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Abstract
Single-molecule force spectroscopy has proven to be a powerful tool for studying the kinetic

behavior of biomolecules. Through application of an external force, conformational states with

small or transient populations can be stabilized, allowing them to be characterized and the statis-

tics of individual trajectories studied to provide insight into biomolecular folding and function.

Because the observed quantity (force or extension) is not necessarily an ideal reaction coordinate,

individual observations cannot be uniquely associated with kinetically distinct conformations.

While maximum-likelihood schemes such as hidden Markov models have solved this problem

for other classes of single-molecule experiments by using temporal information to aid in the in-

ference of a sequence of distinct conformational states, these methods do not give a clear picture

of how precisely the model parameters are determined by the data due to instrument noise and

finite-sample statistics, both significant problems in force spectroscopy. We solve this problem

through a Bayesian extension that allows the experimental uncertainties to be directly quantified,

and build in detailed balance to further reduce uncertainty through physical constraints. We il-

lustrate the utility of this approach in characterizing the three-state kinetic behavior of an RNA

hairpin in a stationary optical trap.
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INTRODUCTION23

Recent advances in biophysical measurement have led to an unprecedented ability to monitor24

the dynamics of single biological macromolecules, such as proteins and nucleic acids [1]. As a25

new approach to probing the behavior of biological macromolecules, these experiments promise26

to change the way we study folding, dynamics, catalysis, association, transcription, translation,27

and motility, providing otherwise-inaccessible information about microscopic kinetics, energetics,28

mechanism, and the stochastic heterogeneity inherent in these processes. Advances in instrumen-29

tation for optical force spectroscopy in particular have produced instruments of extraordinary30

stability, precision, and temporal resolution [2, 3] that have already demonstrated great utility in31

the study of biomolecules in the presence of externally perturbative forces [4–6]. Under external32

force, it becomes possible to stabilize and characterize short-lived conformational states, such as33

protein folding and unfolding intermediates [7–9].34

In a typical single-molecule optical trapping experiment, a protein or nucleic acid is tethered to35

two polystyrene beads by dsDNA handles that prevent the molecule under study from interacting36

with the beads (see Figure 1). The handle-biomolecule-handle assembly—referred to as a fiber—37

is associated with the beads through tight noncovalent interactions, with one bead held in an38

optical trap and the other either suctioned to a micropipette or held in a second optical trap.39

During an experiment, the position of the bead within the laser trap is monitored, and either the40

relative displacement from the trap center or the total force on the bead is recorded, resulting in41

a timeseries such as the one depicted in Figure 2. The instrument can generally be operated in42

several modes: a force ramp mode, in which the trap is translated rapidly enough to potentially43

carry the system out of equilibrium; an equilibrium passive mode, in which the trap is held fixed;44

and a constant force-feedback mode, in which the trap is continually repositioned to maintain a set45

constant force on the fiber. Here, we concern ourselves with the latter two classes of experiment,46

though nonequilibrium experiments remain an exciting topic of active research [10].47

Often, the dynamics observed in these experiments appears to be dominated by stochastic48

transitions between two or more strongly metastable conformational states [11, 12]—regions of49

conformation space in which the system remains for long times before making a transition to50

another conformational state. These transitions are generally well-described by first-order ki-51

netics [13]. While visual inspection of the dynamics may suggest the clear presence of multiple52
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metastable states, quantitative characterization of these states is often difficult. First, the observed53

force or extension is unlikely to correspond to a true reaction coordinate easily able to separate54

all metastable states [14–17], and second, measurement noise may further broaden the force or55

extension signatures of individual states, increasing their overlap. Attempting to separate these56

states by simply dividing the observed force or extension range into regions, following current57

practice [18, 19], can often lead to a high degree of state mis-assignment that results in the es-58

timated rate constants and state distributions containing a significant amount of error [20] (see59

Supplementary Material: Comparison with threshold model).60

Hidden Markov models (HMMs) [21], which use temporal information in addition to the in-61

stantaneous value of the observable (force or extension) to determine which conformational states62

the system has visited during the experiment, have provided an effective solution to the hidden63

state problem in many other classes of single-molecule experiments, such as ion channel cur-64

rents [22–25], single-molecule FRET [26–30], and the stepping of motor proteins [31–33]. In ap-65

plying hidden Markov modeling to the analysis of single-molecule force spectroscopy data, the66

observed force or extension trace is assumed to come from a realization of an underlying Markov67

chain, where the system makes history-independent transitions among a set of discrete conforma-68

tional states with probabilities governed by a transition or rate matrix. Data, in the form of force69

or bead-to-bead extension measurements, is sampled at an interval that ensures that sequential70

observations satisfy the Markov property of history-independence, though the appropriate inter-71

val depends on the properties of the experimental configuration. Under a given set of external72

force conditions, each state has a distribution of forces or extensions associated with it. Given73

observed timeseries data for forces or extensions, the maximum likelihood estimate (MLE) of the74

model parameters (transition rates and state force or extension distributions) and sequence of hid-75

den states corresponding to the observed data can be determined by standard methods [34, 35],76

as demonstrated in recent work [36].77

Unfortunately, this approach has a number of significant drawbacks. Due to technical limita-78

tions, experiments often suffer from limited statistics—the events of interest (transitions between79

states or visits to rare states) may occur only a few times during the course of the measurement,80

and data for additional fibers is time-consuming to collect. As a result, while the MLE yields81

the most likely set of model parameters, there may be enormous uncertainty in some of these82

parameters, and the uncertainty in multiple parameters may be correlated in complex nonlin-83
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ear ways. While methods exist for estimating the standard error or confidence intervals from84

