Page 1 of 1

Getting Analysis tool results as MATLAB variables

Posted: Tue Feb 05, 2019 12:32 pm
by makhavanfar
Hi,

I can run different analysis tools (i.e. inverse dynamic, point kinematic, muscle analysis, etc.) through MATLAB by API. However, to use the generated results in MATLAB, I have to open the results from above analysis tools in MATLAB using importdata function. For example, A=importdata(PointKinematics.sto).

Is there any way instead of opening and reading .sto, .mot, etc., files in MATLAB that I can when running the analysis tool get the results as MATLAB variables? In that way, I don't need to import and open many files in MATLAB and my code runtime would be decrease.

In AnalyzeTool methodsview for MATLAB, I found getStatesStorage command. However, I am not sure that is what I should use to solve my problem, and if this is the class that I have to use, I don't know how to change the Storage data to Matlab variables?

Thank you in advance for your help,

Mohammad

Re: Getting Analysis tool results as MATLAB variables

Posted: Wed Feb 06, 2019 2:31 am
by mitkof6
Hi,

You can create functions that execute the various tools and pass around the name of the files as arguments to the functions. Unfortunately, the tools were not design to work with objects well enough so you may run into unexpected behaviors. Please find a python code (OpenSim 3.3) containing functions for IK, SO and JRA:

Code: Select all

# \brief A variety of useful OpenSim utilities.
#
# @author Dimitar Stanev (stanev@ece.upatras.gr)
import os
import opensim
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages


def readMotionFile(filename):
    """Reads OpenSim .sto files.

    Parameters
    ----------
    filename: str
        absolute path to the .sto file

    Returns
    -------
    header: list of str
        the header of the .sto
    labels: list of str
        the labels of the columns
    data: list of lists
        an array of the data

    """

    if not os.path.exists(filename):
        print('file do not exists')

    file_id = open(filename, 'r')

    # read header
    next_line = file_id.readline()
    header = [next_line]
    nc = 0
    nr = 0
    while 'endheader' not in next_line:
        if 'datacolumns' in next_line:
            nc = int(next_line[next_line.index(' ') + 1:len(next_line)])
        elif 'datarows' in next_line:
            nr = int(next_line[next_line.index(' ') + 1:len(next_line)])
        elif 'nColumns' in next_line:
            nc = int(next_line[next_line.index('=') + 1:len(next_line)])
        elif 'nRows' in next_line:
            nr = int(next_line[next_line.index('=') + 1:len(next_line)])

        next_line = file_id.readline()
        header.append(next_line)

    # process column labels
    next_line = file_id.readline()
    if next_line.isspace() is True:
        next_line = file_id.readline()

    labels = next_line.split()

    # get data
    data = []
    for i in range(1, nr + 1):
        d = [float(x) for x in file_id.readline().split()]
        data.append(d)

    file_id.close()

    return header, labels, data


def index_containing_substring(list_str, pattern):
    """For a given list of strings finds the index of the element that contains the
    substring.

    Parameters
    ----------
    list_str: list of str

    pattern: str
         pattern


    Returns
    -------
    indices: list of int
         the indices where the pattern matches

    """
    indices = []
    for i, s in enumerate(list_str):
        if pattern in s:
            indices.append(i)

    return indices


def plot_sto(sto_file, plots_per_row, plot_file, pattern=None,
             title_function=lambda x: x):
    """Plots the .sto file (OpenSim) by constructing a grid of subplots.

    Parameters
    ----------
    sto_file: str
        path to file
    plots_per_row: int
        subplot columns
    plot_file: str
        path to store results
    pattern: str, optional, default=None
        plot based on pattern (e.g. only pelvis coordinates)
    title_function: lambda
        callable function f(str) -> str
    """
    assert('pdf' in plot_file)

    header, labels, data = readMotionFile(sto_file)
    data = np.array(data)
    indices = []
    if pattern is not None:
        indices = index_containing_substring(labels, pattern)
    else:
        indices = range(1, len(labels))

    n = len(indices)
    ncols = int(plots_per_row)
    nrows = int(np.ceil(float(n) / plots_per_row))
    pages = int(np.ceil(float(nrows) / ncols))
    if ncols > n:
        ncols = n

    with PdfPages(plot_file) as pdf:
        for page in range(0, pages):
            fig, ax = plt.subplots(nrows=ncols, ncols=ncols,
                                   figsize=(8, 8))
            ax = ax.flatten()
            for pl, col in enumerate(indices[page * ncols ** 2:page * ncols ** 2 + ncols ** 2]):
                ax[pl].plot(data[:, 0], data[:, col])
                ax[pl].set_title(title_function(labels[col]))

            fig.tight_layout()
            pdf.savefig(fig)
            plt.close()


def construct_ik_task_set(model, marker_data, task_set):
    """Construct OpenSim Inverse Kinematics task set.

    In older versions of OpenSim (e.g. 3.3) IK will not execute when there are
    virtual markers that do not exist in the marker data.

