Differences between revisions 8 and 9
Revision 8 as of 2015-11-30 21:44:22
Size: 15469
Editor: snehalkc
Comment:
Revision 9 as of 2016-05-04 22:09:52
Size: 15467
Editor: localhost
Comment: converted to 1.6 markup
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:
[[TableOfContents()]] <<TableOfContents>>
Line 13: Line 13:
[[Include(Infrastructure/AuxiliarySoftware, "Infrastructure", 2, from="= Scripting & Numerical Analysis =", to="= Finite Element Analysis =")]] <<Include(Infrastructure/AuxiliarySoftware, "Infrastructure", 2, from="= Scripting & Numerical Analysis =", to="= Finite Element Analysis =")>>
Line 19: Line 19:
 * ["Specifications/MeshGeneration"]
 * ["Specifications/ModelingConstitutive"]
 * [[Specifications/MeshGeneration]]
 * [[Specifications/ModelingConstitutive]]
Line 42: Line 42:
-- ["aerdemir"] [[DateTime(2014-02-11T12:25:52Z)]] This section may list general purpose procedures and alternatives to utilize the same input to reach the same output. Procedures optimized for specific tissues should also be provided in here. -- [[aerdemir]] <<DateTime(2014-02-11T12:25:52Z)>> This section may list general purpose procedures and alternatives to utilize the same input to reach the same output. Procedures optimized for specific tissues should also be provided in here.

Target Outcome

Finite element representation of tissue of interest

Prerequisites

Infrastructure

  • Python. Python is a programming language (GPL compatible license, http://www.python.org/). Python is the default scripting environment for Open Knee(s); for more details, please refer to Infrastructure/ScriptingEnvironment.

  • SciPy. SciPy is a Python based open-source software for mathematics, science, and engineering (BSD license, see http://www.scipy.org/).

  • Spyder. Spyder is an interactive development environment for Python with advanced editing, interactive testing, debugging and introspection features (MIT license, see http://code.google.com/p/spyderlib/).

  • npTDMS. npTDMS is Cross-platform, NumPy based module for reading TDMS files produced by LabVIEW. TDMS files are the binary files used for the robotic testing raw data. (LGPL license, see https://pypi.python.org/pypi/npTDMS/).

Previous Protocols

For more details, see

Protocols

Input

  • Finite element mesh of tissue of interest; in human readable format, e.g., Abaqus input (INP) file, XML file, or as open format binary files, e.g., MED file, including
    • node definitions (numbering and coordinates)
    • element definitions (numbering, element-specific node numbers and connectivity)
    • node set definitions (set name(s) and relevant node numbers)
    • element set definitions (set name(s) and relevant element numbers)
    • face definitions (numbering, face-specific node numbers and connectivity)
    • surface set definitions (set name(s) and relevant face numbers)
  • Fit to tissue-specific stress-strain data for a desired constitutive relationship
    • Constitutive relationship formulation
    • Numerical values of coefficients of the constitutive relationship
    • Fit error representing the quality of tissue-specific representation of material properties
  • Sample loading and boundary conditions (placeholder for simulations)
  • Sample output requests (placeholder for simulations)

Procedures

-- aerdemir 2014-02-11 12:25:52 This section may list general purpose procedures and alternatives to utilize the same input to reach the same output. Procedures optimized for specific tissues should also be provided in here.

Output

  • Assembled finite element representation of tissue of interest ready for simulation; in human readable format, e.g.,FEBio (.feb) file
    • Mesh: nodes, elements, sets
    • Assigned material properties
    • Assigned sample loading and boundary conditions


References

Taken from:

Galbusera, F., Freutel, M., Dürselen, L., D’Aiuto, M., Croce, D., Villa, T., Innocenti, B. (2014). Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review. Frontiers in Bioengineering and Biotechnology, 2, 54. http://doi.org/10.3389/fbioe.2014.00054

Galbusera, in vitro, 1D element, material properties citations

Andriacchi, T. P., Mikosz, R. P., Hampton, S. J., and Galante, J. O. (1983). Model studies of the stiffness characteristics of the human knee joint. J. Biomech. 16, 23–29. doi:10.1016/0021-9290(83)90043-X

  • PROVIDES: overall joint stiffness
  • vague on ligament property sources
  • cites Trent 1976 for joint capsule stiffness (but it doesn't actually provide it)

Atkinson, P., Atkinson, T., Huang, C., and Doane, R. (2000). “A comparison of the mechanical and dimensional properties of the human medial land lateral patellofemoral ligaments,” in 46th Annual Meeting of the Orthopaedic Research Society, Orlando, FL.