MLHMMs [37], these schemes can be prohibitively costly for long traces, and may still signif-85

icantly underestimate the statistical error for short traces due to the normally-distributed error86

approximation inherent in the approach. The high cost (both in terms of instrument and experi-87

menter time) of collecting additional data also means that it is not a simple task to judge how much88

data need be collected to test a particular hypothesis in a statistically meaningful way. Worse yet,89

the standard algorithms employed to find the MLE may not even find the true maximum likeli-90

hood solution, instead converging to a local maximum in likelihood that is far from optimal [38].91

Here, we resolve this issue through the use of a Bayesian extension of hidden Markov mod-92

els [39–42] applicable to single molecule force experiments. By sampling over the posterior dis-93

tribution of model parameters and hidden state assignments instead of simply finding the most94

likely values, the experimenter is able to accurately characterize the correlated uncertainties in95

both the model parameters (transition rates and state force or extension distributions) and hidden96

state sequences corresponding to observed data. Additionally, prior information (either from ad-97

ditional independent measurements or physical constraints) can be easily incorporated. We also98

include a reversibility constraint on the transition matrix—in which microscopic detailed balance99

is imposed on the kinetics, as dictated by the physics of equilibrium systems [48]—which has100

been shown to significantly reduce statistical uncertainties in data-poor conditions [43, 44]. The101

framework we present is based on Gibbs sampling [45, 46], allowing simple swap-in replacement102

of models for observable distributions, extension to multiple observables, and alternative models103

for state transitions. Additionally, the Bayesian method provides a straightforward way to model104

the statistical outcome and assess the utility of additional experiments given some preliminary105

data, allowing the experimenter a powerful tool for assessing whether the cost of collecting addi-106

tional data is outweighed by their benefits. A Matlab implementation of this approach is available107

online [http://simtk.org/home/bhmm].108

HIDDEN MARKOV MODELS FOR FORCE SPECTROSCOPY109

Suppose the temporal behavior of some observable O(x) that is a function of molecular con-110

figuration x—here, generally force or molecular extension—is observed at temporal intervals ∆t111

to produce a timeseries ot, where t = 0, 1, . . . , L. An instantaneous observation ot does not nec-112
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essarily contain enough information to unambiguously identify the current conformational state113

the molecule occupies; to infer the hidden state, we must also make use of the temporal infor-114

mation in the observed trace. We restrict ourselves to consideration of scalar functions O(x), but115

the generalization to multidimensional probes (or multiple probes, such as combined force and116

fluorescence measurements [47]) and multiple observed temporal traces is straightforward.117

We presume the system under study has M kinetically distinct states, in the sense that the sys-118

tem generally remains in a given state for several observation intervals ∆t, but these states may119

not necessarily represent highly populated states of the system at equilibrium. We treat these con-120

formational states as the hidden states of the model, because we cannot directly observe the identity121

of the metastable state in which the system resides. The hidden Markov model presumes the122

observed data O ≡ {ot} was generated according to the following model dependent on parame-123

ters Θ ≡ {T,E}, where T is an M ×M row-stochastic transition matrix and E a set of emission124

parameters governing the observable (force or extension) distributions for each of the M hidden125

states, and prior information about the initial state distribution ρ,126

P(s0) = ρs0

P(st | st−1,T) = Tst−1st
, t ≥ 1

P(ot | st, est) = φ(ot | est). (1)

In diagrammatic form, the observed state data {ot} and corresponding hidden state history {st}127

can be represented128

ρ−→ s0
T−→ s1

T−→ s2
T−→ · · · T−→ sL

↓ φ ↓ φ ↓ φ ↓ φ

o0 o1 o2 oL

(2)

The initial state distribution ρ reflects our knowledge of the initial conditions of the experiment129

that collected data o. In the case that the experiment was prepared in equilibrium, ρ corresponds130

to the equilibrium distribution π of the model transition matrix T; if the experiment was prepared131

out of equilibrium, ρ may be chosen to reflect some other prior distribution (e.g. the uniform132

prior).133

State transitions (st−1 → st) are governed by the discrete transition probability Tst−1st
. The134

Markov property of HMMs prescribes that the probability that a system originally in state i at time135

6



t is later found in state j at time t+1 is dependent only on knowledge of the state i, and given by136

the corresponding matrix element Tij of the (row-stochastic) transition matrix T. Alternatively,137

one could instead use the rate matrix K, related to the transition matrix T through the equation138

T = eK∆t. If the processes described by T or K are slow compared to the observation interval139

∆t, then we can easily estimate the rate matrix from the associated transition matrix in a way that140

avoids the matrix logarithm, through the expansion K ≈ (T− I)/∆t, where I denotes the M ×M141

identity matrix.142

The probabilistic “emission” of observables from each state (st → ot) is governed by the con-143

tinuous emission probability φ(ot | est), parametrized by observable emission parameters e. For144

example, in the force spectroscopy applications described here, φ(o | es) is taken to be a univariate145

normal (Gaussian) distribution parameterized by a mean µ and variance σ2 that characterize each146

state, such that ei ≡ {µi, σ
2
i }. Other choices of observable distribution can easily be substituted in147

a modular way without affecting the structure of the algorithms presented here.148

Given the HMM process specified in Eq. 1, the probability of observing data O given the model149

parameters Θ is then,150

P (O | Θ) =
∑
S

ρs0φ(o0 | es0)
L∏
t=1

Tst−1st
φ(ot | est), (3)

where the sum over hidden state histories S is shorthand for151 ∑
S

≡
M∑

s0=1

M∑
s1=1

· · ·
M∑

sL=1

. (4)

