Hi,
I can run different analysis tools (i.e. inverse dynamic, point kinematic, muscle analysis, etc.) through MATLAB by API. However, to use the generated results in MATLAB, I have to open the results from above analysis tools in MATLAB using importdata function. For example, A=importdata(PointKinematics.sto).
Is there any way instead of opening and reading .sto, .mot, etc., files in MATLAB that I can when running the analysis tool get the results as MATLAB variables? In that way, I don't need to import and open many files in MATLAB and my code runtime would be decrease.
In AnalyzeTool methodsview for MATLAB, I found getStatesStorage command. However, I am not sure that is what I should use to solve my problem, and if this is the class that I have to use, I don't know how to change the Storage data to Matlab variables?
Thank you in advance for your help,
Mohammad
Getting Analysis tool results as MATLAB variables
- Mohammadhossein Akhavanfar
- Posts: 19
- Joined: Mon Oct 16, 2017 9:11 am
- Dimitar Stanev
- Posts: 1096
- Joined: Fri Jan 31, 2014 5:14 am
Re: Getting Analysis tool results as MATLAB variables
Hi,
You can create functions that execute the various tools and pass around the name of the files as arguments to the functions. Unfortunately, the tools were not design to work with objects well enough so you may run into unexpected behaviors. Please find a python code (OpenSim 3.3) containing functions for IK, SO and JRA:
Regards
You can create functions that execute the various tools and pass around the name of the files as arguments to the functions. Unfortunately, the tools were not design to work with objects well enough so you may run into unexpected behaviors. Please find a python code (OpenSim 3.3) containing functions for IK, SO and JRA:
Code: Select all
# \brief A variety of useful OpenSim utilities.
#
# @author Dimitar Stanev (stanev@ece.upatras.gr)
import os
import opensim
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
def readMotionFile(filename):
"""Reads OpenSim .sto files.
Parameters
----------
filename: str
absolute path to the .sto file
Returns
-------
header: list of str
the header of the .sto
labels: list of str
the labels of the columns
data: list of lists
an array of the data
"""
if not os.path.exists(filename):
print('file do not exists')
file_id = open(filename, 'r')
# read header
next_line = file_id.readline()
header = [next_line]
nc = 0
nr = 0
while 'endheader' not in next_line:
if 'datacolumns' in next_line:
nc = int(next_line[next_line.index(' ') + 1:len(next_line)])
elif 'datarows' in next_line:
nr = int(next_line[next_line.index(' ') + 1:len(next_line)])
elif 'nColumns' in next_line:
nc = int(next_line[next_line.index('=') + 1:len(next_line)])
elif 'nRows' in next_line:
nr = int(next_line[next_line.index('=') + 1:len(next_line)])
next_line = file_id.readline()
header.append(next_line)
# process column labels
next_line = file_id.readline()
if next_line.isspace() is True:
next_line = file_id.readline()
labels = next_line.split()
# get data
data = []
for i in range(1, nr + 1):
d = [float(x) for x in file_id.readline().split()]
data.append(d)
file_id.close()
return header, labels, data
def index_containing_substring(list_str, pattern):
"""For a given list of strings finds the index of the element that contains the
substring.
Parameters
----------
list_str: list of str
pattern: str
pattern
Returns
-------
indices: list of int
the indices where the pattern matches
"""
indices = []
for i, s in enumerate(list_str):
if pattern in s:
indices.append(i)
return indices
def plot_sto(sto_file, plots_per_row, plot_file, pattern=None,
title_function=lambda x: x):
"""Plots the .sto file (OpenSim) by constructing a grid of subplots.
Parameters
----------
sto_file: str
path to file
plots_per_row: int
subplot columns
plot_file: str
path to store results
pattern: str, optional, default=None
plot based on pattern (e.g. only pelvis coordinates)
title_function: lambda
callable function f(str) -> str
"""
assert('pdf' in plot_file)
header, labels, data = readMotionFile(sto_file)
data = np.array(data)
indices = []
if pattern is not None:
indices = index_containing_substring(labels, pattern)
else:
indices = range(1, len(labels))
n = len(indices)
ncols = int(plots_per_row)
nrows = int(np.ceil(float(n) / plots_per_row))
pages = int(np.ceil(float(nrows) / ncols))
if ncols > n:
ncols = n
with PdfPages(plot_file) as pdf:
for page in range(0, pages):
fig, ax = plt.subplots(nrows=ncols, ncols=ncols,
figsize=(8, 8))
ax = ax.flatten()
for pl, col in enumerate(indices[page * ncols ** 2:page * ncols ** 2 + ncols ** 2]):
ax[pl].plot(data[:, 0], data[:, col])
ax[pl].set_title(title_function(labels[col]))
fig.tight_layout()
pdf.savefig(fig)
plt.close()
def construct_ik_task_set(model, marker_data, task_set):
"""Construct OpenSim Inverse Kinematics task set.
In older versions of OpenSim (e.g. 3.3) IK will not execute when there are
virtual markers that do not exist in the marker data.
