <Name>UNIPD-ALclusters</Name>

 <MarkerNames>

 <Marker>LASIS</Marker>

 <Marker>RASIS</Marker>

 <Marker>LPSIS</Marker>

 <Marker>RPSIS</Marker>

 </MarkerNames>

 </Protocol>

 ...

30 </MarkersDefinition>

 </Method>

Listing 11: Example of setup file for the Harrington method:

SetupFiles\StaticElaboration\JCcomputation\Hip\HJCHarrington.xml

Error Messages

A complete section dedicated to handled error messages will be available in the next

version of this User Manual.

Meanwhile, for any doubt or problem, please write an email to Alice Mantoan,

ali.mantoan@gmail.com

mailto:ali.mantoan@gmail.com

Appendix A: Setup Files

This appendix lists the setup files already available in MOtoNMS distribution. They are

stored in MOtoNMS\SetupFiles\ folder (Fig. 2 Code Organization). They are

selected by the users through the GUIs to create the configuration files

(acquisition.xml, elaboration.xml and static.xml) required for processing.

Acquisition Interface

 Laboratories

● UNIPD.xml

● UMG.xml

● GU.xml

● UWA.xml

 Markers Protocols

● UNIPD-ALclusters.xml

● GU-10pointsCluster.xml

● UMG-OpenSim.xml

● UWA-Fullbody.xml

 EMGs Protocols

● UNIPD-14muscles-r.xml

● GU-16muscles.xml

● UWA-16muscles-r.xml

Data Processing

 EMGsLabels

● UNIPD-CEINMS.xml

● GU-CEINMS.xml

● UWA-CEINMS.xml

Static Elaboration

 JCcomputation

 Ankle

● AJCMidPoint.xml

 Elbow

● EJCMidPoint.xml

 Hip

● HJCHarrington.xml

 Knee

● KJCMidPoint.xml

Shoulder

● SJCMidPoint.xml

Wrist

● WJCMidPoint.xml

Appendix B: Validation of
Setup and Configuration
Files

This section is only for people that needs to create new setup files, or want to manually

change their configuration files. Please, try to use the graphical user interfaces and avoid

playing directly with the XML configuration files. It took us a lot of time to implement

them, therefore make us happy and use them :).

The only real reason to play directly with the XML files is when you start doing something

new: (1) setup a new laboratory, or a new protocol either for (2) EMGs or (3) makers or

(4) you need different output labels for your processed EMGs, or maybe you want to

introduce a new way to (5) compute joint center.

In all these case, you need to manually create new setup files.

Usually these XML files are really simple and you can copy one already available and

easily understand what you need to change. But when you are done, it is a good practice

to check the syntax of your XML file against the grammar. Again, as it took us quite a lot

to develop a grammar for each possible XML file, please make us happy and use it.

Additionally, this is also really helpful for you as you can be sure that your file is

syntactically correct and ready to be used in MOtoNMS. Indeed, errors in editing the

setup files result in execution errors when running the source code; these may not be

easy to understand if you are not an expert of MATLAB language and MOtoNMS

behavior.

There are many possible tools that you can use. We just suggest a couple of the easiest

to be used because everything is online and you do not have to install anything on your

computer.

Choose one of the following links:

http://www.freeformatter.com/xml-validator-xsd.html

http://www.corefiling.com/opensource/schemaValidate.html

and upload your XML file and the corresponding XML Schema (the .xsd file).

The following tables are listing the XML Schema for each type of XML setup and

configuration files that you find in MOtoNMS.

https://docs.google.com/document/d/19ORuQ0sBlmLjhusRZ23CMQ56wRGirpkbQWvQveGWb6c/edit#heading=h.xvfhjq2syl1j
http://www.freeformatter.com/xml-validator-xsd.html
http://www.corefiling.com/opensource/schemaValidate.html

XML Setup Files XML Scheme

GU-16muscles.xml
UNIPD-14muscles-r.xml
UWA-16muscles-r.xml

EMGsProtocol.xsd

GU.xml
UMG.xml
UNIPD.xml
UWA.xml

Laboratory.xsd

GU-10pointsCluster.xml
UMG-OpenSim.xml
UNIPD-ALclusters.xml
UWA-Fullbody.xml

MarkersProtocol.xsd

UNIPD-CEINMS.xml

GU-CEINMS.xml

UWA-CEINMS.xml

EMGLabels.xsd

AJCMidPoint.xml
EJCMidPoint.xml
HJCHarrington.xml
KJCMidPoint.xml
SJCMidPoint.xml
WJCMidPoint.xml

JCcomputation.xsd

XML Configuration Files XML Scheme

acquisition.xml acquisition.xsd

elaboration.xml elaboration.xsd

static.xml static.xsd

Appendix C: Revision
History

v. 1.0 (February 17, 2014)

INITIAL RELEASE

v. 2.0 (May 9, 2014)

NEW FEATURES:

- Support to Matlab 64 bit and multiplatform (C3D2MAT based on BTK)

- EMG selection using Analog Labels from each C3D input file

- Shoulder, elbow, and wrist JC computation for static trials, and examples of setup files

for Griffith University markerset

- Missing values for markers trajectories identified by NaN instead of 0 in .trc output files

CODE CHANGES:

- Added src/shared folder to store functions common to several steps

- Modified filtering of markers trajectories: they are filtered only when visible and only if

they have no gaps (DataFiltering.m, ZeroLagButtFiltfilt.m)

- Modified filtering of GRF data from type 1 force platform: filtering is applied only to non

zero values to avoid smoothing due to zero values (data from force platform of type 1

are stored in C3D files after thresholding)

- Modified data interpolation: markers trajectories are interpolated only if gaps of

consecutive frames are shorter than a fixed number defined according to the video

frame rate (DataInterpolation.m)

- Modified retrieval of AnalogData in C3D2MAT: removed assumption of analog data

stored only in analog channels subsequent to those dedicated to force data. Now they

can be stored in any analog channel independently from force data.

- Renamed replaceWithNans.m as replaceMissingWithNaNs.m

- Renamed matfiltfilt2.m as ZeroLagButtFiltfilt.m

- Removed warning messages caused by the lack of subject's first and last names when

loading a predefined acquisition.xml

- Added last selected folder in text fields of graphical user interfaces (GUIs)

BUG FIXES:

- Modified transformation of COP coordinates from local to global reference system:

translation added only for non zero values.

- User is not required to set a new identifier each time he/she load an already available

elaboration.xml file as in version 1.0.

- Changed the definition of the interval where markers are visible in

replaceMissingWithNaNs.m (the definition of var 'index')

- Fixed the computation of the hip joint center (HJC) with the Harrington method

(HJCHarrington.m)