If multiple independent traces {ot} are available, the probability P (O | Θ) is simply the product152

of Eq. 3 for the independent traces.153

Maximum likelihood hidden Markov model (MLHMM)154

The standard approach to construct an HMM from observed data is to compute the maximum155

likelihood estimator (MLE) for the model parameters Θ ≡ {T,E}, which maximize the probability156

of the observed data O given the model,157

Θ̂ = argmax
Θ

P (O | Θ), (5)

yielding MLE estimates of transition matrix T̂ and state emission parameters Ê. Typically, deter-158

mination of the model parameters Θ is carried out using the Baum-Welch algorithm [34].159
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Once the MLE parameters Θ̂ are determined, the most likely hidden state history that pro-160

duced the observations O can be determined using these parameters:161

Ŝ = argmax
S

P (S | O, Θ̂). (6)

This is typically carried out using the Viterbi algorithm [35], a classic example of dynamic pro-162

gramming.163

Bayesian hidden Markov model (BHMM)164

Instead of simply determining the model that maximizes the likelihood of observing the data165

O given the model parameters Θ, we can make use of Bayes’ theorem to compute the posterior166

distribution of model parameters given the observed data:167

P (Θ | O) ∝ P (O | Θ)P (Θ). (7)

Here, P (Θ) denotes a prior distribution that encodes any a priori information we may have about168

the model parameters Θ. This prior information might include, for example, physical constraints169

(such as ensuring the transition matrix satisfies detailed balance) or prior rounds of inference from170

other independent experiments.171

Making use of the likelihood (Eq. 3), the model posterior is then given by,172

P (Θ | O) ∝ P (Θ)
∑
S

ρs0φ(o0 | es0)
L∏
t=1

Tst−1st
φ(ot | est). (8)

Drawing samples of Θ from this distribution will, in principle, allow the confidence with which173

individual parameters and combinations thereof are known, given the data (and subject to the174

validity of the model of Eq. 1 in correctly representing the process by which the observed data175

is generated). While the posterior P (Θ|O) is complex, we could in principle use a Markov chain176

Monte Carlo (MCMC) approach [46] to sample it. In its current form, however, this would be177

extremely expensive due to the sum over all hidden state histories S appearing in ratios involving178

Eq. 8. Instead, we introduce the hidden state histories S as an auxiliary variable, sampling from179

the augmented posterior,180

P (Θ,S | O) ∝

[
ρs0φ(o0 | es0)

L∏
t=1

Tst−1st
φ(ot | est)

]
P (Θ).

(9)
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which makes it much less costly to compute the ratios required for MCMC on the augmented181

(Θ,S) parameter space.182

If we presume the prior is separable, such that P (Θ) ≡ P (T)P (E), we can sample from the183

augmented posterior (Eq. 9) using the framework of Gibbs sampling [46], in which the augmented184

model parameters are updated by sampling from the conditional distributions,185

P (S | T,E,O) ∝ ρs0φ(o0 | es0)
L∏
t=1

Tst−1st
φ(ot | est)

P (T | E,S,O) = P (T | S) ∝ P (T)
L∏
t=1

Tst−1st

P (E | S,T,O) = P (E | S,O) ∝ P (E)

L∏
t=0

φ(ot | est). (10)

The equalities on the second and third lines reflect the conditional independence of the hidden186

Markov model defined by Eq. 1. When only the model parameters Θ ≡ {T,E} or the hidden state187

histories S are of interest, we can simply marginalize out the uninteresting variables by sampling188

from the augmented joint posterior for {T,E,S} and examine only the variables of interest. In189

addition, the structure of the Gibbs sampling scheme above allows individual components (such190

as the observable distribution model φ(o | e) or transition probability matrix T) to be modified191

without affecting the structure of the remainder of the calculation.192

In the illustrations presented here, we employ a Gaussian observable distribution model for193

φ(o | e),194

φ(o | e) = φ(o | µ, σ2) =
1√
2πσ

exp

[
−1

2

(o− µ)2

σ2

]
, (11)

where µ is the mean force or extension characterizing a particular state, and σ is the standard195

deviation or width of forces or extensions corresponding to that state. We note that marginal196

posterior distributions of each mean P (µi|O) reflect the statistical uncertainty in how well the197

mean force or position is determined, and need not correspond to the standard deviation σi, which198

may be much broader (or narrower, depending on the situation).199
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ALGORITHMS200

Generating an initial model201

To initialize either computation of the MLHMM or sampling from the posterior for the BHMM,202

an initial model that respects any constraints imposed in the model prior P (Θ) must be selected.203

Here, we employ a Gaussian observable distribution model for φ(o | e) (Eq. 11) and enforce that204

the transition matrix T satisfy detailed balance.205

Observable parameter estimation206

We first initialize the observed distributions of each state by fitting a Gaussian mixture model207

with M states to the pooled observed data O, ignoring temporal information:208

P (O | π,E) =

L∏
t=0

M∑
m=1

πmφ(ot | µm, σ2
m), (12)

where the state observable emission probability vector E ≡ {e1, . . . , eM} and em ≡ {µm, σ2
m}209

with µm denoting the observable mean and σ2
m the variance for state m for the Gaussian mixture210

model. The vector π is composed of equilibrium state populations {π1, . . . , πM} with πm ≥ 0 and211 ∑M
m=1 πm = 1.212

A first approximation to π and E is computed by pooling and sorting the observed ot, and213

defining M indicator functions hm(o) that separate the data into M contiguous regions of the ob-214

served range of o of roughly equal population. Let Nm ≡
∑L

t=0 hm(ot) denote the total number of215

observations falling in region m, and Ntot =
∑M

m=1Nm. The initial parameters are then computed216

as,217

πm = Nm/Ntot

µm = N−1
m

L∑
t=0

ot hm(ot) (13)

