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The gating mechanism of a single-ion channel is usually modelled by a finite-state-
space continuous-time Markov chain. The patch-clamp technique enables the exper-
imenter to record the current flowing across a single-ion channel. In practice, the
current is corrupted by noise and low-pass filtering, and is sampled with a typi-
cally very short sampling interval. We present a method for performing Bayesian
inference about parameters governing the underlying single-channel gating mecha-
nism and the recording process, directly from such single-channel recordings. Our
procedure uses a technique known as Markov chain Monte Carlo, which involves
constructing a Markov chain whose equilibrium distribution is given by the poste-
rior distribution of the unknown parameters given the observed data. Simulation of
that Markov chain then enables the investigator to estimate the required posterior
distribution. As well as providing a method of estimating the transition rates of the
underlying Markov chain used to model the single-channel gating mechanism and
the means and variances of open and closed conductance levels, the output from our
Markov chain Monte Carlo simulations can also be used to estimate single-channel
properties, such as the mean lengths of open and closed sojourn times, and to recon-
struct the unobserved quantal signal which indicates whether the channel is open or
closed. The theory is illustrated by several numerical examples taken mainly from
the ion-channel literature.

Keywords: Bayesian inference; continuous-time Markov chain; hidden Markov
chain; Markov chain Monte Carlo; single ion channel; time reversibility

1. Introduction

Ion channels are protein molecules that form pores in cell membranes. Movement of
ions through these pores determines, in part, the electrical properties of nerve and
muscle cells, and is responsible, in part, for transmission of information through a
nervous system. An understanding of the process by which ion channels open and
close will provide important insights into the modes of actions of drugs (for example,
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local anaesthetics) which perturb the functioning of these proteins, and into the
rational design of novel drugs acting on a nervous system.

The patch-clamp technique enables the experimenter to record the current flowing
across a single-ion channel (see, for example, Sakmann & Neher 1995). The gat-
ing mechanism of a single-ion channel is usually modelled by a finite-state-space
continuous-time Markov chain (see, for example, Colquhoun & Hawkes 1977, 1981,
1982). The state space is usually partitioned into two classes, termed open and
closed, corresponding to the receptor channel being open or closed. In principle, it
is possible to observe only which class, rather than which state, the channel is in.
In practice, the current is corrupted by noise and low-pass filtering, and is sampled,
with the sampling interval being typically of the order of 100 µs, prior to analysis.
The sequence of open and closed sojourns of the channel is often then reconstructed
using some kind of ‘threshold’ algorithm. This reconstruction results in the loss of
very short sojourns of the channel, in either the open or closed classes of states, a
phenomenon known as time-interval omission. A principal objective of single-channel
analysis is to make inferences concerning the structure and parameter values of the
continuous-time Markov chain used to model the channel-gating mechanism. Such
inferences can be made either from the reconstructed sequence of open and closed
sojourns, or directly from the current record.

Maximum-likelihood parameter estimation, based on sojourn-time data, was first
considered by Horn & Lange (1983). Ball & Sansom (1989) used a form of the
likelihood of a sequence of sojourn times given by Fredkin et al . (1985) to develop
a numerically more efficient algorithm; see also Chay (1988). All of these studies
ignored the effect of time-interval omission. Ball et al . (1991, 1993) developed a
semi-Markov framework for analysing single-channel sojourn-time data, both with
and without time-interval omission. The key component of that framework, which
is required for any likelihood-based inference, is its associated semi-Markov kernel.
When time-interval omission is ignored, an explicit expression exists for the kernel
and is essentially what was used by Ball & Sansom (1989). However, there is no
simple expression for the kernel when time-interval omission is incorporated. Hawkes
et al . (1990) derived a recursive expression for the time-interval omitted kernel, but
it is computationally highly intensive and numerically unstable for even moderate
sojourn times, t. Jalali & Hawkes (1992a, b) developed an asymptotic expression for
the kernel as t tends to infinity, which turns out, for reasons given in Ball (1997), to
be extremely good even for quite small values of t. Thus the exact and approximate
expressions can be used in combination to closely approximate the kernel for all t > 0,
and hence permit maximum likelihood parameter estimation (Hawkes et al . 1992).
Other approximations to the kernel have also been considered (see, for example, Roux
& Sauvé 1985; Crouzy & Sigworth 1990). Because of the difficulties associated with
likelihood-based inference, alternative methods of inference have been considered,
such as Poisson sampling (Ball et al . 1992).

It is clearly attractive to base inference directly on the current record, since
the reconstructed sequence of open and closed sojourns is derived from it. Fred-
kin & Rice (1992a) considered parameter estimation directly from single-channel
recordings using hidden Markov methodology (Baum et al . 1970; Rabiner & Juang
1986). Magleby & Weiss (1990a, b) used a simulation-based estimation procedure that
explicitly modelled the effects of filtering and noise. Hidden Markov methods have
also been used by Fredkin & Rice (1992b) to reconstruct the sequence of sojourns
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of the channel and by Chung et al . (1990) for both identification of conductance
levels of the channel and reconstruction. Fredkin & Rice (1992a) also provided a
non-model-based method of determining the conductance levels and mean sojourn
times within those levels.

All of the above methods of parameter estimation belong to what is usually called
classical statistics. Another approach to inference, which is becoming increasingly
pervasive in contemporary statistics, is the Bayesian method (see, for example,
O’Hagan 1994; Lee 1989). In the Bayesian approach, it is assumed that prior to con-
ducting an experiment the investigator has beliefs about the values of the unknown
parameters, θ say, which can be expressed by a prior probability distribution hav-
ing density, π(θ) say, with respect to an appropriate measure. If data x are then
observed, the investigator’s beliefs about θ are updated by Bayes’s theorem and are
now expressed by his/her posterior probability distribution having density π(θ | x)
given by

π(θ | x) =
π(θ)f(x | θ)∫

π(θ′)f(x | θ′) dθ′
, (1.1)

where f(x | θ) is the likelihood of observing x when θ is the value of the unknown
parameters and the integral is over the full range of possible values for θ.

