unable to provide initial angular velocity in URDF file

Simbody is useful for internal coordinate and coarse grained molecule modeling, large scale mechanical models like skeletons, and anything else that can be modeled as bodies interconnected by joints, acted upon by forces, and restricted by constraints.
POST REPLY
User avatar
James Smith
Posts: 3
Joined: Mon Nov 28, 2022 2:46 am

unable to provide initial angular velocity in URDF file

Post by James Smith » Mon Nov 28, 2022 10:15 am

Hi ,

Actually, I am trying to read the URFD file of a simple cylinder object.Image.

So I have used the "TaskSpaceControl-Atlas" URDFReader.CPP to read urdf files and use it.

Code: Select all

MobilizedBody shaft = myRobot.updBody("base_link");
shaft.setQToFitTranslation(s, Vec3(0,0,.5)); // This able to translate it 
shaft.setUToFitAngularVelocity(s, Pi/180 * Vec3(5, 5, 5)); // This is not working 
I am attaching the full code.
Attachments
urdfreaderexample.zip
(18.35 KiB) Downloaded 25 times
Screenshot from 2022-11-29 01-05-14.png
Screenshot from 2022-11-29 01-05-14.png (12.15 KiB) Viewed 1527 times

User avatar
Michael Sherman
Posts: 812
Joined: Fri Apr 01, 2005 6:05 pm

Re: unable to provide initial angular velocity in URDF file

Post by Michael Sherman » Mon Nov 28, 2022 10:45 am

I think you wanted:

Code: Select all

// Obtain a reference to the mobilized body of interest.
MobilizedBody& shaft = myRobot.updBody("base_link");
so that you are working with the actual MobilizedBody in your system rather than a copy.

User avatar
James Smith
Posts: 3
Joined: Mon Nov 28, 2022 2:46 am

Re: unable to provide initial angular velocity in URDF file

Post by James Smith » Tue Nov 29, 2022 10:05 am

Hi Michael ,

Thank you for the reply, but it does not work. Can you please look into file?
I have made changes in the "TaskSpaceControl-Atlas" folder.


File name: TaskSpaceControl-Atlas.cpp

Code: Select all


#include "Simbody.h"
#include "Atlas.h"
#include "shared/TaskSpace.h"

#include "shared/SimbodyExampleHelper.h"

#include <iostream>

using namespace SimTK;
using namespace std;

//==============================================================================
//                                  MAIN
//==============================================================================
int main(int argc, char **argv) {
  try {
    cout << "This is Simbody example '" 
         << SimbodyExampleHelper::getExampleName() << "'\n";
    cout << "Working dir=" << Pathname::getCurrentWorkingDirectory() << endl;

    const std::string auxDir = 
        SimbodyExampleHelper::findAuxiliaryDirectoryContaining
        ("models/example02.urdf");
    std::cout << "Getting geometry and models from '" << auxDir << "'\n";

    // Set some options.
    const double duration = Infinity; // seconds.


    Atlas realRobot(auxDir, "example02.urdf");



    // Set up visualizer and event handlers.
    Visualizer viz(realRobot);
    viz.setShowFrameRate(true);
    viz.setShowSimTime(true);
    viz.setBackgroundType(SimTK::Visualizer::SolidColor);
    viz.setBackgroundColor(Black);


    // Initialize the real robot and other related classes.
    State s;
    realRobot.initialize(s);
    printf("Real robot has %d dofs.\n", s.getNU());
    Rotation YtoX(-Pi/2, YAxis);
//    realRobot.getBody("base_link").setQToFitTranslation(s, Vec3(0,0,.5));  // hips
//    realRobot.getBody("base_link").setQToFitRotation(s, YtoX);  // hips
//
//    realRobot.updBody("base_link").setUToFitAngularVelocity(s, Vec3(10,0,0));

    MobilizedBody& shaft = realRobot.updBody("base_link"); // According to suggestion
    shaft.setUToFitAngularVelocity(s,Pi/180 * Vec3(5, 5, 5));
    realRobot.realize(s);

    SemiExplicitEuler2Integrator integ(realRobot);
    integ.setAccuracy(0.001);
    TimeStepper ts(realRobot, integ);
    ts.initialize(s);
    viz.report(ts.getState());


    const double startCPU  = cpuTime(), startTime = realTime();

