% Test the Bayesian and asymptotic error estimates for BAR by performing many replications of an experiment % and determining fraction of time the true error is within the compute confidence bounds from the sample. % % This function produces a 1D "confidence plot" depicting the fraction of time each estimate falls within % various different confidence levels. A correct posterior should produce a diagonal line. % Because a finite number of replications are conducted, 95% confidence intervals are plotted to show % whether discrepancies from x = y are significant. % % This variant uses a fixed PROBABILITY of forward and backward measurements. %clear; % PARAMETERS N_f = 10; % number of forward realizations per experiment for fixed-number experiment N_r = 10; % number of reverse realizations per experiment for fixed-number experiment nreplicates = 1000; % number of replications of the experiment to perform (the larger, the smaller the error bars in the plot) cis = linspace(0.01,0.99,40); % confidence intervals at which to evaluate error % convert number of forward and reverse realizations to probability for fixed-probability experiment N_tot = N_f + N_r; % total number of samples/experiment P_f = N_f / N_tot; P_r = N_r / N_tot; % DEFINE THE EXPERIMENT HERE % % Harmonic oscillator is given by potential % U(x) = (K / 2) (x - x_0)^2 % probability density function % p(x) = (1/Z) exp[-\beta U(x)] % % Z = \int dx \exp[-\beta U(x)] % = \int dx \exp[-(x - x_0)^2 / (2 sigma^2)] % = sqrt(2 pi) sigma % F = - ln Z = - (1/2) ln (2 pi) - ln sigma % sigma^2 = (\beta K)^{-1} x_0 = 0.0; % equilibrium spring position for initial state K_0 = 1.0; % spring constant of initial state x_1 = 1.5; % equilibrium spring position for final state K_1 = 4.0; % spring constant of final state beta = 1.0; % inverse temperature % Compute Gaussian widths for harmonic oscillators sigma_0 = 1 / sqrt(beta * K_0); sigma_1 = 1 / sqrt(beta * K_1); % Define instantaneous work functions WF = @(x) (K_1/2)*(x-x_1).^2 - (K_0/2)*(x-x_0).^2; % work from state 0 -> 1 WR = @(x) (K_0/2)*(x-x_0).^2 - (K_1/2)*(x-x_1).^2; % work from state 1 -> 0 % Compute true free energy difference. true_df = - log(sigma_1) + log(sigma_0); % Determine number of confidence intervals to evaluate ncis = length(cis); % Perform a number of replicates of the experiment, and tally the fraction of time we find the true error is within % predicted confidence bounds. NA = zeros([ncis,2]); % NA(c) is the number of realizations for which df_lower <= true_df <= df_upper for the asymptotic BAR (ABAR) NB = zeros([ncis,2]); % NB(c) is the number of realizations for which df_lower <= true_df <= df_upper for the Bayesian BAR (BBAR) dfA = zeros([nreplicates,2]); % dfA(r) is the maximum likelihood free energy estimate of replicate r dfB = zeros([nreplicates,2]); % dfB(r) is the posterior mean free energy estimate of replicate r for phase = 1:2 % FN, FP for replicate = 1:nreplicates % Perform a replicate of the experiment with fixed number of forward and reverse trajectories if (mod(replicate,10) == 0) disp(sprintf('Phase %d/2 replicate %d / %d', phase, replicate, nreplicates)); end if (phase == 1) % Conduct fixed-number experiment. this_N_f = N_f; this_N_r = N_r; else % Conduct fixed-probability experiment. this_N_f = binornd(N_tot, P_f); this_N_r = N_tot - this_N_f; end % Draw samples from stationary distributions at inverse temperature beta. x_f = sigma_0 * randn([this_N_f, 1]) + x_0; % samples from state 0 x_r = sigma_1 * randn([this_N_r, 1]) + x_1; % samples from state 1 % Compute forward and reverse work values. w_f = WF(x_f); w_r = WR(x_r); % Compute BAR estimate and asymptotic covariance estimate. if (phase == 1) % Analyze with fixed-number. [df, ddf] = ABAR(w_f, w_r); % M-factor