A principal difficulty in using the Bayesian method in practice is the evaluation
of the integral in (1.1). In many applications, the unknown parameter θ is a high-
dimensional vector, increasing the difficulty of finding the integral. Often the quantity
of interest is a subvector θ1 of θ, the computation of whose posterior distribution,
called the marginal posterior distribution, requires yet another difficult multidimen-
sional integral. However, in the past decade, a group of techniques known collectively
as Markov chain Monte Carlo (MCMC) methods (see, for example, Gilks et al . 1996)
have revolutionized the implementation of the Bayesian paradigm, making it avail-
able to high-dimensional complex models that hitherto had been computationally
prohibitive. The key idea underlying MCMC methods is to determine a Markov chain
whose state space is that of θ and whose equilibrium distribution is π(θ | x). Simu-
lation of such a Markov chain provides a method of sampling from π(θ | x) and thus
enables the investigator to develop an MCMC estimate of π(θ | x) that is amenable
to summarization and analysis. MCMC methods have been found to be very useful in
inferential problems involving unobserved features and thus seem particularly appro-
priate for single-channel analysis. The aim of this paper is to develop and implement
MCMC methods for making Bayesian inference directly from single-channel records,
using the model of Fredkin & Rice (1992a), which incorporates a general Markov
model for single-channel gating. Simultaneous with this work, Hodgson (1999) has
considered an MCMC sampler for making inference directly from the current record
for a two-state alternating renewal model for channel gating, with open and closed
sojourns following gamma distributions, and an autoregressive process for the noise.
Ball et al . (1996) explored the use of MCMC methods for parameter estimation from
discrete sojourn-time ion-channel data with time-interval omission.

The remainder of the paper is structured as follows. A brief introduction to
Bayesian inference and MCMC methods is given in § 2. The basic model underlying
our inference directly from single-channel recordings is described in § 3, together with
discussion of the prior and posterior distributions for its unknown parameters. The
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basic MCMC sampler is described in § 4. Using the output from the MCMC sampler
is discussed in § 5, where inferences about the unknown parameters and functions of
these parameters, such as the mean lengths of open and closed sojourns are consid-
ered, as well as restoration of the unobserved single-channel record. Computational
implementation of the MCMC sampler is considered in § 6. Extensions of the basic
MCMC sampler, such as to channel-gating models that are necessarily time reversible
and to models whose transition rates are specified functions of other parameters, are
considered in § 7. Some examples of application of the MCMC sampler, using sim-
ulated data from known single-channel gating models, are given in § 8. The paper
ends with some concluding comments in § 9.

2. Bayesian inference and Markov chain Monte Carlo methods

The aim of this section is to provide a brief introduction to Bayesian inference and
Markov chain Monte Carlo (MCMC) methods, which is accessible to more numerate
biologists. Readers familiar with these topics may wish to skip this section. An ele-
mentary introduction to Bayesian statistics is given in Lee (1989). More advanced
treatises are given by O’Hagan (1994) and Bernardo & Smith (1994). A practical
account of MCMC methods is given by Gilks et al . (1996).

(a) Bayesian inference

Consider the following single-ion channel-gating mechanism:

C2

q21

�
q12

O1

q13

�
q31

C3,

where O and C indicate open and closed states, respectively. Suppose that the gating
behaviour of the channel is modelled by a continuous-time Markov chain, with tran-
sition rates qij as shown. Then successive open and closed sojourns of the channel
are independent. Open sojourns have the probability density function

fO(t) = λ exp(−λt) (t > 0), (2.1)

where λ = q12 + q13, and λ−1 is the mean length of an open sojourn. Closed sojourns
have the more complex probability density function

fC(t) = πλ1 exp(−λ1t) + (1− π)λ2 exp(−λ2t) (t > 0), (2.2)

where λ1 = q21, λ2 = q31, so that λ−1
1 and λ−1

2 are the mean lengths of sojourns in
states C2 and C3, respectively, and π = q12/(q12 + q13) is the proportion of closed
sojourns that are in state C2. Suppose that we have observations t1, s1, t2, s2, . . . ,
tn, sn of n successive pairs of open and closed sojourn times, and that we wish to
use these as a basis for making inferences about the parameters λ, λ1, λ2 and π
governing fO(t) and fC(t).

Consider first the problem of making inferences about λ, the parameter governing
the open sojourn time distribution, from the observed open times t = (t1, t2, . . . , tn);
the lengths of the closed sojourns clearly tell us nothing about λ. In the Bayesian
method of inference it is assumed that, before observing the open sojourn times
t, the investigator has beliefs about the value of λ, which can be expressed by a
prior probability distribution. Suppose that this prior probability distribution is
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continuous with probability density function p(λ) (λ > 0). The likelihood of observing
the open sojourn times t is defined to be their joint probability density

f(t | λ) =
n∏
i=1

fO(ti) = λne−nλt̄, (2.3)

where

t̄ =
1
n

n∑
i=1

ti

is the sample mean of observed open sojourn times. After observing the sojourn
times, the investigator updates his/her beliefs about λ to the posterior probability
distribution of λ given the observed data t, which, by Bayes’s theorem, has proba-
bility density function p(λ | t) given by

p(λ | t) =
p(λ)f(t | λ)

f(t)
(λ > 0), (2.4)

where

f(t) =
∫ ∞

0
p(λ)f(t | λ) dλ. (2.5)

The posterior probability density function p(λ | t) encapsulates the investigator’s
beliefs about the unknown parameter λ after observing the data t. Any required
inference about λ is then derived from this posterior distribution. For instance, either
the posterior mean or mode (i.e. the mean or mode of the posterior distribution) will
constitute a point estimate of λ. The posterior standard deviation is a measure of
uncertainty about λ, since it measures the likely distance of λ from the posterior
mean.

Note that f(t) is independent of λ so (2.4) may be expressed as

p(λ | t) ∝ p(λ)f(t | λ). (2.6)

Thus it is straightforward to determine p(λ | t) up to a constant of proportionality.
However, in order to determine that constant of proportionality one needs to evaluate
the integral (2.5), which often cannot be done analytically. An example of when this
integral can be evaluated is if the investigator’s prior beliefs about λ follow a gamma
distribution, specifically

p(λ) = Ga(λ | α, β)

= βαλα−1 exp(−βλ)/Γ (α) (λ > 0),

where α > 0 and β > 0 are constants and Γ denotes the gamma function, defined by

Γ (u) =
∫ ∞

0
vu−1e−v dv.

It then follows from (2.6) and (2.3) that

p(λ | t) ∝ λα+n−1 exp(−(β + nt̄ )λ),

and hence p(λ | t) = Ga(λ | α + n, β + nt̄ ). Thus the investigator’s posterior beliefs
about λ also follow a gamma distribution. A class of prior distributions is said to
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be conjugate for a given likelihood if the posterior distribution belongs to that class
whenever the prior distribution does. Clearly, whenever the investigator’s prior beliefs
can be represented by a prior (where ‘prior’ means ‘prior distribution’) from the
conjugate family, this greatly simplifies a Bayesian analysis.

Now suppose that a priori the investigator does not feel able to say that any
one value of λ is more probable than any other, which would therefore be expressed
through the prior having density p(λ) = c (λ > 0), for some constant c, or p(λ) ∝ 1.
This is not mathematically possible because there is no value of c for which p(λ) is a
proper probability distribution, since

∫∞
0 p(λ) dλ is infinite if c 6= 0 and zero if c = 0.