    // Simulate.
    ts.stepTo(duration);

    std::cout << "CPU time: " << cpuTime() - startCPU << " seconds. "
                << "Real time: " << realTime() - startTime << " seconds."
                << std::endl;

  } catch (const std::exception& e) {
    std::cout << "ERROR: " << e.what() << std::endl;
    return 1;
  }
  return 0;
}

FIlename : Atlas.cpp

Code: Select all

/* -------------------------------------------------------------------------- *
 *             Simbody(tm) Example: Boston Dynamics Atlas robot               *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2014 Stanford University and the Authors.           *
 * Authors: Michael Sherman                                                   *
 * Contributors: Jack Wang, Chris Dembia, John Hsu                            *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

#include "Simbody.h"
#include "URDFReader.h"
#include "Atlas.h"

#include <cstdio>
#include <iostream>

using namespace SimTK;



static void createMultibodyGraph(URDFRobot&             robot,
                                 MultibodyGraphMaker&   mbgraph);

static void addRobotToSimbodySystem(const std::string&         auxDir,
                                    const MultibodyGraphMaker& mbgraph,
                                    URDFRobot&                 robot,
                                    MultibodySystem&           mbs,
                                    SimbodyMatterSubsystem&    matter,
                                    GeneralForceSubsystem&     forces,
                                    CompliantContactSubsystem& contact);

//------------------------------------------------------------------------------
//                            ATLAS CONSTRUCTOR
//------------------------------------------------------------------------------
// Build a Simbody System of the Boston Dynamics Atlas robot.
Atlas::Atlas(const std::string& auxDir, const std::string& fileNameAndExt)
:   m_matter(*this), m_forces(*this), m_tracker(*this), 
    m_contact(*this, m_tracker),
    m_sampledAngles(*this, Stage::Dynamics, Vector()),
    m_sampledRates(*this, Stage::Dynamics, Vector()),
    m_sampledPelvisPose(*this, Stage::Dynamics, Transform()),
    m_sampledEndEffectorPos(*this, Stage::Dynamics, Vec3(0)),
    m_qNoise(*this,Stage::Dynamics,Zero), m_uNoise(*this,Stage::Dynamics,Zero)
//    m_endEffectorLinkName("r_hand"), m_endEffectorStation(0,-.15,0)
{
    const std::string urdfPathName = auxDir + "models/" + fileNameAndExt;

    setUpDirection(ZAxis);
    m_matter.setShowDefaultGeometry(false);

    // Set the sensor sampling rate. TODO: should be settable.
//    addEventHandler(new AtlasJointSampler(*this, 0.002));

    //--------------------------------------------------------------------------
    //                          Read the robot file
    //--------------------------------------------------------------------------
    std::cout << "Reading file: " << urdfPathName << std::endl;
    Xml::Document urdf(urdfPathName);

    if (urdf.getRootTag() != "robot")
        throw std::runtime_error
           ("Expected to see document tag <robot>but saw <"
            + urdf.getRootTag() + "> instead.");

    // This is a URDF robot document.
    Xml::Element root = urdf.getRootElement();
    std::cout << "Reading robot '" 
              << root.getOptionalAttributeValue("name","NONAME") << "'\n";

    m_urdfRobot.readRobot(root);
    createMultibodyGraph(m_urdfRobot, m_mbGraph);
    // Optional: dump the graph to stdout for debugging or curiosity.
    //m_mbGraph.dumpGraph(std::cout);


    //--------------------------------------------------------------------------
    //                          Gravity and Ground
    //--------------------------------------------------------------------------
    m_gravity = Force::Gravity(m_forces, m_matter, -SimTK::ZAxis, 0);

    // Define a material to use for ground contact. This is not very stiff.
    ContactMaterial groundMaterial(1e6,   // stiffness
                             0.1,  // dissipation
                             0.7,   // mu_static
                             0.5,   // mu_dynamic
                             0.5);  // mu_viscous
    // Add a contact surface to represent the ground.
    // Half space normal is -x; must rotate about y to make it +z.
    m_matter.Ground().updBody().addContactSurface(Rotation(Pi/2,YAxis),
       ContactSurface(ContactGeometry::HalfSpace(), groundMaterial));
    // Draw world frame.
    m_matter.Ground().addBodyDecoration(Vec3(0), 
        DecorativeFrame(1).setColor(Green).setLineThickness(3)); // World