  • TISSUES: mpfl, lpfl
  • PROVIDES: length, area, width, thickness, max load, stiffness, modulus

Baldwin, M. A., Clary, C. W., Fitzpatrick, C. K., Deacy, J. S., Maletsky, L. P., and Rul lkoetter, P. J. (2012). Dynamic finite element knee simulation for evaluation of knee replacement mechanics. J. Biomech. 45, 474–483. doi:10.1016/j.jbiomech. 2011.11.052

  • total knee replacement
  • optimized model vs. experiment for ligament properties
  • NOT directly measured
  • doesn't cite source for initial stiffness values for optimization

Butler, D. L., Kay, M. D., and Stouffer, D. C. (1986). Comparison of material prop erties in fascicle-bone units from human patellar tendon and knee ligaments. J. Biomech. 19, 425–432. doi:10.1016/0021-9290(86)90019-9

  • TISSUES: patellar tendon, ACL, PCL, LCL
  • PROVIDES: initial length, initial area, number of bundles per tissue, modulus
  • direct experimental measurement

Cooper, D. E., Deng, X. H., Burstein, A. L., and Warren, R. F. (1993). The strength of the central third patellar tendon graft. A biomechanical study. Am. J. Sports Med. 21, 818–823. doi:10.1177/036354659302100610 discussion 823-4,

  • TISSUE: patellar tendon
  • PROVIDES: ultimate load, area, stress, elongation, energy to failure, and stiffness
  • direct experimental measurement

Crowninshield, R., Pope, M. H., and Johnson, R. J. (1976). An analytical model of the knee. J. Biomech. 9, 397–405. doi:10.1016/0021-9290(76)90117-2

  • PROVIDES: relative area of tissue to anterior MCL
  • analytical model
  • ligament properties only experimentally measured for MCL

Danylchuk, K. (1975). Studies on the Morphometric and Biomechanical Characteris- tica of Ligaments of the Knee Joint. M.Sc. thesis, University of Western Ontario, London, ON.

  • MISSING!!!

Harner, C. D., Vogrin, T. M., Höher, J., Ma, C. B., and Woo, S. L. (2000). Biomechan- ical analysis of a posterior cruciate ligament reconstruction. Deficiency of the posterolateral structures as a cause of graft failure. Am. J. Sports Med. 28, 32–39.

  • in situ forces from testing joint with and without PCL
  • doesn't directly provide PCL properties

Haut, T. L., and Haut, R. C. (1997). The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon. J. Biomech. 30, 79–81. doi:10.1016/S0021-9290(96)00108-X

  • TISSUE: patellar tendon
  • PROVIDES: varying stiffness (MPa) with tonicity of solution

Noyes, F. R., and Grood, E. S. (1976). The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J. Bone Joint Surg. Am. 58, 1074–1082.

  • TISSUE: ACL
  • PROVIDES: length, area, volume, stiffness (kN/m = N/mm), elastic modulus (MPa)

Noyes, F. R., Butler, D. L., Grood, E. S., Zernicke, R. F., and Hefzy, M. S. (1984). Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J. Bone Joint Surg. Am. 66, 344–352.

  • TISSUES: ACL, patellar tendon
  • PROVIDES: stiffness, stiffness/width

Quapp, K. M., and Weiss, J. A. (1998). Material characterization of human medial collateral ligament. J. Biomech. Eng. 120, 757–763. doi:10.1115/1.2834890

  • TISSUE: MCL
  • PROVIDES: length, width, thickness, tensile strength, tangent modulus
  • longitudinal and transverse tensile testing

Race, A., and Amis, A. A. (1994). The mechanical properties of the two bundles of the human posterior cruciate ligament. J. Biomech. 27, 13–24. doi:10.1016/0021- 9290(94)90028-0

  • TISSUES: anterolateral and posteromedial PCL bundles
  • PROVIDES: length, area, stiffness, modulus
  • compares properties from a few studies (including: Trent, Butler, [Kennedy])

Robinson, J. R., Bull, A. M., and Amis, A. A. (2005). Structural properties of the medial collateral ligament complex of the human knee. J. Biomech. 38, 1067–1074. doi:10.1016/j.jbiomech.2004.05.034

  • TISSUES: superficial and deep MCL, posteromedial capsule
  • PROVIDES: stiffness
  • compares properties from a few studies (including: Trent, Butler, [Kennedy])

Staubli, H. U., Schatzmann, L., Brunner, P., Rincon, L., and Nolte, L. P. (1999). Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am. J. Sports Med. 27, 27–34.