    """
    virtual_markers = model.getMarkerSet()
    marker_names = marker_data.getMarkerNames()
    for i in range(0, marker_names.getSize()):
        marker_name = marker_names.get(i)
        exists = False
        for j in range(0, virtual_markers.getSize()):
            if virtual_markers.get(j).getName() == marker_name:
                task = opensim.IKMarkerTask()
                task.setName(marker_name)
                task.setApply(True)
                task.setWeight(1)
                task_set.adoptAndAppend(task)
                exists = True
                break

        if not exists:
            task = opensim.IKMarkerTask()
            task.setName(marker_name)
            task.setApply(False)
            task.setWeight(1)
            task_set.adoptAndAppend(task)


def perform_ik(model_file, trc_file, results_dir):
    """Performs Inverse Kinematics using OpenSim.

    Parameters
    ----------
    model_file: str
        OpenSim model (.osim)
    trc_file: str
        the experimentally measured marker trajectories (.trc)
    results_dir: str
        directory to store the results

    """
    model = opensim.Model(model_file)
    # model.set_assembly_accuracy(1e-3)
    model.initSystem()
    marker_data = opensim.MarkerData(trc_file)
    name = os.path.basename(trc_file)[:-4]
    ik_tool = opensim.InverseKinematicsTool()
    task_set = ik_tool.getIKTaskSet()
    construct_ik_task_set(model, marker_data, task_set)
    ik_tool.setName(name)
    ik_tool.setModel(model)
    ik_tool.setStartTime(marker_data.getStartFrameTime())
    ik_tool.setEndTime(marker_data.getLastFrameTime())
    ik_tool.setMarkerDataFileName(trc_file)
    ik_tool.setResultsDir(results_dir)
    ik_file = results_dir + name + '_ik.mot'
    ik_tool.setOutputMotionFileName(ik_file)
    ik_tool.run()
    return ik_file


def perform_so(model_file, ik_file, grf_file, grf_xml, reserve_actuators,
               results_dir):
    """Performs Static Optimization using OpenSim.

    Parameters
    ----------
    model_file: str
        OpenSim model (.osim)
    ik_file: str
        kinematics calculated from Inverse Kinematics
    grf_file: str
        the ground reaction forces
    grf_xml: str
        xml description containing how to apply the GRF forces
    reserve_actuators: str
        path to the reserve actuator .xml file
    results_dir: str
        directory to store the results
    """
    # model
    model = opensim.Model(model_file)

    # prepare external forces xml file
    name = os.path.basename(grf_file)[:-8]
    external_loads = opensim.ExternalLoads(model, grf_xml)
    external_loads.setExternalLoadsModelKinematicsFileName(ik_file)
    external_loads.setDataFileName(grf_file)
    external_loads.setLowpassCutoffFrequencyForLoadKinematics(6)
    external_loads.printToXML(results_dir + name + '.xml')

    # add reserve actuators
    force_set = opensim.ForceSet(model, reserve_actuators)
    force_set.setMemoryOwner(False)  # model will be the owner
    for i in range(0, force_set.getSize()):
        model.updForceSet().append(force_set.get(i))

    # construct static optimization
    motion = opensim.Storage(ik_file)
    static_optimization = opensim.StaticOptimization()
    static_optimization.setStartTime(motion.getFirstTime())
    static_optimization.setEndTime(motion.getLastTime())
    static_optimization.setUseModelForceSet(True)
    static_optimization.setUseMusclePhysiology(True)
    static_optimization.setActivationExponent(2)
    static_optimization.setConvergenceCriterion(0.0001)
    static_optimization.setMaxIterations(100)
    # model.addAnalysis(static_optimization)
    model.updAnalysisSet().adoptAndAppend(static_optimization)

    # analysis
    analysis = opensim.AnalyzeTool(model)
    analysis.setName(name)
    analysis.setModel(model)
    analysis.setInitialTime(motion.getFirstTime())
    analysis.setFinalTime(motion.getLastTime())
    analysis.setLowpassCutoffFrequency(6)
    analysis.setCoordinatesFileName(ik_file)
    analysis.setExternalLoadsFileName(results_dir + name + '.xml')
    analysis.setLoadModelAndInput(True)
    analysis.setResultsDir(results_dir)
    analysis.run()
    so_force_file = results_dir + name + '_StaticOptimization_force.sto'
    so_activations_file = results_dir + name + \
        '_StaticOptimization_activation.sto'
    return (so_force_file, so_activations_file)


def perform_jra(model_file, ik_file, grf_file, grf_xml, reserve_actuators,
                muscle_forces_file, results_dir, prefix='',
                joint_names=['All'],
                apply_on_bodies=['parent'],
                express_in_frame=['ground']):
    """Performs Static Optimization using OpenSim.

