function [low_i, high_i] = beta_confidence_interval(n_i, N, low, high, alpha); % Compute confidence intervals of the beta distribution. % % ARGUMENTS % % OPTIONAL ARGUMENTS % alpha - prior (defaults to 1/2 for Jeffreys prior, uniform otherwise) % % RETURNS % Set prior to Jeffreys if not specified. if (nargin < 5) alpha = 1/2; end % Determine number of points to evaluate npoints = length(n_i); low_i = zeros(size(n_i)); high_i = zeros(size(n_i)); for i = 1:npoints n = n_i(i); low_i(i) = betainv(low, alpha+n, alpha+(N-n)); high_i(i) = betainv(high, alpha+n, alpha+(N-n)); end