    //--------------------------------------------------------------------------
    //                          Build Simbody System
    //--------------------------------------------------------------------------
    addRobotToSimbodySystem(auxDir, m_mbGraph, m_urdfRobot, 
                            *this, m_matter, m_forces, m_contact);
}





//==============================================================================
//                           CREATE MULTIBODY GRAPH
//==============================================================================
// Define URDF joint types, then use links and joints in the given model
// to construct a reasonable spanning-tree-plus-constraints multibody graph
// to represent that model. An exception will be thrown if this fails.
// Note that this step is not Simbody dependent.
static void createMultibodyGraph(URDFRobot&             robot,
                                 MultibodyGraphMaker&   mbgraph) {
    // Step 1: Tell MultibodyGraphMaker about joints it should know about.

    mbgraph.setWeldJointTypeName("fixed");      // 0 dofs, Weld
    mbgraph.setFreeJointTypeName("floating");   // 6 dofs, Free

    // URDF name  #dofs     Simbody equivalent
    mbgraph.addJointType("revolute",   1);   // Pin with limits
    mbgraph.addJointType("continuous", 1);   // Pin with no limits
    mbgraph.addJointType("planar",     3);   // Planar

    // Step 2: Tell it about all the links we read from the input file, 
    // starting with world, and provide a reference pointer.
    for (int lx=0; lx < robot.links.size(); ++lx) {
        URDFLinkInfo& link = robot.links.updLink(lx);
        mbgraph.addBody(link.name, link.massProps.getMass(), 
                        link.mustBeBaseLink, &link);
    }

    // Step 3: Tell it about all the joints we read from the input file,
    // and provide a reference pointer.
    for (int jx=0; jx < robot.joints.size(); ++jx) {
        URDFJointInfo& joint = robot.joints.updJoint(jx);
        mbgraph.addJoint(joint.name, joint.type, joint.parent, joint.child, 
                            joint.mustBreakLoopHere, &joint);
    }

    // Setp 4. Generate the multibody graph.
    mbgraph.generateGraph();
}

void Atlas::initialize(SimTK::State& state) {
    state = realizeTopology();
    realizeModel(state);
    const int nq=state.getNQ(), nu=state.getNU();



    for (int j=0; j < (int)m_urdfRobot.joints.size(); ++j) {
        const URDFJointInfo& joint = m_urdfRobot.joints.getJoint(j);
        const MobilizedBody& mobod = joint.mobod;
        const int nu = mobod.getNumU(state), nq = mobod.getNumQ(state);
        const int u0 = mobod.getFirstUIndex(state);
        const int q0 = mobod.getFirstQIndex(state);

    }
}



//==============================================================================
//                       ADD ROBOT TO SIMBODY SYSTEM
//==============================================================================
// Given a desired multibody graph, gravity, and the URDF robot that was
// used to generate the graph, add elements to the Simbody System to represent
// it. There are many limitations here, especially in the handling of contact. 
// Any URDF features that we haven't roboted are just ignored.
// The URDFRobot is updated so that its links and joints have references to
// their corresponding Simbody elements.

static void addRobotToSimbodySystem(const std::string&         auxDir,
                                    const MultibodyGraphMaker& mbgraph,
                                    URDFRobot&                 robot,
                                    MultibodySystem&           mbs,
                                    SimbodyMatterSubsystem&    matter,
                                    GeneralForceSubsystem&     forces,
                                    CompliantContactSubsystem& contact) 
{
    const std::string& freeJointName = mbgraph.getFreeJointTypeName();
    const std::string& weldJointName = mbgraph.getWeldJointTypeName();

    // Define a material to use for contact. This is not very stiff.
    ContactMaterial material(1e6,   // stiffness
                             0.1,  // dissipation
                             0.7,   // mu_static
                             0.5,   // mu_dynamic
                             0.5);  // mu_viscous