    Parameters
    ----------
    model_file: str
        OpenSim model (.osim)
    ik_file: str
        kinematics calculated from Inverse Kinematics
    grf_file: str
        the ground reaction forces
    grf_xml: str
        xml description containing how to apply the GRF forces
    reserve_actuators: str
        path to the reserve actuator .xml file
    muscle_forces_file: str
        path to the file containing the muscle forces from SO
    results_dir: str
        directory to store the results
    prefix: str
        prefix of the resultant joint reaction loads
    joint_names: list
        joint names of interest
    apply_on_bodies: list
        apply on child or parent
    express_in_frame: list
        frame to express results
    """
    assert(len(joint_names) == len(apply_on_bodies) == len(express_in_frame))

    # model
    model = opensim.Model(model_file)

    # prepare external forces xml file
    name = os.path.basename(grf_file)[:-8]
    external_loads = opensim.ExternalLoads(model, grf_xml)
    external_loads.setExternalLoadsModelKinematicsFileName(ik_file)
    external_loads.setDataFileName(grf_file)
    external_loads.setLowpassCutoffFrequencyForLoadKinematics(6)
    external_loads.printToXML(results_dir + name + '.xml')

    # TODO this may not be needed
    # add reserve actuators (must not be appended when performing JRA)
    # force_set = opensim.ForceSet(model, reserve_actuators)
    # force_set.setMemoryOwner(False)  # model will be the owner
    # for i in range(0, force_set.getSize()):
    #     model.updForceSet().append(force_set.get(i))
    #     # model.addForce(force_set.get(i))

    # construct joint reaction analysis
    motion = opensim.Storage(ik_file)
    joint_reaction = opensim.JointReaction(model)
    joint_reaction.setName('JointReaction')
    joint_reaction.setStartTime(motion.getFirstTime())
    joint_reaction.setEndTime(motion.getLastTime())
    joint_reaction.setForcesFileName(muscle_forces_file)
    joint_names_arr = opensim.ArrayStr()
    apply_on_bodies_arr = opensim.ArrayStr()
    express_in_frame_arr = opensim.ArrayStr()
    for j, b, f in zip(joint_names, apply_on_bodies, express_in_frame):
        joint_names_arr.append(j)
        apply_on_bodies_arr.append(b)
        express_in_frame_arr.append(f)

    joint_reaction.setJointNames(joint_names_arr)
    joint_reaction.setOnBody(apply_on_bodies_arr)
    joint_reaction.setInFrame(express_in_frame_arr)
    # model.addAnalysis(joint_reaction)
    model.updAnalysisSet().adoptAndAppend(joint_reaction)
    model.initSystem()

    # analysis
    analysis = opensim.AnalyzeTool(model)
    analysis.setName(prefix + name)
    analysis.setModel(model)
    analysis.setModelFilename(model_file)
    analysis.setInitialTime(motion.getFirstTime())
    analysis.setFinalTime(motion.getLastTime())
    analysis.setLowpassCutoffFrequency(6)
    analysis.setCoordinatesFileName(ik_file)
    analysis.setExternalLoadsFileName(results_dir + name + '.xml')
    analysis.setLoadModelAndInput(True)
    analysis.setResultsDir(results_dir)
    analysis.run()
    jra_file = results_dir + name + '_JointReaction_ReactionLoads.sto'
    return jra_file

Regards

Re: Getting Analysis tool results as MATLAB variables

Posted: Wed Feb 06, 2019 7:53 am
by makhavanfar
Hi Dimitar,

Thank you very much for your response and the python code. Is there anyway to get the states of the system as a MATLAB matrix during the simulation? I mean, e.g. for Inverse Dynamic, I can get a matrix (number of time instants * number of coordinates) of generalized forces. Right now, what I am doing is this:

Code: Select all

% running Inverse dynamics
import org.opensim.modeling.*;
myModel = Model(ModelFile);
AnalyzeFileName=['ID_Example_Setup.xml'];
IDtemplateFile=[AnalyzeFilePath AnalyzeFileName];
% lowpassfcut=0.5;
myModel.initSystem();
idTool=InverseDynamicsTool(IDtemplateFile);
idTool.setModel(myModel);
idTool.setName('subject1');
idTool.setExternalLoadsFileName(extLoadsXml);
idTool.setStartTime(initial_time);
idTool.setEndTime(final_time);
% idTool.setLowpassCutoffFrequency(lowpassfcut);
idTool.setCoordinatesFileName(MotionFile);
results_directory=[ModelFilePath 'ID-Results'];
idTool.setResultsDir(results_directory);
idTool.run();
% This code runs the ID tool properly
% but to use ID results, I have to open 
% the file with the below code:
A= importdata(IDFile);
ID=A.data;
I am sorry, but I did not understand is there any way that instead of importing data, I can get the A matrix in the above code from states of the system and through API? Same questions for other analyses like point kinematics.

Thanks,

Mohammad

Re: Getting Analysis tool results as MATLAB variables

Posted: Wed Feb 06, 2019 10:47 am
by mitkof6