% Plot figure(2); clf; colormap(hot); cmap = [linspace(1,0,100)' linspace(0,0,100)' linspace(0,0,100)'; linspace(0,0,100)' linspace(0,0,100)' linspace(0,1,100)']; colormap(cmap); % find combinations of Nf,Nr that we've tested indices = find(mask == 1); % one sigma c = 1; ci = cis(c); % expected fraction that should fall in this confidence interval % find scale limits X = squeeze(Pfrs_asymptotic(:,:,c) / ci); Y = squeeze(Pfrs_bayesian(:,:,c) / ci); max_dev = max(max([X(indices)-1 Y(indices)-1 1-X(indices) 1-Y(indices)])) subplot(2,3,1); show_deviation(X, [1-max_dev 1+max_dev], mask, cmap); title(sprintf('ABAR rel fraction for %.2f CI', ci)); subplot(2,3,4); show_deviation(Y, [1-max_dev 1+max_dev], mask, cmap); title(sprintf('BBAR rel fraction for %.2f CI', ci)); % TWO SIGMA c = 2; ci = cis(c); % expected fraction that should fall in this confidence interval % find scale limits X = squeeze(Pfrs_asymptotic(:,:,c) / ci); Y = squeeze(Pfrs_bayesian(:,:,c) / ci); max_dev = max(max([X(indices)-1 Y(indices)-1 1-X(indices) 1-Y(indices)])) subplot(2,3,2); show_deviation(X, [1-max_dev 1+max_dev], mask, cmap); title(sprintf('ABAR rel fraction for %.2f CI', ci)); subplot(2,3,5); show_deviation(Y, [1-max_dev 1+max_dev], mask, cmap); title(sprintf('BBAR rel fraction for %.3f CI', ci)); % BIAS % find scale limits X = squeeze(BAR_ML_bias_fr / abs(true_df)); Y = squeeze(BAR_mean_bias_fr / abs(true_df)); max_dev = max(max([X(indices)-1 Y(indices)-1 1-X(indices) 1-Y(indices)])) max_dev = 2; subplot(2,3,3); show_deviation(X, [-max_dev +max_dev], mask, cmap); title(sprintf('ABAR rel bias of ML')); subplot(2,3,6); show_deviation(Y, [-max_dev +max_dev], mask, cmap); title(sprintf('BBAR rel bias of posterior mean')); % print filename = '../plots/bar-data.eps'; print('-depsc', filename); unix(sprintf('epstopdf %s', filename));