σ2
m = N−1

m

L∑
t=0

(ot − µm)2 hm(ot). (14)

This approximation is then improved upon by iterating the expectation-maximization proce-218
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dure described by Bilmes [49],219

π′
m = N−1

tot

L∑
t=0

χm(ot,E,π)

µ′
m = (π′

mNtot)
−1

L∑
t=0

ot χm(ot,E,π)

σ′2
m = (π′

mNtot)
−1

L∑
t=0

(ot − µ′
m)2 χm(ot,E,π) (15)

where the function χm(o,E,π) is given by the fuzzy membership function,220

χm(o,E,π) =
πm φ(o | em)
M∑
l=1

πl φ(o | el)
. (16)

The iterative procedure is terminated at iteration j when the change in the parameters {π,µ,σ2}221

falls below a certain relative threshold, such as ∥π[j] − π[j−1]∥2/∥π[j]∥2 < 10−4.222

Transition matrix estimation223

Once initial state observable emission parameters E are determined, an initial transition ma-224

trix is estimated using an iterative likelihood maximization approach that enforces detailed bal-225

ance [50]. First, a matrix of fractional transition counts C ≡ (cij) is estimated using the member-226

ship function:227

cij =

L∑
t=1

χi(ot−1,E,π)χj(ot,E,π) (17)

A symmetric M ×M matrix X ≡ (xij) is initialized by228

xij = xji = cij + cji. (18)

The iterative procedure described in Algorithm 1 of [50] is then applied. For each update iteration,229

we first update the diagonal elements of X:230

x′ii =
cii(xi∗ − xii)

ci∗ − cii
; ci∗ =

M∑
j=1

cij ; xi∗ =

M∑
j=1

xij , (19)

followed by the off-diagonal elements:231

x′ij = x′ji =
−b+

√
b2 − 4ac

2a
(20)
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where the quantities a, b, and c are computed from X and C,232

a ≡ ci∗ − cij + cj∗ − cji

b ≡ ci∗(xj∗ − xji) + cj∗(xi∗ − xij)

− (cij + cji)(xi∗ − xij + xj∗ − xji)

c ≡ −(cij + cji)(xi∗ − xij)(xj∗ − xji). (21)

Once a sufficient number of iterations j have been completed to compute a stable estimate of X233

(such as the relative convergence criteria ∥X[j]−X[j−1]∥2/∥X[j]∥2 < 10−4, the maximum likelihood234

transition matrix estimate T is computed as235

Tij = xij/xi∗. (22)

Note that the equilibrium probability vector π computed during the Gaussian mixture model236

fitting is not respected during this step.237

Fitting a maximum likelihood HMM238

The HMM model parameters Θ ≡ {T,E} are fit to the observed data O through use of the239

expectation-maximization (EM) algorithm [51]. This is an iterative procedure, where the model240

parameters are subsequently refined through successive iterations. The initial HMM is usually241

quick to compute, and can give the experimenter a rough idea of the model parameters, as well242

as providing a useful starting point for sampling models from the Bayesian posterior.243

During each iteration, the Baum-Welch algorithm [34] is used to compute Ξ ≡ (ξtij), which244

represents the probability that the system transitions from hidden state i at time t − 1 to hid-245

den state j at time t, and γti, the probability that the system occupied state i at time t. This is246

accomplished by first executing the forward algorithm,247

αtj =


ρj φ(o0 | ej) t = 0

φ(ot | ej)
∑M

i=1 α(t−1)iTij t = 1, . . . , L

(23)

followed by the backward algorithm,248

βti =


1 t = L∑M

j=1 Tijφ(ot+1 | ej)β(t+1)j t = (L− 1), . . . , 0

(24)
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The L×M ×M matrix Ξ is then computed for t = 0, . . . , (L− 1) as,249

ξtij = αtiφ(ot+1 | ei)Tijβ(t+1)j/

M∑
i=1

αTi (25)

γti =
M∑
j=1

ξtij (26)

In practice, the logarithms of these quantities are computed instead to avoid numerical underflow.250

The aggregate matrix of expected transition counts C ≡ (cij) is then computed from Ξ as,251

cij =
L−1∑
t=0

ξtij . (27)

This count matrix is used to update the maximum-likelihood transition matrix T using the252

method of Prinz et al. [50] described in the previous section.253

The state observable distribution parameters E are then updated from the γti. For the uni-254

variate normal distribution applied to force spectroscopy data here, we update the mean µi and255

variance σ2
i for state i using the scheme,256

µ′
i =

L∑
t=0

otγti

L∑
t=0

γti

; σ′2
i =

L∑
t=0

(ot − µ′
i)
2γti

L∑
t=0

γti

. (28)

Once the model parameters have been fitted by iteration of the above update procedure to257

convergence (which may only converge to a local maximum of the likelihood), the most likely258

hidden state sequence can be determined given the observations O and the MLE model Θ̂ using259

the Viterbi algorithm [35]. Like the forward-backward algorithm employed in the Baum-Welch260

procedure, the Viterbi algorithm also has a forward recursion component,261

ϵjt =


ρjφ(ot | ej) t = 0

φ(ot | ej)maxi ϵi(t−1)Tij t = 1, . . . , L

(29)

Φjt =


1 t = 0

argmaxi ϵi(t−1)Tij t = 1, . . . , L

as well as a reverse reconstruction component to compute the most likely state sequence Ŝ,262