"""
virtual_markers = model.getMarkerSet()
marker_names = marker_data.getMarkerNames()
for i in range(0, marker_names.getSize()):
marker_name = marker_names.get(i)
exists = False
for j in range(0, virtual_markers.getSize()):
if virtual_markers.get(j).getName() == marker_name:
task = opensim.IKMarkerTask()
task.setName(marker_name)
task.setApply(True)
task.setWeight(1)
task_set.adoptAndAppend(task)
exists = True
break
if not exists:
task = opensim.IKMarkerTask()
task.setName(marker_name)
task.setApply(False)
task.setWeight(1)
task_set.adoptAndAppend(task)
def perform_ik(model_file, trc_file, results_dir):
"""Performs Inverse Kinematics using OpenSim.
Parameters
----------
model_file: str
OpenSim model (.osim)
trc_file: str
the experimentally measured marker trajectories (.trc)
results_dir: str
directory to store the results
"""
model = opensim.Model(model_file)
# model.set_assembly_accuracy(1e-3)
model.initSystem()
marker_data = opensim.MarkerData(trc_file)
name = os.path.basename(trc_file)[:-4]
ik_tool = opensim.InverseKinematicsTool()
task_set = ik_tool.getIKTaskSet()
construct_ik_task_set(model, marker_data, task_set)
ik_tool.setName(name)
ik_tool.setModel(model)
ik_tool.setStartTime(marker_data.getStartFrameTime())
ik_tool.setEndTime(marker_data.getLastFrameTime())
ik_tool.setMarkerDataFileName(trc_file)
ik_tool.setResultsDir(results_dir)
ik_file = results_dir + name + '_ik.mot'
ik_tool.setOutputMotionFileName(ik_file)
ik_tool.run()
return ik_file
def perform_so(model_file, ik_file, grf_file, grf_xml, reserve_actuators,
results_dir):
"""Performs Static Optimization using OpenSim.
Parameters
----------
model_file: str
OpenSim model (.osim)
ik_file: str
kinematics calculated from Inverse Kinematics
grf_file: str
the ground reaction forces
grf_xml: str
xml description containing how to apply the GRF forces
reserve_actuators: str
path to the reserve actuator .xml file
results_dir: str
directory to store the results
"""
# model
model = opensim.Model(model_file)
# prepare external forces xml file
name = os.path.basename(grf_file)[:-8]
external_loads = opensim.ExternalLoads(model, grf_xml)
external_loads.setExternalLoadsModelKinematicsFileName(ik_file)
external_loads.setDataFileName(grf_file)
external_loads.setLowpassCutoffFrequencyForLoadKinematics(6)
external_loads.printToXML(results_dir + name + '.xml')
# add reserve actuators
force_set = opensim.ForceSet(model, reserve_actuators)
force_set.setMemoryOwner(False) # model will be the owner
for i in range(0, force_set.getSize()):
model.updForceSet().append(force_set.get(i))
# construct static optimization
motion = opensim.Storage(ik_file)
static_optimization = opensim.StaticOptimization()
static_optimization.setStartTime(motion.getFirstTime())
static_optimization.setEndTime(motion.getLastTime())
static_optimization.setUseModelForceSet(True)
static_optimization.setUseMusclePhysiology(True)
static_optimization.setActivationExponent(2)
static_optimization.setConvergenceCriterion(0.0001)
static_optimization.setMaxIterations(100)
# model.addAnalysis(static_optimization)
model.updAnalysisSet().adoptAndAppend(static_optimization)
# analysis
analysis = opensim.AnalyzeTool(model)
analysis.setName(name)
analysis.setModel(model)
analysis.setInitialTime(motion.getFirstTime())
analysis.setFinalTime(motion.getLastTime())
analysis.setLowpassCutoffFrequency(6)
analysis.setCoordinatesFileName(ik_file)
analysis.setExternalLoadsFileName(results_dir + name + '.xml')
analysis.setLoadModelAndInput(True)
analysis.setResultsDir(results_dir)
analysis.run()
so_force_file = results_dir + name + '_StaticOptimization_force.sto'
so_activations_file = results_dir + name + \
'_StaticOptimization_activation.sto'
return (so_force_file, so_activations_file)
def perform_jra(model_file, ik_file, grf_file, grf_xml, reserve_actuators,
muscle_forces_file, results_dir, prefix='',
joint_names=['All'],
apply_on_bodies=['parent'],
express_in_frame=['ground']):
"""Performs Static Optimization using OpenSim.