There is nevertheless a sense in which such an improper prior distribution can be
used. Suppose again that p(λ) is the conjugate Ga(λ | α, β) density. Notice that we
could have simplified p(λ) to p(λ) ∝ λα−1 exp(−βλ), or the even more loosely written
p(λ) = λα−1 exp(−βλ), since the omitted constants will cancel out in (2.6). If we set
α = 1 and β = 0, we obtain p(λ) ∝ 1, or p(λ) = 1, and inserting these values into
the posterior distribution shows that p(λ | t) = Ga(λ | n + 1, nt̄ ). The Ga(1, 0) prior
distribution is improper because the β parameter of a gamma distribution needs to be
strictly positive, but the posterior is nevertheless a genuine proper distribution. The
investigator’s prior beliefs cannot logically be described by this improper distribution,
but distributions such as this have a role as approximations to genuine prior beliefs
when prior information is weak. Even though p(λ) = 1 is not a genuine prior density,
any genuine prior which expressed weak prior information would be very flat over
a wide range of λ values, so that p(λ | t) = Ga(λ | n + 1, nt̄ ) will be an accurate
approximation of the resulting posterior density.

(b) MCMC samplers

In some circumstances the investigator may not feel that his prior beliefs about
λ can be adequately approximated by a prior chosen from the conjugate gamma
family of distributions. For such cases the integral (2.5) cannot normally be evalu-
ated analytically. In the present setting the integral could be evaluated numerically
but this may not be convenient, or even possible, for situations where there are sev-
eral unknown parameters so that (2.5) becomes a high-dimensional integral. MCMC
methods are an alternative to numerical integration for such problems.

The basic idea behind MCMC is to draw a large sample of values of λ randomly
from the posterior distribution p(λ | t). If we denote this Monte Carlo sample by
λ(1), λ(2), . . . , λ(N), then we can obtain accurate approximations to any desired sum-
mary of the posterior distribution. For instance, the Monte Carlo sample mean

λ̄ =
1
N

N∑
k=1

λ(k)

will be an approximation to the posterior mean, and for large enough N can be made
as accurate an approximation as the investigator desires. Similarly, the Monte Carlo
sample variance will approximate the posterior variance, and so on. The question then
arises of how to carry out this scheme, how to draw a random sample from p(λ | t).
In the case of the foregoing example, where p(λ | t) is a gamma distribution, then
there are well-known procedures for drawing pseudo-random samples from gamma
distributions (see Devroye 1986), but it is precisely when the posterior distribution
is not some standard well-known distribution that we wish to apply the Monte Carlo
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Table 1. Illustration of MCMC

iteration k 0 1 2 3 4
current λ(k) 1 6.323 6.323 7.671 6.651
proposal λ′ 6.323 7.665 7.671 6.651 7.811
acceptance prob. B 0.0488 0.6858 0.8773 1 0.7295
uniform draw U 0.0159 0.6885 0.8682 — 0.6295
new λ(k+1) 6.323 6.323 7.671 6.651 7.811

approach. MCMC is a tool for sampling from complex high-dimensional distributions.
Instead of a sequence of independent draws from p(λ | t), we construct a Markov chain
{λ(k); k = 0, 1, . . . } whose unique equilibrium distribution is p(λ | t). Then the theory
of Markov chains tells us that, conditional on any arbitrary starting value λ(0), the
chain eventually converges to this equilibrium, in the sense that the distribution of
λ(k) will be arbitrarily close to p(λ | t) for all k greater than some sufficiently large M .
Therefore if we simulate a realization of this Markov chain, starting from an arbitrary
λ(0), we can use the sequence λ(M), λ(M+1), . . . as our Monte Carlo sample. Because
the successive values in a Markov chain will in general be correlated, we will require
a longer sequence to achieve adequate accuracy in approximations such as λ̄, but the
ease with which suitable Markov chains can be constructed for complex problems
makes this a powerful computational device. Note that in practice the ‘burn-in time’
M will not be known, and it is necessary to use empirical diagnostic methods for
determining when the chain has been run sufficiently long for convergence to have
taken place (see § 5 a for more details).

To illustrate MCMC methods, suppose that we wish to draw a sample from the
posterior distribution (2.4) based on the likelihood (2.3) and an arbitrary prior p(λ).
Consider a Markov chain {λ(k); k = 0, 1, . . . } constructed as follows. Given λ(k),
λ(k+1) is obtained by a two-stage process in which a random candidate value is
proposed and then a random decision is taken whether to accept that proposal.
Before considering more fully the reasoning behind this idea, let us see how in this
example it can lead to a Markov chain being produced with the required equilib-
rium distribution. For this example, first suppose that we generate a proposal λ′
by sampling from the gamma distribution with density Ga(λ′ | n + 1, nt̄ ) and then
that we accept this proposal with probability given by B = min(p(λ′)/p(λ(k)), 1).
This acceptance condition is effected by drawing a random number U uniformly
over (0, 1) and accepting the proposal if U 6 B. If the proposal is accepted then
λ(k+1) = λ′, otherwise λ(k+1) = λ(k). Table 1 gives a numerical example to illustrate
a sequence of steps of this procedure. The particular numerical values are n = 100,
t̄ = 0.15, and p(λ) = 2/{π(1 + λ2)}, so that the proposals are sampled from the
Ga(101, 15) distribution and accepted with probability B, where B = 1 if λ′ 6 λ(k)

and B = (1+{λ(k)}2)/(1+{λ′}2) if λ′ > λ(k). The chain is started from λ(0) = 1. The
particular random numbers would, of course, change if we were to run the example
again, resulting in different realizations of λ(1), λ(2), . . . .

Notice that the proposal in iteration 1 is rejected because U > B, and hence the
current value of λ(1) is retained for λ(2). At iteration 3, B = 1, so the proposal is
automatically accepted and it is not necessary to make the random uniform draw U .

We now show that this procedure will actually have the required equilibrium distri-
bution. For λ 6= λ′, let h(λ, λ′) denote the probability density function of λ(k+1) = λ′
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given that λ(k) = λ. Then

h(λ, λ′) = Ga(λ′ | n + 1, nt̄ ) min(p(λ′)/p(λ), 1).

It is easily checked, by considering the cases p(λ) > p(λ′) and p(λ) < p(λ′) separately,
that

min(p(λ′)/p(λ), 1)
min(p(λ)/p(λ′), 1)

= p(λ′)/p(λ).

Hence
h(λ, λ′)
h(λ′, λ)

=
Ga(λ′ | n + 1, nt̄ )p(λ′)
Ga(λ | n + 1, nt̄ )p(λ)

=
(λ′)n exp(−λnt̄ )p(λ′)

λn exp(−λnt)p(λ)

=
p(λ′ | t)
p(λ | t) ,

using (2.3) and (2.4). Hence

p(λ | t)h(λ, λ′) = p(λ′ | t)h(λ′, λ) (λ, λ′ > 0),

so p(λ | t) satisfies the detailed balance conditions (cf. Kelly 1979, p. 5) for {λ(k); k =
0, 1, . . . }. It follows that {λ(k); k = 0, 1, . . . } is time reversible with equilibrium dis-
tribution having density p(λ | t). Thus the investigator can build up a picture of
their posterior distribution for λ, and can approximate accurately any desired sum-
mary of that distribution, by simulating a long run of the above Markov chain. (This
computational procedure of creating a Markov chain to sample from the posterior
distribution is, of course, quite distinct from the Markov chain that generates the
ion-channel sojourn data.)