ŝt =


argmaxi ϵit t = L

Φŝt+1(t+1) t = (L− 1), . . . , 0

(30)
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Sampling from the posterior of the BHMM263

Sampling from the posterior of the BHMM (Eq. 8) proceeds by rounds of Gibbs sampling,264

where each round consists of an update of the augmented model parameters {T,E,S} by sam-265

pling266

S′ | T,E,O ∼ P (S′ | T,E,O)

T′ | S′ ∼ P (T′ | S′)

E′ | S′,O ∼ P (E′ | S′,O)

where the conditional probabilities are given by Eq. 10.267

Updating the hidden state sequences268

We use a modified form of the Viterbi process to generate an independent sample of the hidden269

state history S given the transition probabilities T, state observable distribution parameters E,270

and observed data O. Like the Viterbi scheme, a forward recursion is applied to each observation271

trace o, but instead of computing the most likely state history on the reverse pass, a new hidden272

state history S is drawn from the distribution P (S | O,T,E). The forward recursion uses the273

same forward algorithm as used in Baum-Welch [34],274

αtj =


ρj φ(o0 | ej) t = 0

φ(ot | ej)
∑M

i=1 α(t−1)iTij t = 1, . . . , L

(31)

In the reverse recursion, we now sample a state sequence by sampling each hidden state from the275

conditional distribution st ∼ P (st | st+1, . . . , sL) starting from t = L and proceeding down to276

t = 0, where the conditional distribution is given by,277

P (st = i | st+1, . . . , sL) (32)

∝


αti/

∑M
j=1 αtj t = L

αtiTist+1/
∑M

j=1 αtjTjst+1 t = (L− 1), . . . , 0

It is straightforward to show the result of these sampling steps reconstitutes the probability dis-278

tribution P (S|T,E,O) (see Supplementary Material: Proof of state history sampling scheme).279
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Updating the transition probabilities280

If no detailed balance constraint is used and the prior P (T) is Dirichlet in each row of the281

transition matrix T, it is possible to generate an independent sample of the transition matrix from282

the conditional distribution P (T′ | S′) by sampling each row of the transition matrix from the283

conjugate Dirichlet posterior using the transition counts from the sampled state sequence S′ [43].284

However, because physical systems in the absence of energy input through an external driving285

force should satisfy detailed balance, we make use of this constraint in updating our transition286

probabilities, since this has been demonstrated to substantially reduce parameter uncertainty in287

the data-limited regime [43].288

The transition matrix is updated using the reversible transition matrix sampling scheme of289

Noé [43, 52]. Here, an adjusted count matrix C ≡ (cij) is computed using the updated hidden290

state sequence S′,291

cij = bij +

L∑
t=1

δist−1δjst , (33)

where the Kronecker δij = 1 if i = j and zero otherwise, and B ≡ (bij) is a matrix of prior292

pseudocounts, which we take to be zero following the work of Noé et al. [13]. Using the adjusted293

count matrix C, a Metropolis-Hastings Monte Carlo procedure [53] is used to update the matrix294

and produce a new sample from P (T′ | S′). Two move types are attempted, selected with equal295

probability, and 1000 moves are attempted to generate a new sample T′ that is approximately296

uncorrelated from the previous T. Prior to starting the Monte Carlo procedure, the vector of297

equilibrium probabilities for all states π is computed according to298

TTπ = π. (34)

The first move type is a reversible element shift. A pair of states (i, j), i ̸= j, are selected with

uniform probability, and a random number ∆ is selected uniformly over the interval,

∆ ∈ [max(−Tii,−
πj
πi

Tjj), Tij ].

The changed elements in the proposed transition matrix T′ are then given by:

T ′
ij = Tij −∆ ; T ′

ji = Tji −
πi
πj

∆

T ′
ii = Tii +∆ ; T ′

jj = Tjj +
πi
πj

∆.
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This move is accepted with probability299

Paccept(T
′|T) = min

1,

√
(T ′

ij)
2 + (T ′

ji)
2

(Tij)2 + (Tji)2
(35)

×
(
T ′
ii

Tii

)cii (T ′
ij

Tij

)cij (T ′
jj

Tjj

)cjj (T ′
ji

Tji

)cji
}
.

This move will leave the vector of stationary probabilities π unchanged.300

The second move type is a row shift. A row i of T is selected with uniform probability, and a

random number η chosen uniformly over the interval

η ∈
[
0,

1

1− Tii

]
and used to update row i of T according to301

T ′
ij =


ηTij j = 1, . . . ,M, j ̸= i

η(Tii − 1) + 1 j = i

(36)

This move is accepted with probability302

Paccept(T
′|T) = min

{
1, η(M−2)η(ci∗−cii)

(
1− η(1− Tii)

Tii

)cii}
.

(37)

The row shift operation will change the stationary distribution of π′, but it may be efficiently

updated with

π′
i =

πi
πi + η(1− πi)

; π′
j =

η πj
πi + η(1− πi)

.