    // Draw the robot frame.
    matter.Ground().addBodyDecoration(robot.X_WM, 
        DecorativeFrame(.75).setColor(Orange).setLineThickness(3));  // Model
    matter.Ground().addBodyDecoration(robot.X_WM.p()+Vec3(0,0,.1),
        DecorativeText(robot.name).setScale(.2)
        .setColor(robot.isStatic?Green:Cyan));

    // Generate a contact clique we can put collision geometry in to prevent
    // self-collisions.
    robot.robotClique = ContactSurface::createNewContactClique();

    // Record the MobilizedBody for the World link.
    robot.links.updLink(0).masterMobod = matter.Ground();

    // Run through all the mobilizers in the multibody graph, adding a Simbody
    // MobilizedBody for each one. Also add visual and collision geometry to the
    // bodies when they are mobilized.
    for (int mobNum=0; mobNum < mbgraph.getNumMobilizers(); ++mobNum) {
        // Get a mobilizer from the graph, then extract its corresponding
        // joint and bodies. Note that these don't necessarily have equivalents
        // in the URDFLink and URDFJoint inputs.
        const MultibodyGraphMaker::Mobilizer& mob = mbgraph.getMobilizer(mobNum);
        const std::string& type = mob.getJointTypeName();

        // The inboard body always corresponds to one of the input links,
        // because a slave link is always the outboard body of a mobilizer.
        // The outboard body may be slave, but its master body is one of the
        // URDF input links.
        const bool isSlave = mob.isSlaveMobilizer();
        URDFLinkInfo& gzInb  = *(URDFLinkInfo*)mob.getInboardBodyRef();
        URDFLinkInfo& gzOutb = *(URDFLinkInfo*)mob.getOutboardMasterBodyRef();

        const MassProperties massProps = 
            gzOutb.getEffectiveMassProps(mob.getNumFragments());

        //std::cout << "link=" << gzOutb.name << std::endl;
        //std::cout << "     " << massProps << std::endl;

        // This will reference the new mobilized body once we create it.
        MobilizedBody mobod; 

        if (robot.isStatic) {
            mobod = matter.updGround();
        } else if (mob.isAddedBaseMobilizer()) {
            // There is no corresponding URDF joint for this mobilizer.
            // Create the joint and set its default position to be the default
            // pose of the base link relative to the Ground frame.
            assert(type==freeJointName); // May add more types later
            if (type == freeJointName) {
                MobilizedBody::Free freeJoint(
                    gzInb.masterMobod,  Transform(),
                    massProps,    Transform());
                freeJoint.setDefaultTransform(Transform());
                mobod = freeJoint;
            }
        } else {
            // This mobilizer does correspond to one of the input joints.
            URDFJointInfo& gzJoint = *(URDFJointInfo*)mob.getJointRef();
            const bool isReversed = mob.isReversedFromJoint();

            // Find inboard and outboard frames for the mobilizer; these are
            // parent and child frames or the reverse.

            const Transform& X_IF0 = isReversed ? gzJoint.X_CB : gzJoint.X_PA;
            const Transform& X_OM0 = isReversed ? gzJoint.X_PA : gzJoint.X_CB;

            const MobilizedBody::Direction direction =
                isReversed ? MobilizedBody::Reverse : MobilizedBody::Forward;

            // Here we are using a Simbody Bushing joint to implement "floating"
            // so that we'll have Euler angle rotations & derivatives rather
            // than the quaternions we would get with a Simbody Free joint.
            // Of course that does mean there will be a singularity somewhere.
            // This makes it easier to apply prescribed motion. 
            if (type == freeJointName) {
                MobilizedBody::Bushing freeJoint(
                    gzInb.masterMobod,  X_IF0,
                    massProps,          X_OM0, 
                    direction);
                Transform defX_FM = isReversed ? Transform(~gzJoint.defX_AB)
                                               : gzJoint.defX_AB;
                freeJoint.setDefaultTransform(defX_FM);
                mobod = freeJoint;