The device of a random proposal followed by a random acceptance decision may
seem convoluted, but is the basis of a general algorithm called the Metropolis–
Hastings algorithm (Metropolis et al . 1953; Hastings 1970), which allows us to design
a Markov chain specifically to achieve a target equilibrium distribution. An idea of
how it works can be obtained by considering how such a Markov chain should behave.
The new value λ(k) should, once the chain is in equilibrium, be a random draw from
p(λ | t). This means that it should be most likely to fall in regions where both the
likelihood and the prior density are relatively high, but should also have appropri-
ately smaller probabilities of falling in other regions. Now consider the two stages
separately. In this example, the proposal density is proportional to the likelihood,
and so is designed to generate proposals λ′ that fall predominantly in areas where the
likelihood is high. The acceptance probability A = min(p(λ′)/p(λ(k)), 1) emphasizes
areas where the prior density is high by giving higher probabilities of acceptance
when the proposal value has higher prior density. Indeed, if the proposal has higher
prior density than the current value λ, it will always be accepted.

The general Metropolis–Hastings algorithm can be described as follows. Let η and
y denote the unknown parameter(s) and data, respectively, in an arbitrary statistical
problem, where η and y may both be vectors, and suppose that we wish to sample
from the posterior distribution p(η | y). Then we construct a Markov chain {η(k); k =
0, 1, . . . } as follows. Given η(k), a proposal η′ is generated from a distribution having
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density g(η′ | η(k)). That proposal is accepted with probability A = min(1, B), where

B =
p(η′ | y)g(η(k) | η′)

p(η(k) | y)g(η′ | η(k))
. (2.7)

If the proposal is accepted, η(k+1) = η′. Otherwise η(k+1) = η(k). Under very general
conditions (Gilks et al . 1996), a chain generated this way converges to the posterior
p(η | y) sought. (The formula (2.7) was used to derive the acceptance probability in
our earlier example.)

When η is a vector, Metropolis–Hastings methods can be applied to components
of η rather than to all of η at once. Suppose that η = (η1, η2, η3), where η1, η2 and η3
may also be vectors. Consider for instance a proposal distribution for η′ = (η′1, η

′
2, η
′
3)

such that, with probability 1, η′1 = η1 and η′2 = η2, so that only η3 is proposed to
change. Clearly, a chain in which this proposal distribution is used at every iteration
cannot converge uniquely to the required posterior distribution. We can, however,
use different proposal distributions at different iterations. We would refer to these
as different kinds of ‘steps’ in the chain, so that a proposal in which only η3 changes
could be referred to as an η3 step.

Different kinds of steps may be used in a deterministic sequence, for instance by
using an η1 step, an η2 step and an η3 step cyclically. If we think of the combination of
the three steps as a single iteration, the Markov chain is homogeneous and the usual
theory can be applied to confirm convergence to the required posterior. Similarly we
can apply different kinds of steps by making a random choice of step type at each
iteration. There is thus great flexibility available in constructing MCMC samples, as
explored in Besag et al . (1995).

An important special case of the Metropolis–Hastings algorithm is the Gibbs sam-
pler. Suppose that η is a vector and write η = (η1, η2), where η1 and η2 may also be
vectors. Given η(k) (= (η(k)

1 , η
(k)
2 )), generate a proposal η′ = (η(k)

1 , η′2), where η′2 is
generated from the distribution p(η′2 | η(k)

1 , y). Then, noting that

p(η | y) = p(η1 | y)p(η2 | η1, y),

it follows from (2.7) that B = 1, so the proposal η′ is necessarily accepted. Proposals
of this type are called Gibbs steps. A Markov chain sampler comprising only Gibbs
steps is called a Gibbs sampler (see Geman & Geman 1984).

(c) A more complex example

Consider now the problem of making inferences about η = (λ1, λ2, π), where λ1, λ2
and π are the parameters governing the distribution of closed sojourn times, given
by (2.2). Suppose, for the sake of illustration, that the investigator’s prior beliefs
about λ1, λ2 and π are independent, so p(η) = p(λ1)p(λ2)p(π), and that weak prior
information is expressed through the uniform priors p(λ1) = 1 (λ1 > 0), p(λ2) = 1
(λ2 > 0) and p(π) = 1 (0 < π < 1). The first two of these distributions are improper,
and a complication involved in using improper prior distributions is that possibly the
posterior distribution is improper, in which case the MCMC chain will not converge.
Fortunately, for this likelihood and improper prior (and indeed in all the situations
where improper priors are introduced in this paper, unless stated explicitly to the
contrary), the posterior is proper, so the difficulty does not arise here.
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Let s = (s1, s2, . . . , sn) denote the vector of closed sojourn times. Then

p(η | s) ∝
n∏
i=1

fC(si | η),

where fC(si | η) is given by the right-hand side of (2.2) with t replaced by si. Note
that this expression of p(η | s) as a product of sums cannot be simplified, and
the task of computing it when n is realistically large renders direct MCMC methods
cumbersome. The difficulty is owing to not knowing whether any given closed sojourn
is in state C2 or C3 and it can be overcome by introducing this information in the
form of a further vector parameter δ = (δ1, δ2, . . . , δn), where, for i = 1, 2, . . . , n,

δi =

{
1, if the sojourn si is in state C2,

0, if the sojourn si is in state C3.

(This technique of including unobserved information as extra parameters is known
as data augmentation (see, for example, Tanner & Wong 1987).) It then follows that

p(η, δ | s) ∝ p(η, δ, s)
= p(η)p(δ | η)p(s | η, δ)

=
n∏
i=1

{πδi(1− π)1−δi}
n∏
i=1

{(λ1 exp(−λ1si))δi(λ2 exp(−λ2si))1−δi}, (2.8)

since p(η) = 1.
Let n1 =

∑n
i=1δi and n2 = n − n1 be the numbers of sojourns in C2 and C3,

respectively, and let

s̄1 = n−1
1

n∑
i=1

δisi and s̄2 = n−1
2

n∑
i=1

(1− δi)si

be the corresponding mean sojourn times. Then the product form of (2.8) implies
that

p(λ1, λ2, π | δ, s) = p(λ1 | δ, s)p(λ2 | δ, s)p(π | δ),
where p(λi | δ, s) = Ga(λi | ni + 1, nis̄i) (i = 1, 2) and

p(π | δ) = Be(π | n1 + 1, n2 + 1)

=
πn1(1− π)n2

β(n1 + 1, n2 + 1)
(0 < π < 1),

where β denotes the beta function defined by

β(x, y) =
∫ 1

0
ux−1(1− u)y−1 du.