Since this update scheme is incremental, it will accumulate numerical errors over time that cause303

the updated π to drift away from the stationary distribution of the current transition matrix. To304

avoid this, π is recomputed from the current sample of the transition matrix in regular intervals305

(here, every 100 sampling steps).306

Updating the observable distribution parameters307

Following the update of the transition matrix T, the observable distribution parameters E are308

updated by sampling E from the conditional probability P (E′ | S′,O). The conditional proba-309

bility for the observable distribution parameters for state m, denoted em, is given in terms of the310
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output model φ(o | e) by Bayes’ theorem,311

P (E | O,S) =

[
L∏
t=0

φ(ot | est)

]
P (E). (38)

An important choice must be made with regards to the prior, P (E). If the prior is chosen to be312

composed of independent priors for each state, as in313

P (E) =

M∏
m=1

P (em), (39)

then the full BHMM posterior (Eq. 8) will be invariant under any permutation of the states. This314

behavior might be undesirable, as the states may switch labels during the posterior sampling315

procedure; this will require any analysis of the models sampled from the posterior to account for316

the possible permutation symmetry in the states. On the other hand, breaking this symmetry (e.g.,317

by enforcing an ordering on the state mean observables) can artificially restrict the confidence318

intervals of the states, which might additionally complicate data analysis.319

Here, we make the choice that the prior be separable (Eq. 39), which has the benefit of allowing320

the conditional probability for E (Eq. 38) to be decomposed into a separate posterior for each state.321

For each state m, collect all the observations ot whose updated hidden state labels st
′ = m into322

a single dataset o ≡ {on}Nm
n=1, where Nm is the total number of times state m is visited, for the323

purposes of this update procedure. Then, the observable parameters e for this state are given by324

P (e | o) = P (o | e)P (e) =

[
Nm∏
n=1

φ(on | e)

]
P (e). (40)

In the application presented here, we use a Gaussian output model (Eq. 11) for the state ob-325

servable distributions P (o | e), where e ≡ {µ, σ2}, with µ the state mean observable and σ2
326

the variance (which will include both the distribution of the observable characterizing the state327

and any broadening from measurement noise). Other models (including multidimensional or328

multimodal observation models) are possible, and require replacing only the observation model329

φ(o | e) and corresponding prior P (e).330

We use the (improper) Jeffreys prior [54] which has the information-theoretic interpretation331

as the prior that maximizes the information content of the data [55], (suppressing the state index332

subscript m),333

P (e) ∝ σ−1, (41)
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which produces the posterior334

P (e | o) ∝ σ−(N+1) exp

[
− 1

2σ2

N∑
n=1

(on − µ)2

]
, (42)

where we remind the reader that here and in the remainder of this section, the symbols e, o, σ, µ,335

and N refer to em, om, σm, µm, and Nm, respectively.336

Updating {µ, σ2} also proceeds by a Gibbs sampling scheme, alternately updating µ and σ, as337

earlier described in Ref. [52],338

µ ∼ P (µ | σ2,o)

σ2 ∼ P (σ2 | µ,o) (43)

The conditional distribution of the mean µ is then given by339

P (µ | σ2,o) ∝ exp

[
− 1

2(σ2/N)
(µ− µ̂)2

]
(44)

where µ̂ is the sample mean for o, the samples in state m,340

µ̂ ≡ 1

N

N∑
n=1

on (45)

This allows us to update µ according to341

µ′ ∼ N (µ̂, σ2/N) (46)

The conditional distribution of the variance σ2 is given by342

P (σ2 | µ,o) ∝ σ−(N+1) exp

[
−Nσ̂2

2σ2

]
(47)

where the quantity σ̂2, which is not in general identical to the sample variance, is given by343

σ̂2 ≡ 1

N

N∑
n=1

(on − µ)2. (48)

A convenient way to update σ2 | µ,o is to sample a random variate y from the chi-square distri-344

bution with N − 1 degrees of freedom,345

y ∼ χ2(N − 1) (49)

and then update σ2 as346

σ′2 = Nσ̂2/y. (50)

Note that µ and σ2 can be updated in either order, but the updated values of µ or σ2 must be used347

in sampling the not-yet-updated σ2 or µ, and vice-versa.348

Other output probabilities, such as mixtures of normal distributions or other distributions, can349

be substituted by simply changing P (E | O,S) and the scheme by which E is updated.350
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VALIDATION USING SYNTHETIC DATA351

To verify that our BHMM posterior sampling scheme reflects the true uncertainty in the model352

parameters, we tested the scheme on synthetic data generated from a model with known pa-353

rameters Θ∗. Given observed data O generated from P (O | Θ∗), sampling from the posterior354

P (Θ | O) using the scheme described in Sampling from the posterior of the BHMM will provide us355

with confidence intervals [θlow, θhigh] for a specified confidence interval size α ∈ [0, 1]. If these356

computed confidence intervals are accurate, we should find that the true model parameter θ∗ lies357

in the computed confidence interval [θ(α)low, θ
(α)
high] with probability α. This can be tested by gener-358

ating synthetic observed data O from P (O | Θ∗) and verifying that we find θ∗ ∈ [θ
(α)
low, θ

(α)
high] in a359

fraction α of these synthetic experiments.360

As an example synthetic model, consider the three-state system intended to mimic a pro-361

tein with (1) a highly-compliance, low-force unfolded state, (2) a moderately compliant low-362

population intermediate at intermediate force, and (3) a low-compliance, high-force folded state.363

Here, the term “compliance” refers to the width of the force or extension distribution character-364

izing the state. Parameters of the model are given in Table I, and the observation interval was365

taken to be τ = 1 ms. An example realization of a model trajectory, along with the MLHMM366

state assignment, is shown in Figure 2. We generated a trajectory of 100 000 observations, and367

characterized the BHMM mean parameter estimate and 95% confidence intervals for a subset of368

this trajectory of varying lengths. The results, shown in Table I, show that the confidence intervals369

contract as trajectory length increases, as expected, and the BHMM-computed 95% confidence in-370

tervals contain the true model parameters with the expected statistics. In contrast, a model created371

from simply segmenting the observed forces into disjoint region and assigning state membership372

based on the force value alone estimates model parameters with significant bias even for 1 000373