            // Pin joint with no limits
            } else if (type == "continuous") {
                Xml::Element axisElt = gzJoint.element.getRequiredElement("axis");
                UnitVec3 axis = 
                    UnitVec3(axisElt.getRequiredAttributeValueAs<Vec3>("xyz")); 
                Rotation R_JZ(axis, ZAxis); // Simbody's pin is along Z
                Transform X_IF(X_IF0.R()*R_JZ, X_IF0.p());
                Transform X_OM(X_OM0.R()*R_JZ, X_OM0.p());
                MobilizedBody::Pin pinJoint(
                    gzInb.masterMobod,      X_IF,
                    massProps,              X_OM, 
                    direction);
                mobod = pinJoint;

                #ifdef ADD_JOINT_SPRINGS
                // KLUDGE add spring (stiffness proportional to mass)
                Force::MobilityLinearSpring(forces,mobod,0,
                                            30*massProps.getMass(),0);
                #endif
            // Pin joint with limits
            } else if (type == "revolute") {
                Xml::Element axisElt = gzJoint.element.getRequiredElement("axis");
                UnitVec3 axis = 
                    UnitVec3(axisElt.getRequiredAttributeValueAs<Vec3>("xyz")); 
                Rotation R_JZ(axis, ZAxis); // Simbody's pin is along Z
                Transform X_IF(X_IF0.R()*R_JZ, X_IF0.p());
                Transform X_OM(X_OM0.R()*R_JZ, X_OM0.p());
                MobilizedBody::Pin pinJoint(
                    gzInb.masterMobod,      X_IF,
                    massProps,              X_OM, 
                    direction);
                mobod = pinJoint;

                #ifdef ADD_JOINT_SPRINGS
                // KLUDGE add spring (stiffness proportional to mass)
                Force::MobilityLinearSpring(forces,mobod,0,
                                            30*massProps.getMass(),0);
                #endif
            } else if (type == "prismatic") {
                Xml::Element axisElt = gzJoint.element.getRequiredElement("axis");
                UnitVec3 axis = 
                    UnitVec3(axisElt.getRequiredAttributeValueAs<Vec3>("xyz")); 
                Rotation R_JX(axis, XAxis); // Simbody's slider is along X
                Transform X_IF(X_IF0.R()*R_JX, X_IF0.p());
                Transform X_OM(X_OM0.R()*R_JX, X_OM0.p());
                MobilizedBody::Slider sliderJoint(
                    gzInb.masterMobod,      X_IF,
                    massProps,              X_OM, 
                    direction);
                mobod = sliderJoint;

                #ifdef ADD_JOINT_SPRINGS
                // KLUDGE add spring (stiffness proportional to mass)
                Force::MobilityLinearSpring(forces,mobod,0,
                                            30*massProps.getMass(),0);
                #endif
            } else if (type == "ball") {
                MobilizedBody::Ball ballJoint(
                    gzInb.masterMobod,  X_IF0,
                    massProps,          X_OM0, 
                    direction);
                Rotation defR_FM = isReversed 
                    ? Rotation(~gzJoint.defX_AB.R())
                    : gzJoint.defX_AB.R();
                ballJoint.setDefaultRotation(defR_FM);
                mobod = ballJoint;
            } else if (type == weldJointName) {
                MobilizedBody::Weld weldJoint(
                    gzInb.masterMobod,  X_IF0,
                    massProps,          X_OM0);
                mobod = weldJoint;
            } 

            // Created a mobilizer that corresponds to gzJoint. Keep track.
            gzJoint.mobod = mobod;
            gzJoint.isReversed = isReversed;
        }

        // Link gzOutb has been mobilized; keep track for later.
        if (isSlave) gzOutb.slaveMobods.push_back(mobod);
        else gzOutb.masterMobod = mobod;

        // A mobilizer has been created; now add the visual and collision
        // geometry for the new mobilized body.