Also

p(δ | λ1, λ2, π, s) =
n∏
i=1

p(δi | λ1, λ2, π, si),

where, for i = 1, 2, . . . , n,

p(δi | λ1, λ2, π, si) =
{πλ1 exp(−λ1si)}δi{(1− π)λ2 exp(−λ2si)}1−δi

πλ1 exp(−λ1si) + (1− π)λ2 exp(−λ2si)
(δi = 0, 1).
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We can now construct a process {(η(k), δ(t)); k = 0, 1, . . . } as follows. Suppose that
the current state is

(η(k), δ(k)) = (λ(k)
1 , λ

(k)
2 , π(k), δ

(k)
1 , δ

(k)
2 , . . . , δ(k)

n ).

We first determine η(k+1) by simulating λ
(k+1)
1 , λ

(k+2)
2 and π(k+1) independently

from the distributions

Ga(λ(k+1)
1 | n(k)

1 + 1, n
(k)
1 s̄

(k)
1 ), Ga(λ(k+1)

2 | η(k)
2 + 1, n

(k)
2 s̄

(k)
2 ),

Be(π(k+1) | n(k)
1 + 1, n

(k)
2 + 1),

respectively. We then determine δ
(k+1)
1 , δ

(k+1)
2 , . . . , δ

(k+1)
n by simulating indepen-

dently from the distributions

p(δ(k+1)
i | λ(k+1)

1 , λ
(k+1)
2 , π(k+1), si) (i = 1, 2, . . . , n).

Finally, we use δ
(k+1)
1 , δ

(k+1)
2 , . . . , δ

(k+1)
n to determine n

(k+1)
i , s̄

(k+1)
i (i = 1, 2). Thus

at each iteration η and δ are both being updated by Gibbs steps, and this Markov
chain is therefore a Gibbs sampler. A process {(η(k), δ(k)); k = 1, 2, . . . } constructed
in this fashion is a realization of a Markov chain whose equilibrium distribution
is p(η, δ | s). Thus, once this realization has settled into equilibrium, the process
{η(k); k = 0, 1, . . . } can be used to sample from p(η | s).

(d) Dimension changes

For a time-reversible Markov model of single-channel gating that is in equilibrium,
the length of a typical sojourn in the closed class of states follows a mixture of
negative exponential random variables (Kijima & Kijima 1987) and has a probability
density function of the form

fC(t) =
kC∑
i=1

πiλi exp(−λit) (t > 0), (2.9)

where πi > 0 (i = 1, 2, . . . , kC) and
∑kC
i=1πi = 1. (A similar result holds for open

sojourns.) The number of components kC comprising the mixture gives a lower bound
on the number of closed states in the gating mechanism and normally this bound is
attained. Thus experimenters attempt to estimate the numbers of open and closed
states by fitting distributions of the form (2.9) to data on open and closed sojourns.

The Gibbs sampler described above for the case kC = 2 can easily be extended to
the case kC > 2, provided that kC is known. However, kC is unknown in the above
setting and thus needs to be treated as another parameter. It is still possible to
develop a Metropolis–Hastings MCMC sampler when kC is a parameter, but note now
that as kC changes so does the number of other parameters {πi, λi : i = 1, 2, . . . , kC}
required to describe the mixture density. A consequence of this is that for proposals
that change the value of kC, the expression for B in (2.7) needs to be multiplied
by an appropriate Jacobian, to create a reversible jump step (Green 1995). See
Richardson & Green (1997) for a state-of-the-art account of MCMC methods for
mixture distributions with an unknown number of components.

In this paper we develop an MCMC sampler for making Bayesian inference for ion-
channel gating mechanisms directly from a single-channel current record. The data
are the channel record, denoted by y. The unknown parameters are the transition
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rates of the underlying continuous-time Markov chain used to model the channel,
denoted by q, and parameters associated with the recording process, denoted by
θ. The aim is to develop a method for sampling from the posterior distribution
p(q, θ | y). However, similar to the mixture problem described above, the analysis
would be greatly simplified if we knew the realization, x say, of the channel gating
process. Thus we develop an MCMC sampler for p(x, q, θ | y). Our sampler involves
a deterministic cycle, comprising a q step, then a θ step, then an x step, but each
of these steps is further subdivided, and there is random choice in the x step. Note
that the dimension of x is determined by the number of gating events that occur
during the single-channel recording, which is unknown. Thus the reversible jump
methodology of Green (1995) is required when updating x.

3. Model, prior and posterior

(a) Model

The gating mechanism of a single-ion channel is modelled by a continuous-time
Markov chain {X(t); t > 0}, with finite state space S = {1, 2, . . . , m}. Thus X(t)
denotes the state of the channel at time t and S denotes the possible states of the
channel. The state space S is partitioned into O = {1, 2, . . . , mO} and C = {mO +
1, mO + 2, . . . , m}, corresponding to the receptor channel being open and closed,
respectively. Let Q be the transition rate matrix of {X(t); t > 0}. Thus Q is an m×m
matrix with elements qij , where, for i 6= j, qij is the transition rate of the channel
from state i to state j and the diagonal elements of Q are defined so that the row sums
are all zero, i.e. qii = −∑j 6=iqij . We shall assume that {X(t); t > 0} possesses an
equilibrium distribution π = (π1, π2, . . . , πm), where πi is the equilibrium probability
that the channel is in state i. The equilibrium distribution π can be obtained from
Q by solving the equations

πQ = 0, π1 = 1.

Throughout the paper 0 and 1 denote column vectors of zeros and ones, respectively,
whose dimension, in the present case m, is apparent from the context. In many
applications, {X(t); t > 0} is necessarily time reversible, in which case π also satisfies
the detailed balance equations

πiqij = πjqij (i, j ∈ S).

See Läuger (1995) for a discussion of time reversibility in the ion-channel context.
In practice, the process {X(t); t > 0} is not observed. Instead, the current flow-

ing across the channel is recorded at times 0, ∆, 2∆, . . . , N∆, where ∆ denotes the
sampling interval. Let T = N∆, X = {X(t); 0 6 t 6 T} and x = {x(t); 0 6 t 6 T}
be the unobserved realization of X. For l = 0, 1, . . . , N , let Yl be a random variable
describing the current flowing across the channel at time l∆. Following Fredkin &
Rice (1992a), the observed process is modelled by assuming that

Yl = c(x(l∆)) + εl (l = 0, 1, . . . , N), (3.1)

where

c(x(l∆)) =

{
µO, if x(l∆) ∈ O,

µC, if x(l∆) ∈ C
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Figure 1. Examples of graphs associated with single-channel gating mechanisms.

and ε0, ε1, . . . , εN are independent normal random variables, each having mean zero,
with variances given by

var(εl) =

{
σ2

O, if x(l∆) ∈ O,

σ2
C, if x(l∆) ∈ C.