000 observations (see Supporting Information).374

As a more rigorous test, we sampled 50 random models from the prior P (Θ) with two to six375

states, generated a 10 000 observation synthetic trajectory for each, and accumulated statistics on376

the observed fraction of time the true model parameters were within the BHMM confidence in-377

tervals for various values of the confidence interval width α. The results of this test are depicted378

in Supplementary Figure 1. We expect that the plot traces the diagonal if the observed and expected379

confidence intervals are identical; an overestimate of the confidence interval will be above the380
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diagonal, and an underestimate will fall below it. Because only a finite number of independent381

replicates of the experiment are conducted, there is some associated uncertainty with the observed382

confidence intervals. The results show that the observed confidence intervals line up with the ex-383

pected confidence intervals to within statistical error, suggesting the BHMM confidence intervals384

neither underestimate nor overestimate the actual uncertainty in model parameters.385

RNA HAIRPIN KINETICS IN A PASSIVE OPTICAL TRAP386

We illustrate the BHMM approach applied to real force spectroscopy data by characterizing387

the average forces and transition rates among kinetically distinct states of the p5ab RNA hairpin388

in an optical trap under passive (equilibrium) conditions.389

The p5ab RNA hairpin from Tetrahymena thermophilia was provided by Jin-Der Wen, and pre-390

pared as previously described [56]. Within the population of RNA hairpin molecules in the ex-391

amined sample, there were two chemically distinct species present in the sample (i.e. as a result392

of post-transcriptional or other covalent modification during sample storage), exhibiting either393

apparent two-state (as reported previously [56]) or three-state behavior (studied here). For the394

purposes of testing this method, we examined a fiber that appeared to consistently exhibit three-395

state behavior upon visual inspection of the force timeseries data.396

The instrument used in this experiment was a dual-beam counter-propagating optical trap397

with a spring constant of 0.1 pN/nm. A piezoactuator controlled the position of the trap and398

allowed position resolution to within 0.5 nm [57]. Drift in the instrument was less than 1399

nm/minute resulting in a constant average force within 0.1 pN over the course of a typical 60400

s experiment. For these constant trap position experiments, higher frequency data was recorded401

at 50 kHz recording the voltage corresponding to the force on the tether directly from the position-402

sensitive detectors. To ensure sequential samples obeyed Markovian statistics, these data were403

subsampled down to 1 kHz for analysis by the BHMM framework after examination of autocorre-404

lation functions for trap positions where the hairpin appeared to remain in a single conformational405

state (see Supplementary Material: Choice of observation interval).406

A single observed force trajectory at a fixed trap position adequate to cause hopping among407

multiple states is shown in Figure 3. The most likely state trajectory from the MLHMM fit with408

three states is shown by coloring the observations most likely to be associated with each state, with409
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bands of color indicating the mean and standard deviation about the mean force characterizing410

each state.411

Table II lists the BHMM posterior means and confidence intervals characterizing the three-412

state model extracted from this single 60 s observed force trace. Several things are notable about413

the estimated model parameters. Surprisingly, while there is a clearly-resolved intermediate-force414

state (state 2) through which most of the flux from the high- and low-force states passes (as seen415

from large K12 and K23), there are nontrivial rate constants connecting the high and low force416

states directly (K13), indicating that while a sequential mechanism involving passing through the417

intermediate state is preferred, it may not be an obligatory step in hairpin formation under these418

conditions. While the state mean forces are clearly distinct, the state standard deviations—which419

reflect the width of the observed force distribution characterizing each state, rather than the un-420

certainty in state means—possess overlapping confidence intervals. These standard deviations421

reflect not only contributions from both the distribution of extensions sampled by the hairpin in422

each conformational state, but also from fluctuations in the handles and beads, and other sources423

of mechanical and electrical noise in the measurement. As we would expect the unfolded hair-424

pin to be more compliant (i.e. possess a wider distribution of forces) than the folded hairpin, the425

inability to distinguish the standard deviations among states is suggestive that, for this experi-426

mental configuration and observation time, the predominant contribution to the observed force427

distributions for each state may be in the form of handle or bead fluctuations or other sources of428

measurement noise.429

Finally, the lifetime of the intermediate-force state is significantly shorter than for the low-430

and high-force states by nearly an order of magnitude, and only a few times longer than the431

observation interval of 1 ms—despite this, the lifetime appears to be well-determined, as indicated432

by the narrow confidence intervals.433

DISCUSSION434

We have described an approach to determining the first-order kinetic parameters and observ-435

able (force or extension) distributions characterizing conformational states in single-molecule436

force spectroscopy. By use of a Bayesian extension of hidden Markov models, we are able to437

characterize the experimental uncertainty in these parameters due to instrument noise and finite-438
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size datasets. The use of a detailed balance constraint additionally helps reduce the experimental439

uncertainty over standard hidden Markov models, as both transitions into and out of conforma-440

tional states provide valuable information about state kinetics and populations in data-poor con-441

ditions [43, 44]. Additionally, the Gibbs sampling framework used to sample from the Bayesian442

posterior can be easily extended to incorporate additional nuisance parameters, such as stochastic443

models of instrument drift or laser power fluctuations.444

We have opted to make use of a reversible transition matrix to describe the statistical kinetic445

behavior between the observation intervals ∆t, but it is possible to use a reversible rate matrix446

instead by substituting a rate matrix sampling scheme [58] in the appropriate stage of the Gibbs447

sampling updates.448

While the experimenter must currently choose the number of conformational states by hand, a449

number of extensions of Bayesian hidden Markov models can be used to automatically determine450

the number of states best supported by the data, including reversible-jump schemes [59, 60] and451

variational Bayes methods [61, 62].452

We note that the experimenter in principle has access to the full posterior distribution of mod-453

els given the observed data, so that instead of looking at the confidence of single parameters,454

confidence intervals in more complex functions of parameters—such as the rates or lifetimes in455