estimated from number of observed forward/reverse work measurements else % Analyze with fixed-probability correction. [df, ddf] = ABAR(w_f, w_r, P_f); % M-factor computed from given fixed probability of forward switching events end % Store maximum likelihood estimate. dfA(replicate,phase) = df; % Compute posterior mean and confidence intervals by Bayesian BAR. [df_mean, dfB_lower, dfB_upper] = BBAR(w_f, w_r, cis, P_f); % M-factor determined from fixed, known probability of forward/reverse work measurements % Store Bayesian estimate. dfB(replicate,phase) = df_mean; % Determine fraction of time this estimate falls within various confidence intervals. for c = 1:ncis % Get confidence interval. ci = cis(c); % Determine whether this estimate falls within confidence interval for normal distribution estimate. df_ci_lower = df - sqrt(2)*ddf*erfinv(ci); df_ci_upper = df + sqrt(2)*ddf*erfinv(ci); if (df_ci_lower <= true_df) && (true_df <= df_ci_upper) NA(c,phase) = NA(c,phase) + 1; end % Determine whether this estimate falls within confidence interval for Bayesian posterior. % record whether this was in the allowed region if (dfB_lower(c) <= true_df) && (true_df <= dfB_upper(c)) NB(c,phase) = NB(c,phase) + 1; end end end end % Compute fraction of time true free energy was within various confidence intervals and estimate 95% confidence intervals on this estimate. PA = NA; PB = NB; PA_lower = NA; PA_upper = NA; PB_lower = NB; PB_upper = NB; for phase = 1:2 PA(:,phase) = NA(:,phase) / nreplicates; [PA_lower(:,phase), PA_upper(:,phase)] = beta_confidence_interval(NA(:,phase), nreplicates, 0.025, 0.975); PB(:,phase) = NB(:,phase) / nreplicates; [PB_lower(:,phase), PB_upper(:,phase)] = beta_confidence_interval(NB(:,phase), nreplicates, 0.025, 0.975); end % Save all data for later analysis. filename = sprintf('confidence-%d-%d.mat', N_f, N_r); save(filename); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Generate confidence level verification plots. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Set global figure properties. clf; set(gcf, 'position', [0 0 3.25 3.25], 'units', 'inches'); % Choose fixed-number plot. subplot('position', [0.1 0.1 0.4 0.4]); hold on; % Plot X = Y line. plot([0 1], [0 1], 'k-', 'LineWidth', 2); % x = y line % Plot BAR-FN as open circles with error bars. errorbar(cis, PA(:,1), PA(:,1) - PA_lower(:,1), PA_upper(:,1) - PA(:,1), 'k.', 'MarkerSize', 10); plot(cis, PA(:,1), 'w.', 'MarkerSize', 5); % Plot BBAR as filled circles with error bars. errorbar(cis, PB(:,1), PB(:,1) - PB_lower(:,1), PB_upper(:,1) - PB(:,1), 'k.', 'MarkerSize', 10); % Label plot ylabel('actual confidence level'); axis([0 1 0 1]); set(gca, 'box', 'on'); set(gca, 'XTick', [0 1]); set(gca, 'YTick', [0 1]); title('fixed-number'); % Choose fixed-probability plot. subplot('position', [0.5 0.1 0.4 0.4]); hold on; % Plot X = Y line. plot([0 1], [0 1], 'k-', 'LineWidth', 2); % x = y line % Plot BAR-FP as open circles with error bars. errorbar(cis, PA(:,2), PA(:,2) - PA_lower(:,2), PA_upper(:,2) - PA(:,2), 'k.', 'MarkerSize', 10); plot(cis, PA(:,2), 'w.', 'MarkerSize', 5); % Plot BBAR as filled circles with error bars. errorbar(cis, PB(:,2), PB(:,2) - PB_lower(:,2), PB_upper(:,2) - PB(:,2), 'k.', 'MarkerSize', 10); % Label plot axis([0 1 0 1]); set(gca, 'box', 'on'); set(gca, 'XTick', [1]); set(gca, 'YTick', [0 1]); title('fixed-probability'); text(0.65-1, -0.15, 'desired confidence level'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SAVE THE PLOT AS PDF %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% filename = sprintf('../plots/bbar-%d-%d.eps', N_f, N_r); print('-depsc', filename); exportfig(gcf, filename, 'width', 3.25, 'FontMode', 'fixed', 'FontSize', 6.5) unix(sprintf('epstopdf %s', filename));