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INTRODUCTION 
The requirements of everyday life place 
mechanical demands upon the joints of the body.  
Some of these loads are beneficial, while others 
may be deleterious.  For example, walking is 
often prescribed for aerobic and musculoskeletal 
conditioning of the lower back [1].  In contrast, 
certain arduous lifting and asymmetric tasks may 
contribute to the high worldwide incidence of 
lower back pain [2,3].  Without ethical methods 
to directly quantify in vivo demands, it is difficult 
to classify many tasks of daily life as beneficial 
or not.  In silico musculoskeletal models of the 
lower back can overcome these ethical concerns 
and allow us to better understand in vivo 
demands during a variety of tasks [4].   
 
Like all joints in the human body, the lower back 
has many more available controls (muscles) than 
it does degrees of freedom (DoF).  This results 
in an indeterminate system with an infinite 
combination of potential muscle forces to 
accomplish a given movement. Biomechanists 
traditionally apply various optimization 
approaches to establish a feasible solution to 
predict muscle and joint loads [4].  Though these 
solutions will satisfy the constraints of the 
system, it is unlikely that the central nervous 
system (CNS) minimizes a universal objective 
function for all tasks.  Further, most generic 
optimization approaches (e.g. the minimization 
of muscle activations [5]), often underpredict 
antagonist co-activations, a significant concern 
in back models.  To overcome these limitations, 
Cholewicki and McGill [6] introduced a hybrid 
approach (EMGopt) which incorporates 
participant-specific electromyography (EMG) 
responses to better individualize the calculated 
joint demands while satisfying the equations of 
motion. 
 
The aim of the present study is to develop the 
framework for an EMGopt-driven solution using 
a complex OpenSim model of the lower back [7], 
and to test its efficacy.  To this end, we compared 
L5/S1 compression loading results from our 
EMGopt solution to a traditional static 
optimization (SO) algorithm across select sub-
maximal tasks. 

METHODS 
All experimental data were collected from a fit 
and healthy female participant (38 years; 60.5 
kgs; 1.7m).  After providing informed consent, 
she performed a series of maximal voluntary 
contractions (MVC) of the trunk musculature [8], 
followed by five sub-maximal conditions: quiet 
standing with 0, 4.5, and 9.1 kg weights in each 
hand, and walking at a comfortable self-selected 
speed (1.3 m/s) with and without an artificial 19 
mm leg length asymmetry invoked by an 
EvenUpTM Shoe Leveler placed on her right foot.  
 
Full-body kinematics were captured at 100Hz 
with 60 reflective markers and 8 high-resolution 
cameras (Qualisys AB, Sweden).  Muscle EMG 
signals were detected by 12 surface electrodes 
(Delsys Inc., USA) positioned [8,9] bilaterally 
over 6 trunk muscles: 1) rectus abdominis, 2) 
external obliques, 3) internal obliques, 4) 
latissimus dorsi, 5) longissimus dorsi, and 6) 
iliocostalis.  Ground reaction force (GRF) and 
gait pacing were supplied by an instrumented 
treadmill (Treadmetrix, USA).  EMGs and GRFs 
were collected at 2000Hz. EMGs were post-
processed [8] and scaled to peak MVC values. 
GRFs and processed EMGs were down-sampled 
to sync with the kinematic data. 
 
Two separate full-body lumbar spine models with 
17 segments, six lumbar joints, and 238 
musculotendon actuators (MTAs) were defined 
in OpenSim 4.0 [10], based upon a previously 
validated model [7]. The two models were used 
in different phases of the solution process (Fig. 
1).  Model m47DoF, with 47 DoF was used to 
accurately determine the MTA moment arms 
across all six lumbar joints, to solve the SO, and 
to compute lumbar joint loads.  Model m29DoF 
was identical but with 18 fewer DoF due to 
coordinate coupler constraints (CCC) on the 
lumbar and abdominal joints, which were 
necessary to accurately calculate the states and 
resultant joint kinetics of each of the lumbar 
segments relative to total trunk kinematics.   
 
EMGopt was implemented in a custom MATLAB 
(Mathworks Inc., USA) script that accessed 
OpenSim libraries [11].  Recorded EMGs were 



assigned as MTA activations [9] in the m47DoF 
model along with segment kinematic states to 
determine the contribution of each MTA to the 18 
resultant lumbar joint moments calculated from 
m29DoF.  MTA forces were then optimized with 
a fmincon sequential quadratic programming 
algorithm according to the objective function [6]: 

min ∑ 𝑀𝑒𝑚𝑔𝑖,𝑗 (1 − 𝑔𝑖)2
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where the sum of the root sum squared moment 
contributions (Memgi,j) from each MTA (i = 1 to 

238) about each joint (j = 1 to 6) was constrained 
to be within 0.5% of the resultant joint moments 
by minimizing adjustments to their originally 
assigned force output (gi) [6,9].  Optimized MTA 
forces from both EMGopt and OpenSim SO [12] 
were input to the OpenSim Joint Reaction 
Analysis Tool [12] to calculate each solution’s 
effect on L5/S1 compressive loads. 

  

RESULTS AND DISCUSSION 
The average L5/S1 compressive loads from the 
five experimental conditions are shown in Fig. 2.  
In all conditions, EMGopt predicted larger 
compressive loads than SO, but both were within 
reported ranges for lumbar compressive loading 
[4,13].  The higher EMGopt values are due to the 
inclusion of more antagonistic MTA forces that 
are not selected by SO to balance the net joint 
moments. 

The three standing conditions are symmetrical 
about the lumbar joints and produce relatively 
constant small net joint moments.  As 
anticipated, the EMGopt method predicted 
increasing L5/S1 compression as the hand-held 
mass increased, while SO did not predict the 
same expected pattern.  Walking entails larger 
lumbar moments [14], yet SO predicted only 8% 
greater lumbar compression than in quiet stance, 
while EMGopt predicted a larger 36% increase. 
Asymmetrical gait displayed lumbar loads 6% 
(SO) and 8% (EMGopt) greater than in normal 
walking. 
 
Overall, the EMGopt results show greater fidelity 
to expected lumbar compressive loading than 
does SO, and reflects how the CNS may respond 
differently while attempting to brace the lumbar 
region from different types of external loads [15]. 
 
CONCLUSIONS 
This study has demonstrated the feasibility of 
using an EMGopt-driven solution with a complex 
OpenSim model to examine lumbar compression 
loading.  The EMGopt approach is well suited to 
distinguish between conditions with similar 
resultant joint moment demands, but where the 
CNS muscular response may also be influenced 
by factors such as antagonist muscle activations 
or asymmetries.  Future model development will 
include testing on more participants in a larger 
variety of experimental conditions, and 
assessment of both compressive and shear 
loading demands on all lumbar joints.  Further, 
we will investigate the importance of individual 
vs. group scaling of model joint moment 
potentials, the influence of how the surface EMG 
measures are assigned to the 238 MTAs, the 
importance of high-quality MVCs in minimizing 
force adjustments (gi), the shape of the assumed 
force/EMG relation, and how individual muscles 
influence joint loading in different tasks.  The 
developed EMGopt model will be used to 
examine lower back loading in asymmetric gait. 
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Fig 1: Flow chart of model inputs/outputs processes.  
Braced numbers depict implementation sequence.     

 
Fig 2: Average L5/S1 compressive loads across the 5 
experimental conditions as predicted by static 
optimization (SO) and hybrid EMG optimization 
(EMGopt) models.  