  • TISSUES: quadriceps tendon, patellar ligament
  • PROVIDES: cross-sectional area, Young's modulus

Trent, P. S., Walker, P. S., and Wolf, B. (1976). Ligament length patterns, strength, and rotational axes of the knee joint. Clin. Orthop. Relat. Res. 117, 263–270.

  • TISSUES: ACL, PCL, MCL, LCL
  • PROVIDES: stiffness (kg/mm) for tissues
  • cited by Andriacchi 1983 for capsule stiffness (but doesn't provide it?)

Woo, S. L., Hollis, J. M., Adams, D. J., Lyon, R. M., and Takai, S. (1991). Ten- sile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am. J. Sports Med. 19, 217–225. doi:10.1177/036354659101900303

  • TISSUE: ACL
  • PROVIDES: stiffness (for 3 age groups with different orientations?)

Galbusera, in vitro, 2D/3D element, material properties citations

Amis, A. A., Gupte, C. M., Bull, A. M., and Edwards, A. (2006). Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Knee Surg. Sports Traumatol. Arthrosc. 14, 257–263. doi:10.1007/s00167-005-0686-x

  • TISSUE: PCL, meniscofemoral ligaments
  • gross anatomy
  • NO mechanical properties

Bonifasi-Lista, C., Lake, S. P., Small, M. S., and Weiss, J. A. (2005). Viscoelastic prop- erties of the human medial collateral ligament under longitudinal, transverse and shear loading. J. Orthop. Res. 23, 67–76. doi:10.1016/j.orthres.2004.06.002

  • TISSUE: MCL
  • PROVIDES:
    • specimen length, thickness, width
    • peak/relaxed longitudinal, transverse, shear stresses (kPa) vs discrete strains
    • dynamic stiffness (kPa) vs frequency (Hz)
  • NO direct stiffness/moduli values

Butler, D. L., Kay, M. D., and Stouffer, D. C. (1986). Comparison of material prop- erties in fascicle-bone units from human patellar tendon and knee ligaments. J. Biomech. 19, 425–432. doi:10.1016/0021-9290(86)90019-9

  • TISSUES: patellar tendon, ACL, PCL, LCL
  • PROVIDES: initial length, initial area, number of bundles per tissue, modulus
  • direct experimental measurement
  • ALSO IN 1D CITATIONS!!!

Butler, D. L., Sheh, M. Y., Stouffer, D. C., Samaranayake, V. A., and Levy, M. S. (1990). Surface strain variation in human patellar tendon and knee cruciate ligaments. J. Biomech. Eng. 112, 38–45. doi:10.1115/1.2891124

  • MISSING!!!

Hansen, P., Bojsen-Moller, J., Aagaard, P., Kjaer, M., and Magnusson, S. P. (2006). Mechanical properties of the human patellar tendon, in vivo. Clin. Biomech. (Bristol, Avon) 21, 54–58. doi:10.1016/j.clinbiomech.2005.07.008

  • TISSUE: patellar tendon
  • in vivo, ultrasound imaging, electromyography (EMG) linearly related to muscle tension
  • NO direct experimental measurement

Harner, C. D., Xerogeanes, J. W., Livesay, G. A., Carlin, G. J., Smith, B. A., Kusayama, T., et al. (1995). The human posterior cruciate ligament complex: an interdisci- plinary study. Ligament morphology and biomechanical evaluation. Am. J. Sports Med. 23, 736–745. doi:10.1177/036354659502300617

  • TISSUES: PCL complex
  • PROVIDES:
    • some cross-sectional area info
    • ratios of stiffness and moduli between anterolateral and posteromedial PCL bundles
    • stiffness anterolateral and posteromedial PCL bundles
  • not so clear about actual values

Johnson, G. A., Tramaglini, D. M., Levine, R. E., Ohno, K., Choi, N. Y., and Woo, S. L. (1994). Tensile and viscoelastic properties of human patellar tendon. J. Orthop. Res. 12, 796–803. doi:10.1002/jor.1100120607

  • TISSUE: patellar tendon
  • PROVIDES:
    • modulus (slope b/w 6-7.5% strain, MPa) for young (29-50) and old (64-93) groups
    • strain energy density (MPa) for young and old groups
    • table comparing failure properties for patellar tendon for different studies

Louis-Ugbo, J., Leeson, B., and Hutton, W. C. (2004). Tensile properties of fresh human calcaneal (Achilles) tendons. Clin. Anat. 17, 30–35. doi:10.1002/ ca.10126

  • TISSUE: achilles (calcaneal) tendon
  • PROVIDES: stiffness (N / mm/mm), cross-sectional area (mm^2), modulus of elasticity (MPa)

Noyes, F. R., and Grood, E. S. (1976). The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J. Bone Joint Surg. Am. 58, 1074–1082.