Table II—can be computed, or joint posterior distributions of multiple parameters examined. It456

is also possible to generate synthetic data from the current model, or family of models, to exam-457

ine how the collection of additional data will further reduce uncertainties or allow discrimination458

among particular hypotheses. The field of Bayesian experimental design [63] holds numerous pos-459

sibilities for selecting how future experiments can maximize information gain, and whether the460

information gain from the collection of additional data will be of sufficient utility to justify the461

expense.462
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FIG. 1. Single-molecule optical trapping configuration. The biomolecule of interest—here, the

p5ab RNA hairpin—is tethered to two polystyrene beads by dsDNA handles. The fluctuating

force on one bead held in an optical trap is monitored, while the other bead is held suctioned to a

micropipette tip. Conformational transitions of the hairpin—such as transitions among the three

kinetically metastable states illustrated here—are observed indirectly through motion of the bead

in the trap.

FIG. 2. Synthetic force trajectory and inferred state assignments in MLHMM. Observed samples

are colored by their hidden state assignments. Dark horizontal lines terminating in triangles to the

right denote state means, while lightly colored bands indicate one standard deviation on either

side of the state mean. The gray histogram on the right side shows the total observed probability

of samples, while the colored peaks show the weighted Gaussian output contribution from each

state, and the black outline the weighted sum of the Gaussian output contributions from the HMM

states.

FIG. 3. Experimental force trajectory of the p5ab hairpin and MLHMM state assignments. Ob-

served samples are colored by their hidden state assignments. Dark horizontal lines terminating

in triangles to the right denote state means, while lightly colored bands indicate one standard

deviation on either side of the state mean. The gray histogram on the right side shows the total

observed probability of samples, while the colored peaks show the weighted Gaussian output

contribution from each state, and the black outline the weighted sum of the Gaussian output

contributions from the HMM states.
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TABLE I. Estimated mean model parameters and confidence intervals for synthetic timeseries

data

Estimated Model Parameters

Property True Value 1 000 observations 10 000 observations 100 000 observations

stationary probability π1 0.308 0.228 0.480
0.074 0.318 0.407

0.244 0.324 0.355
0.292

π2 0.113 0.093 0.172
0.042 0.124 0.155

0.098 0.112 0.121
0.104

π3 0.579 0.679 0.870
0.415 0.558 0.648

0.455 0.564 0.599
0.531

transition probability T11 0.980 0.970 0.987
0.945 0.972 0.978

0.966 0.979 0.981
0.978

T12 0.019 0.023 0.045
0.009 0.026 0.032

0.021 0.020 0.021
0.018

T13 0.001 0.007 0.018
0.001 0.002 0.003

0.001 0.001 0.001
0.001

T21 0.053 0.054 0.106
0.018 0.067 0.082

0.053 0.057 0.061
0.052

T22 0.900 0.868 0.931
0.790 0.890 0.907

0.870 0.897 0.903
0.892

T23 0.050 0.078 0.136
0.035 0.043 0.056

0.033 0.046 0.050
0.042

T31 0.001 0.002 0.006
0.000 0.001 0.002

0.000 0.001 0.001
0.000

T32 0.009 0.010 0.019
0.004 0.010 0.012

0.007 0.009 0.010
0.008

T33 0.990 0.988 0.995
0.978 0.990 0.992

0.987 0.990 0.991
0.989

state mean force (pN) µ1 3.000 2.947 3.082
2.812 2.998 3.033

2.963 3.001 3.013
2.990

µ2 4.700 4.666 4.721
4.612 4.699 4.716

4.683 4.702 4.707
4.696

µ3 5.600 5.597 5.614
5.583 5.602 5.607

5.596 5.602 5.603
5.600

state std dev force (pN) σ1 1.000 1.037 1.134
0.951 0.992 1.018

0.967 0.999 1.007
0.991

σ2 0.300 0.254 0.300
0.217 0.287 0.300

0.275 0.301 0.305
0.296

σ3 0.200 0.200 0.211
0.190 0.203 0.207

0.199 0.201 0.203
0.200

TABLE II. BHMM model estimates for p5ab hairpin data.

Property Value

Equilibrium probability π1 0.215 0.236
0.193

π2 0.046 0.050
0.041

π3 0.740 0.762
0.717

Transition probability (∆t = 1 ms) T11 0.954 0.959
0.950

T12 0.033 0.037
0.029

T13 0.013 0.015
0.011
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T21 0.154 0.169
0.139

T22 0.650 0.673
0.627

T23 0.196 0.216
0.180

T31 0.004 0.004
0.003

T32 0.012 0.013
0.011

T33 0.984 0.985
0.983

State force mean (pN) µ1 12.549 12.552
12.544

µ2 13.016 13.027
13.006

µ3 13.849 13.852
13.848

State force std dev (pN) σ1 0.210 0.213
0.207

σ2 0.201 0.208
0.193

σ3 0.213 0.214
0.211

Transition rate (s−1) k12 41.4 46.6
36.3

k13 9.1 11.3
7.2

k21 194.7 216.7
173.1

k23 243.7 271.5
219.0

k31 2.6 3.2
2.1

k32 15.0 16.6
13.4

State mean lifetime (ms) τ1 21.9 24.1
20.0

τ2 2.9 3.1
2.7

τ3 63.1 68.5
58.4
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