Thus the model assumes that there are no subconductance levels. If the channel does
have subconductance levels, then our methodology can easily be extended to incor-
porate that phenomenon. As pointed out by Fredkin & Rice (1992a), the model is not
quite faithful to the data, since it ignores low-pass filtering. Again, our methodology
can be extended to incorporate this phenomenon. We briefly outline these extensions
in § 9.

The transition rate matrix Q induces a directed graph, G say, on S, in which, for
any ordered pair of states (i, j), there is a directed arc joining i to j if and only
if qij > 0. Let E = {(i, j) : qij > 0} be the set of (directed) edges in G and let
q = {qij : (i, j) ∈ E}. Clearly q determines Q, and hence also π. Thus we write
π = π(q) = (π1(q), π2(q), . . . , πm(q)).

Examples of graphs G for some gating mechanisms are shown in figure 1. In
these mechanisms open states are indicated by O and closed states by C, with
subscripts indicating the state label in S. The vectors q for these examples are:
(a) q = (q12, q21); (b) q = (q12, q21, q23, q32); (c) q = (q12, q21, q23, q32, q31, q13) and
(d) q = (q12, q21, q14, q41, q23, q32, q34, q43, q45, q54). Let θ = (µO, σ2

O, µC, σ2
C). Our aim

is to make inferences concerning q and θ from an observation, y = (y0, y1, . . . , yN )
say, of Y = (Y0, Y1, . . . , YN ).

(b) Prior

Let p(q, θ) be a density describing our prior beliefs about q and θ. We shall assume
that our prior beliefs about q and θ are independent, i.e. that

p(q, θ) = p(q)p(θ), (3.2)

and that

p(q) =
∏

(i,j)∈E
p(qij), (3.3)
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with

p(qij) = Ga(qij | αij , βij)
= β

αij
ij q

αij−1
ij exp(−βijqij)/Γ (αij) (0 < qij <∞), (3.4)

and

p(θ) = p(µO, σ2
O, µC, σ2

C)

= (σ2
Oσ2

C)−1 (−∞ < µO, µC <∞, 0 < σ2
O, σ2

C <∞). (3.5)

The constants αij , βij in (3.4) satisfy αij > 0, βij > 0.
Thus the prior beliefs about the elements of the q are that they follow independent

gamma distributions, with qij having mean αij/βij and variance αij/β2
ij . This form

of prior is chosen for q as it is conjugate for the problem under consideration. The
constants αij , βij need to be specified by the researcher, reflecting his/her prior
beliefs. We also allow the possibility that αij = 1, βij = 0, in which case qij has an
improper vague prior. The prior beliefs for θ given by (3.5) are that µO, σ2

O, µC, σ2
C

follow independent improper vague priors. It should be noted that in the present
ion-channel setting the dimension N + 1 of the data y is typically very large. In
these circumstances the posterior for (q, θ) is heavily dominated by the data and any
sensible prior is likely to lead to similar conclusions.

(c) Posterior

Let f(y | q, θ) denote the joint probability density function of Y given the param-
eters q and θ. Then, by Bayes’s theorem, the posterior density of (q, θ) given the
observed data y is given by

p(q, θ | y) =
f(y | q, θ)p(q, θ)

p(y)
, (3.6)

where

p(y) =
∫

f(y | q, θ)p(q, θ) dq dθ, (3.7)

with the integral being over the full range of possible values for q and θ.
Fredkin & Rice (1992a) give an algorithm for evaluating f(y | q, θ). However, there

are two problems in using it to determine the posterior density p(q, θ | y). Firstly, the
algorithm of Fredkin & Rice (1992a) is computationally highly intensive. Secondly,
even if f(y | q, θ) were cheaply available one still needs to evaluate the integral in
(3.7) to determine p(q, θ | y).

The difficulty in evaluating f(y | q, θ) is due to the realization x of the channel-
gating process being unobservable. If x were observable then it would be straight-
forward to determine p(q, θ | y). The above problems can, to a certain extent, be
overcome by treating x as an unknown parameter. Note that x is a random function
of q, involving no other parameters, so we do not have to specify a prior for x; indeed,
it would be incorrect to do so. Put another way, our prior beliefs about q and the
model automatically determine our prior beliefs concerning x.

The form of the model (3.1) and prior (3.2) implies that

p(x, q, θ, y) = p(q)p(θ)f(x | q)f(y | x, θ), (3.8)
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where f(x | q) denotes the probability density of the realization x given the parameter
q. Further, by Bayes’s theorem,

p(x, q, θ | y) = p(x, q, θ, y)/p(y), (3.9)

where now

p(y) =
∫

p(x, q, θ, y) dxdq dθ. (3.10)

The integral in (3.10) is now over the full range of possible values of x, q and θ,
and again it cannot be easily evaluated. (Even if it could, we would then have to
integrate p(x, q, θ | y) over all possible x to obtain p(q, θ | y).) However, the form of
p(x, q, θ, y) in (3.8) implies that the conditional densities p(x | q, θ, y), p(q | x, θ, y)
and p(θ | x, q, y) all admit relatively simple forms. It is this fact that makes MCMC
methods particularly appropriate for the present ion-channel problem.

4. Markov chain Monte Carlo sampler

(a) Notation and overview

In order to describe our sampler, we first need to parametrize the unobserved real-
ization x = {x(t); 0 6 t 6 T} explicitly. Let n be the number of jumps made by x,
where a jump of x is a change of state (which may or may not involve a change of
conductance level of the channel). Let χ0 = x(0), s0 = 0 and sn+1 = T . Provided
n > 0, for l = 1, 2, . . . , n let sl = mint>sl−1{t : x(t) 6= χl−1} and χl = x(sl). For
l = 0, 1, 2, . . . , n, let tl = sl+1 − sl. Then x is parametrized by x = (n, t,χ), where
t = (t0, t1, . . . , tn) is a vector containing the lengths of successive sojourns of x and
χ = (χ0, χ1, . . . , χn) gives the states visited in these sojourns.

We shall construct a Markov chain {(x(k), q(k), θ(k)); k = 0, 1, . . . } whose equilib-
rium distribution is p(x, q, θ | y), where, in obvious notation, x(k) is parametrized by
x(k) = (n(k), t(k),χ(k)). We shall do this by developing a Metropolis–Hastings sam-
pler that sequentially updates q, θ and x. We now describe the methods for updating
q, θ and x. In describing these methods we shall assume that the current state of
the sampler is (x(k), q(k), θ(k)) = (x, q, θ), i.e. for notational simplicity we drop the
explicit dependence of (x, q, θ) on k.