Parameters
----------
model_file: str
OpenSim model (.osim)
ik_file: str
kinematics calculated from Inverse Kinematics
grf_file: str
the ground reaction forces
grf_xml: str
xml description containing how to apply the GRF forces
reserve_actuators: str
path to the reserve actuator .xml file
muscle_forces_file: str
path to the file containing the muscle forces from SO
results_dir: str
directory to store the results
prefix: str
prefix of the resultant joint reaction loads
joint_names: list
joint names of interest
apply_on_bodies: list
apply on child or parent
express_in_frame: list
frame to express results
"""
assert(len(joint_names) == len(apply_on_bodies) == len(express_in_frame))
# model
model = opensim.Model(model_file)
# prepare external forces xml file
name = os.path.basename(grf_file)[:-8]
external_loads = opensim.ExternalLoads(model, grf_xml)
external_loads.setExternalLoadsModelKinematicsFileName(ik_file)
external_loads.setDataFileName(grf_file)
external_loads.setLowpassCutoffFrequencyForLoadKinematics(6)
external_loads.printToXML(results_dir + name + '.xml')
# TODO this may not be needed
# add reserve actuators (must not be appended when performing JRA)
# force_set = opensim.ForceSet(model, reserve_actuators)
# force_set.setMemoryOwner(False) # model will be the owner
# for i in range(0, force_set.getSize()):
# model.updForceSet().append(force_set.get(i))
# # model.addForce(force_set.get(i))
# construct joint reaction analysis
motion = opensim.Storage(ik_file)
joint_reaction = opensim.JointReaction(model)
joint_reaction.setName('JointReaction')
joint_reaction.setStartTime(motion.getFirstTime())
joint_reaction.setEndTime(motion.getLastTime())
joint_reaction.setForcesFileName(muscle_forces_file)
joint_names_arr = opensim.ArrayStr()
apply_on_bodies_arr = opensim.ArrayStr()
express_in_frame_arr = opensim.ArrayStr()
for j, b, f in zip(joint_names, apply_on_bodies, express_in_frame):
joint_names_arr.append(j)
apply_on_bodies_arr.append(b)
express_in_frame_arr.append(f)
joint_reaction.setJointNames(joint_names_arr)
joint_reaction.setOnBody(apply_on_bodies_arr)
joint_reaction.setInFrame(express_in_frame_arr)
# model.addAnalysis(joint_reaction)
model.updAnalysisSet().adoptAndAppend(joint_reaction)
model.initSystem()
# analysis
analysis = opensim.AnalyzeTool(model)
analysis.setName(prefix + name)
analysis.setModel(model)
analysis.setModelFilename(model_file)
analysis.setInitialTime(motion.getFirstTime())
analysis.setFinalTime(motion.getLastTime())
analysis.setLowpassCutoffFrequency(6)
analysis.setCoordinatesFileName(ik_file)
analysis.setExternalLoadsFileName(results_dir + name + '.xml')
analysis.setLoadModelAndInput(True)
analysis.setResultsDir(results_dir)
analysis.run()
jra_file = results_dir + name + '_JointReaction_ReactionLoads.sto'
return jra_file
- Mohammadhossein Akhavanfar
- Posts: 19
- Joined: Mon Oct 16, 2017 9:11 am
Re: Getting Analysis tool results as MATLAB variables
Hi Dimitar,
Thank you very much for your response and the python code. Is there anyway to get the states of the system as a MATLAB matrix during the simulation? I mean, e.g. for Inverse Dynamic, I can get a matrix (number of time instants * number of coordinates) of generalized forces. Right now, what I am doing is this:
I am sorry, but I did not understand is there any way that instead of importing data, I can get the A matrix in the above code from states of the system and through API? Same questions for other analyses like point kinematics.
Thanks,
Mohammad
Thank you very much for your response and the python code. Is there anyway to get the states of the system as a MATLAB matrix during the simulation? I mean, e.g. for Inverse Dynamic, I can get a matrix (number of time instants * number of coordinates) of generalized forces. Right now, what I am doing is this:
Code: Select all
% running Inverse dynamics
import org.opensim.modeling.*;
myModel = Model(ModelFile);
AnalyzeFileName=['ID_Example_Setup.xml'];
IDtemplateFile=[AnalyzeFilePath AnalyzeFileName];
% lowpassfcut=0.5;
myModel.initSystem();
idTool=InverseDynamicsTool(IDtemplateFile);
idTool.setModel(myModel);
idTool.setName('subject1');
idTool.setExternalLoadsFileName(extLoadsXml);
idTool.setStartTime(initial_time);
idTool.setEndTime(final_time);
% idTool.setLowpassCutoffFrequency(lowpassfcut);
idTool.setCoordinatesFileName(MotionFile);
results_directory=[ModelFilePath 'ID-Results'];
idTool.setResultsDir(results_directory);
idTool.run();
% This code runs the ID tool properly
% but to use ID results, I have to open
% the file with the below code:
A= importdata(IDFile);
ID=A.data;
Thanks,
Mohammad
- Dimitar Stanev
- Posts: 1096
- Joined: Fri Jan 31, 2014 5:14 am
Re: Getting Analysis tool results as MATLAB variables
For inverse dynamics you can try to get access to the InverseDynamicsSolver:
https://simtk.org/api_docs/opensim/api_ ... olver.html
https://github.com/opensim-org/opensim- ... l.cpp#L234
https://github.com/opensim-org/opensim- ... Solver.cpp
https://simtk.org/api_docs/opensim/api_ ... olver.html
https://github.com/opensim-org/opensim- ... l.cpp#L234
https://github.com/opensim-org/opensim- ... Solver.cpp