  • TISSUE: ACL
  • PROVIDES: length, area, volume, stiffness (kN/m = N/mm), elastic modulus (MPa)
  • ALSO IN 1D CITATIONS!!!

Pioletti, D. P., Rakotomanana, L., Gilliéron, C., Leyvraz, P. F., and Benvenuti, J. F. (1996). “Nonlinear viscoelasticity of the ACL: experiments and theory,” in Com- puter Methods in Biomechanics and Biomedical Engineering, eds J. Middleton, M. L. Jones, and G. N. Pande (Amsterdam: Gordon and Breach Science Publishers), 271–280.

  • MISSING!!!

Pioletti, D. P. (1997). Viscoelastic Properties of Soft Tissues: Application to Knee Lig- aments and Tendons. Ph.D., Dissertation, Ecole Polytechnique Federale de Lau- sanne, Lausanne.

  • NOT SURE???

Pioletti, D. P., and Rakotomanana, L. R. (2000). Non-linear viscoelastic law for soft biological tissues. Eur. J. Mech. 19, 749–759. doi:10.1016/S0997-7538(00) 00202-3

  • NOT SURE???

Quapp, K. M., and Weiss, J. A. (1998). Material characterization of human medial collateral ligament. J. Biomech. Eng. 120, 757–763. doi:10.1115/1.2834890

  • TISSUE: MCL
  • PROVIDES: length, width, thickness, tensile strength, tangent modulus
  • longitudinal and transverse tensile testing
  • ALSO IN 1D CITATIONS!!!

Race, A., and Amis, A. A. (1994). The mechanical properties of the two bundles of the human posterior cruciate ligament. J. Biomech. 27, 13–24. doi:10.1016/0021- 9290(94)90028-0

  • TISSUES: anterolateral and posteromedial PCL bundles
  • PROVIDES: length, area, stiffness, modulus
  • compares properties from a few studies (including: Trent, Butler, [Kennedy])
  • ALSO IN 1D CITATIONS!!!

Ren, Y., Ahn, C., Park, H. S., Fung, D. T., and Zhang, L. (2010). “Testing for material properties of the human anterior cruciate ligament,” in 3rd Annual Meeting of the American Society of Biomechanics, Pennsylvania, USA.

  • TISSUE: ACL
  • PROVIDES: coefficients for constitutive relation
  • not so much

Woo, S. L., Orlando, C. A., Gomez, M. A., Frank, C. B., and Akeson, W. H. (1986). Tensile properties of the medial collateral ligament as a function of age. J. Orthop. Res. 4, 133–141. doi:10.1002/jor.1100040201

  • TISSUE: rabbit MCL

Woo, S. L., Hollis, J. M., Adams, D. J., Lyon, R. M., and Takai, S. (1991). Ten- sile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am. J. Sports Med. 19, 217–225. doi:10.1177/036354659101900303

  • TISSUE: ACL
  • PROVIDES: stiffness (for 3 age groups with different orientations?)
  • ALSO IN 1D CITATIONS!!!

Other (Ligaments)

Wilson, W.T., Deaken, A.H., Payne, A.P., Picard, F., Wearing, S.c. (2012). Comparative analysis of the structural properties of the collateral ligaments of the human knee.

  • TISSUES: MCL, LCL
  • PROVIDES: length, width at joint line, thickness at joint line, stiffness.
  • direct experimental measurement

Butler, L.D., Guan, Y., Kay, D.M., Cummings, F.J., Fedar, M.S., Levy, S.M. (1992) Location dependent variations in the material properties of the anterior cruciate ligament.

  • TISSUES: ACL bundles
  • PROVIDES: initial length, initial areas, modulus.
  • direct experimental measurement

Duenwald, E.S., Vanderby, R., Lakes, S.R. (2010) Stress relaxation and recovery in tendon and ligament: Experiment and modeling.

  • Root mean squared error (RMSE) values of model fits for Schapery model, nonlinear superposition and quasi-linear viscoelastic model. Three step strain input.

Cartilage

Meniscus

General

Fung, Y.C.(1984) Structure and stress-strain relationship of soft tissues.

  • Viscoelasticity, strain rate effects, pseudo-elasticity, and constitutive equations are discussed.

Specifications/ModelingTissue (last edited 2016-05-04 22:09:52 by localhost)