(b) Update q

For l = 0, 1, . . . , n and i = 1, 2, . . . , m let

δli =

{
1, if χl = i,

0, if χl 6= i.

For i = 1, 2, . . . , m let t̃i =
∑n
l=0tlδli be the total time during [0, T ] spent by x in

state i. For i, j = 1, 2, . . . , m (i 6= j) let nij =
∑n−1
l=0 δliδl+1,j be the total number of

jumps from state i to state j made by x. Then, since the successive sojourns of X
follow conditionally independent negative exponential distributions and P (χl+1 =
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j | χl = i) = −q−1
ii qij ,

f(x | q) = πχ0(q)
{n−1∏
l=0

[
−qχlχl exp(qχlχltl)

(
qχlχl+1

−qχlχl

)]}
exp(qχnχntn) (4.1)

= πχ0(q)
∏

(i,j)∈E
q
nij
ij exp(−t̃iqij). (4.2)

Thus, recalling the prior for q given by (3.3) and (3.4),

p(q | x) =
f(x | q)p(q)

p(x)

∝ πχ0(q)
∏

(i,j)∈E
p̃(qij | x),

where

p̃(qij | x) = Ga(qij | nij + αij , t̃i + βij) ((i, j) ∈ E). (4.3)

Note that if the initial state χ0 of x was known, rather than assumed to be sampled
from the equilibrium distribution π(q), then p(q | x) would be∏

(i,j)∈E
p̃(qij | x).

Thus we generate a proposal, q′ = {q′ij ; (i, j) ∈ E}, for q by sampling q′ij indepen-
dently from the gamma distribution p̃(qij | x) ((i, j) ∈ E). Using (2.7), the acceptance
probability for this proposal is A = min(1, B), where

B =
p(x, q′, θ | y)

∏
(i,j)∈E p̃(qij | x)

p(x, q, θ | y)
∏

(i,j)∈E p̃(q′ij | x)

= πχ0(q
′)/πχ0(q),

using (3.3), (3.4), (3.8), (3.9) and (4.2).

(c) Update θ

We update θ = (µO, σ2
O, µC, σ2

C) using single-component Gibbs steps on µO, σ2
O, µC

and σ2
C, i.e. by sampling successively from the distributions p(µO | x, q, y, σ2

O, µC, σ2
C),

p(σ2
O | x, q, y, µO, µC, σ2

C), p(µC | x, q, y, µO, σ2
O, σ2

C) and p(σ2
C | x, q, y, µO, σ2

O, µC).
Thus we now determine these conditional distributions. First, some more notation
is required.

For l = 0, 1, . . . , N , let

δl =

{
1, if x(l∆) ∈ O,

0, if x(l∆) ∈ C.
(4.4)

Further, let

yO =
N∑
l=0

ylδl, nO =
N∑
l=0

δl, yO,2 =
N∑
l=0

y2
l δl, ȳO = yO/nO, s2

O = yO,2 − nOȳ2
O

Proc. R. Soc. Lond. A (1999)

 on June 17, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Bayesian inference for ion-channel gating mechanisms 2895

and

yC =
N∑
l=0

yl(1− δl), nC =
N∑
l=0

(1− δl), yC,2 =
N∑
l=0

y2
l (1− δl),

ȳC = yC/nC, s2
C = yC,2 − nCȳ2

C.

Then it follows from (3.1) that

f(y | x, θ) =
N∏
l=0

φO(yl | θ)δlφC(yl | θ)1−δl , (4.5)

where

φO(yl | θ) = (2πσ2
O)−1/2 exp[−(yl − µO)2/(2σ2

O)],

φC(yl | θ) = (2πσ2
C)−1/2 exp[−(yl − µC)2/(2σ2

C)].

Further, using (3.8),

p(θ | x, q, y) ∝ p(θ)f(y | x, θ)

∝ (σ2
O)−(nO/2)−1 exp[−1

2{s2
O + nO(µO − ȳO)2}/σ2

O]

× (σ2
C)−(nC/2)−1 exp[−1

2{s2
C + nC(µC − ȳC)2}/σ2

C]. (4.6)

Thus

p(θ | x, q, y) = p(µO, σ2
O, µC, σ2

C | x, y)

= p(µO, σ2
O | x, y)p(µC, σ2

C | x, y).

The posterior densities p(µO, σ2
O | x, y) and p(µC, σ2

C | x, y) are those arising from
two independent normal samples, whose means and variances are both unknown.
Thus, from standard theory (see, for example, Lee 1989, § 2.12),

p(µO | x, q, y, σ2
O, µC, σ2

C)

= p(µO | σ2
O, x, y)

= (2πσ2
O/nO)−1/2 exp{−1

2nO(µO − ȳO)2/σ2
O} (−∞ < µO <∞)

and

p(σ2
O | x, q, y, µO, µC, σ2

C)

= p(σ2
O | µO, x, y)

∝ (σ2
O)−(nO/2)−1 exp[−1

2{s2
O + nO(µO − ȳO)2}/σ2

O] (σ2
O > 0),

with similar expressions holding for

p(µC | x, q, y, µO, σ2
O, σ2

C) and p(σ2
C | x, q, y, µO, σ2

O, µC).

Hence θ may be updated as follows.
Let

θ(k) = (µ(k)
O , σ

2(k)
O , µ

(k)
C , σ

(k)
C )

denote the current value of θ. Then (µ(k+1)
O , σ

2(k+1)
O ) is obtained by first sampling
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µ
(k+1)
O from the normal distribution with mean ȳO and variance σ

2(k)
O /nO and then

sampling z from the χ-squared distribution with nO degrees of freedom and then
setting

σ
2(k+1)
O = (s2

O + nO(µ(k+1)
O − ȳO)2)/z.

The updates (µ(k+1)
C , σ

2(k+1)
C ) are obtained similarly.

Note that it is possible to update (µO, σ2
O) (and also (µC, σ2

C)) jointly, rather than
in two separate Gibbs steps, by first sampling

σ
2(k+1)
O from p(σ2

O | x, y)

and then sampling

µ
(k+1)
O from p(µO | σ2(k+1)

O , x, y).

Explicit forms for these posterior distributions are given, for example, in Lee (1989,
§ 2.12). However, since in practice we usually want to constrain µO > µC (see § 7 a),
and in that case the above option is not available, we stick to separate Gibbs steps.

(d) Update x

The unobserved realization x of the channel-gating process is updated using a
Metropolis–Hastings algorithm, with proposals x′ that change x on a sojourn basis.
The possible move types for obtaining x′ are described in § 4 d (i). When describing
the move types, the notation is local to a given move type. The same notation is used
when giving the acceptance probabilities for the various move types, in § 4 d (ii).