        Xml::Element master = gzOutb.element;
        Vec3 color = isSlave ? Red : Cyan;
        Real scale = isSlave ? 0.9 : 1.;
        if (master.isValid()) {
            // VISUAL
            Array_<Xml::Element> visuals = master.getAllElements("visual");
            for (unsigned i=0; i < visuals.size(); ++i)  {
                Transform X_LV = URDF::getOrigin(visuals[i]);
                Xml::Element geo = visuals[i].getRequiredElement("geometry");
                Xml::Element box = geo.getOptionalElement("box");
                if (box.isValid()) {
                    Vec3 sz = box.getRequiredAttributeValueAs<Vec3>("size");
                    mobod.addBodyDecoration(
                        X_LV, DecorativeBrick(sz/2).setOpacity(.5)
                                .setColor(color).setScale(scale));
                }
                Xml::Element sphere = geo.getOptionalElement("sphere");
                if (sphere.isValid()) {
                    Real r = sphere.getRequiredAttributeValueAs<Real>("radius");
                    mobod.addBodyDecoration(
                        X_LV, DecorativeSphere(r).setOpacity(.5)
                                .setColor(color).setScale(scale));
                }
                Xml::Element cyl = geo.getOptionalElement("cylinder");
                if (cyl.isValid()) {
                    Real r = cyl.getRequiredAttributeValueAs<Real>("radius");
                    Real l = cyl.getRequiredAttributeValueAs<Real>("length");
                    // Cylinder is along Z in URDF, Y in Simbody
                    Rotation YtoZ(Pi/2, XAxis);
                    mobod.addBodyDecoration(
                        Transform(X_LV.R()*YtoZ, X_LV.p()),
                        DecorativeCylinder(r, l/2).setOpacity(.5)
                                .setColor(color).setScale(scale));
                }
                Xml::Element meshFile = geo.getOptionalElement("mesh");
                if (meshFile.isValid()) {
                    std::string pathname = 
                        meshFile.getRequiredAttributeValue("filename");
                    const std::string::size_type spos = pathname.rfind('/');
                    if (spos != std::string::npos)
                        pathname = pathname.substr(spos+1);
                    const Vec3 scale = 
                        meshFile.getOptionalAttributeValueAs<Vec3>
                                                            ("scale", Vec3(1));
                    bool isAbsolutePath; std::string dir, fn, ext;
                    Pathname::deconstructPathname(pathname, isAbsolutePath,
                                                  dir, fn, ext);
                    PolygonalMesh polyMesh;
                    polyMesh.loadStlFile(auxDir + "geometry/" + fn + ".stl");
                    DecorativeMesh decMesh(polyMesh);
                    decMesh.setColor(Cyan).setScaleFactors(scale);
                    mobod.addBodyDecoration(X_LV, decMesh);
                }
            } 

            // COLLISION
            Array_<Xml::Element> coll = master.getAllElements("collision");
            const Vec3 collColor = robot.isStatic ? Green : Gray;
            //TODO: disabled
            for (unsigned i=0; i < 0*coll.size(); ++i) {
                Transform X_LC = URDF::getOrigin(coll[i]);
                Xml::Element geo = coll[i].getRequiredElement("geometry");

                // Model sphere collision surface.
                Xml::Element sphere = geo.getOptionalElement("sphere");
                if (sphere.isValid()) {
                    Real r = sphere.getRequiredAttributeValueAs<Real>("radius");
                    mobod.addBodyDecoration(
                        X_LC, DecorativeSphere(r)
                                .setRepresentation(DecorativeGeometry::DrawWireframe)
                                .setColor(collColor));
                    ContactSurface surface(ContactGeometry::Sphere(r),
                                           material);
                    if (!gzOutb.selfCollide)
                        surface.joinClique(robot.robotClique);
                    mobod.updBody().addContactSurface(X_LC, surface);
                }

                // Model cylinder collision surface (must fake with ellipsoid).
                Xml::Element cyl = geo.getOptionalElement("cylinder");
                if (cyl.isValid()) {
                    Real r   = cyl.getRequiredAttributeValueAs<Real>("radius");
                    Real len = cyl.getRequiredAttributeValueAs<Real>("length");
                    // Cylinder is along Z in URDF
#ifndef USE_CONTACT_MESH
                    Vec3 esz = Vec3(r,r,len/2); // Use ellipsoid instead
                    mobod.addBodyDecoration(X_LC, 
                        DecorativeEllipsoid(esz)
                            .setRepresentation(DecorativeGeometry::DrawWireframe)
                            .setColor(collColor));
                    ContactSurface surface(ContactGeometry::Ellipsoid(esz),
                                           material);
#else
                    const int resolution = 0; // chunky hexagonal shape
                    const PolygonalMesh mesh = PolygonalMesh::
                        createCylinderMesh(ZAxis,r,len/2,resolution);
                    const ContactGeometry::TriangleMesh triMesh(mesh);
    
                    mobod.addBodyDecoration(X_LC, 
                        DecorativeMesh(triMesh.createPolygonalMesh())
                        .setRepresentation(DecorativeGeometry::DrawWireframe)
                        .setColor(collColor));
                    ContactSurface surface(triMesh, material,1 /*Thickness*/);
#endif
                    if (!gzOutb.selfCollide)
                        surface.joinClique(robot.robotClique);
                    mobod.updBody().addContactSurface(X_LC, surface);
                }


                // Model box collision surface (must fake with ellipsoid).
                Xml::Element box = geo.getOptionalElement("box");
                if (box.isValid()) {
                    Vec3 hsz = box.getRequiredAttributeValueAs<Vec3>("size")/2;
#ifndef USE_CONTACT_MESH
                    mobod.addBodyDecoration(X_LC, 
                        DecorativeEllipsoid(hsz) // use half dimensions
                            .setRepresentation(DecorativeGeometry::DrawWireframe)
                            .setColor(collColor));
                    ContactSurface surface(ContactGeometry::Ellipsoid(hsz),
                                           material);
#else
                    const int resolution = 20; // need dense to get near corners
                    const PolygonalMesh mesh = PolygonalMesh::
                        createBrickMesh(hsz,resolution);
                    const ContactGeometry::TriangleMesh triMesh(mesh);
    
                    mobod.addBodyDecoration(X_LC, 
                        DecorativeMesh(triMesh.createPolygonalMesh())
                        .setRepresentation(DecorativeGeometry::DrawWireframe)
                        .setColor(collColor));
                    ContactSurface surface(triMesh, material,1 /*Thickness*/);
#endif
                    if (!gzOutb.selfCollide)
                        surface.joinClique(robot.robotClique);
                    mobod.updBody().addContactSurface(X_LC, surface);
                }
            }
        }
    }

    // Weld the slaves to their masters.
    for (int lx=0; lx < robot.links.size(); ++lx) {
        URDFLinkInfo& link = robot.links.updLink(lx);
        if (link.slaveMobods.empty()) continue;
        for (unsigned i=0; i < link.slaveMobods.size(); ++i) {
            Constraint::Weld weld(link.masterMobod, link.slaveMobods[i]);
            link.slaveWelds.push_back(weld); // in case we want to know later
        }
    }

    // Add the loop joints if any.
    for (int lcx=0; lcx < mbgraph.getNumLoopConstraints(); ++lcx) {
        const MultibodyGraphMaker::LoopConstraint& loop =
            mbgraph.getLoopConstraint(lcx);

        URDFJointInfo& joint  = *(URDFJointInfo*)loop.getJointRef();
        URDFLinkInfo&  parent = *(URDFLinkInfo*) loop.getParentBodyRef();
        URDFLinkInfo&  child  = *(URDFLinkInfo*) loop.getChildBodyRef();

        if (joint.type == weldJointName) {
            Constraint::Weld weld(parent.masterMobod, joint.X_PA, 
                                  child.masterMobod,  joint.X_CB);
            joint.constraint = weld;
        } else if (joint.type == "ball") {
            Constraint::Ball ball(parent.masterMobod, joint.X_PA.p(), 
                                  child.masterMobod,  joint.X_CB.p());
            joint.constraint = ball;
        } else if (joint.type == freeJointName) {
            // A "free" loop constraint is no constraint at all so we can
            // just ignore it. It might be more convenient if there were
            // a 0-constraint Constraint::Free, just as there is a 0-mobility
            // MobilizedBody::Weld.
        } else
            throw std::runtime_error(
                "Unrecognized loop constraint type '" + joint.type + "'.");
    }
}


User avatar
James Smith
Posts: 3
Joined: Mon Nov 28, 2022 2:46 am

Re: unable to provide initial angular velocity in URDF file

Post by James Smith » Thu Dec 01, 2022 6:03 am

Hi Michael,

Thanks for your answer. It works.

POST REPLY