(i) Move types for updating x

(1) Move a boundary between two successive sojourns of x. We first decide which
boundary to move by sampling j from the random variable J having a uniform
distribution on {0, 1, . . . , n− 1} (i.e. P (J = j) = n−1, j = 0, 1, . . . , n− 1). We then
sample u from U(0, tj + tj+1), i.e. from the uniform distribution on (0, tj + tj+1).
The proposal x′ is then obtained by moving the boundary between the jth and
(j + 1)th sojourns from sj+1 to sj + u. Thus x′ = (n′, t′,χ′) is given by n′ = n,
t′j = u, t′j+1 = tj + tj+1 − u, t′l = tl (l 6= j, j + 1) and χ′l = χl (l = 1, 2, . . . , n′).

(2) Insert a sojourn. Sample l∗ from the uniform distribution on {0, 1, . . . , n} and
let i = χl∗ . Determine the state for the inserted sojourn by sampling j from the
distribution P (J = j) = p̃2(j | i) (j ∈ S, j 6= i). (The distribution p̃2(j | i) needs
to be specified by the user and should satisfy p̃2(j | i) > 0 if and only if qij > 0
and qji > 0. It is possible to make p̃ depend on q, and more generally on x, i.e. have
p̃2(j | i, q, x), though we shall treat the simple case in this paper.) Sample u from the
U(0, tl∗) distribution and then sample v from the negative exponential distribution
with rate −qjj truncated at tl∗ − u, i.e. from the distribution having probability
density function

−qjj exp(qjjv)
[1− exp{qjj(tl∗ − u)}] (0 < v < tl∗ − u).

This can be achieved by sampling w from the U(0, 1) distribution and setting

v = q−1
jj log(1− w[1− exp{qjj(tl∗ − u)}]).
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Then a sojourn in state j of length v is inserted in the l∗th sojourn of x. Thus the
proposal x′ is given by n′ = n + 2, (t′l, χ

′
l) = (tl, χl) (l = 0, 1, . . . , l∗ − 1), t′l∗ = u,

t′l∗+1 = v, t′l∗+2 = tl∗−u−v, χ′l∗ = χ′l∗+2 = χl∗ (= i), χ′l∗+1 = j, (t′l, χ
′
l) = (tl−2, χl−2)

(l = l∗ + 3, l∗ + 4, . . . , n + 2), with an obvious modification if l∗ = 0 or n.

(3) Delete an intermediate sojourn whose two adjacent sojourns are in the same state.
Sample l∗ from the uniform distribution on {1, 2, . . . , n − 1}. If χl∗−1 = χl∗+1 then
the l∗th sojourn of x is deleted, i.e. x′ is obtained by setting x′(t) = χl∗−1 (sl∗ 6 t <
sl∗+1). Thus x′ is given by n′ = n− 2, (t′l, χ

′
l) = (tl, χl) (l = 0, 1, . . . , l∗ − 2), t′l∗−1 =

tl∗−1 +tl∗+tl∗+1, χ′l∗−1 = χl∗−1, (t′l, χ
′
l) = (tl+2, χl+2) (l = l∗, l∗+1, . . . , n−2), with

an obvious modification if j = 1 or n− 1. If χl∗−1 6= χl∗+1 then x is left unchanged,
i.e. x(k+1) = x(k).

(4) Split an intermediate sojourn. Sample l∗ from the uniform distribution on
{1, 2, 3, . . . , n−1}, and let i1 = χl∗ and i3 = χl∗+1. If qi1jqji3 = 0 for all j ∈ S\{i1, i3}
then x is left unchanged. Otherwise sample u from the U(0, tl∗) distribution and j
from the user-specified distribution p̃4(j | i1, i3) (j ∈ S, j 6= i1 or i3), satisfy-
ing p̃4(j | i1, i3) > 0 if and only if qi1jqji3 > 0. The proposal x′ is then given by
n′ = n+1, (t′l, χ

′
l) = (tl, χl) (l = 0, 1, . . . , l∗− 1), t′l∗ = u, χ′l∗ = χl, t′l∗+1 = tl∗+1−u,

χ′l∗+1 = j, (t′l, χ
′
l) = (tl−1, χl−1) (l = l∗ + 2, l∗ + 3, . . . , n + 1).

(5) Delete an intermediate sojourn whose two adjacent sojourns are in distinct states.
The procedure for move type (5) is the same as that for move type (3), except that,
letting i = χl∗−1 and j = χl∗+1, if i 6= j and qij > 0 then the l∗th sojourn of x
is deleted, i.e. n′ = n − 1, (t′l, χ

′
l) = (tl, χl) (l = 0, 1, . . . , l∗ − 2), t′l−1 = tl−1 + tl,

χ′l−1 = χl−1, (t′l, χ
′
l) = (tl+1, χl+1) (l = l∗, l∗ + 1, . . . , n− 1). Alternatively, if i = j

or qij = 0 then x is left unchanged.

(6) Split the initial sojourn of x. Sample u from the U(0, t1) distribution and let
i = χ0. Sample j from the distribution P (J = j) = p̃6(j | i) (j ∈ S, j 6= i), where the
distribution p̃6(j | i), which satisfies p̃6(j | i) > 0 if and only if qji > 0, is specified
by the user. The proposal x′ is then given by n′ = n + 1, t′0 = u, χ′0 = j, t′1 = t0− u,
χ′1 = i, (t′l, χ

′
l) = (tl−1, χl−1) (l = 2, 3, . . . , n + 1).

(7) Delete the initial sojourn of x. This move type is deterministic. The initial
sojourn of x is just deleted. Thus the proposal x′ is given by n′ = n− 1, t′0 = t0 + t1,
χ′0 = χ1, (t′l, χ

′
l) = (tl+1, χl+1) (l = 1, 2, . . . , n− 1).

(8) Split the final sojourn of x. Sample u from the U(0, tn) distribution and let
i = χn. Sample j from the user-specified distribution p̃8(j | i) (j ∈ S, j 6= i),
satisfying p̃8(j | i) > 0 if and only if qij > 0. The proposal x′ is then given by
n′ = n + 1, (tl, χl) (l = 0, 1, . . . , n− 1), t′n = u, χ′n = χn, t′n+1 = tn − u, χ′n+1 = j.

(9) Delete the final sojourn of x. This move type is deterministic. The final sojourn
of x is just deleted, so the proposal x′ is given by n′ = n − 1, (t′l, χ

′
l) = (tl, χl)

(l = 0, 1, . . . , n− 2), t′n−1 = tn−1 + tn, χ′n−1 = χn−1.

(10) Insert a cycle of sojourns. This move type is model dependent. For clarity, we
assume that the graph G of X possesses two cycles of length > 3, both having length
4, i1 → i2 → i3 → i4 → i1 and i1 → i4 → i3 → i2 → i1 say, where i1, i2, i3 and
i4 are distinct. This is the case for the mechanism of figure 1d. Sample l∗ from the
uniform distribution on {0, 1, . . . , n} and let χl∗ = i. If i ∈ {i1, i2, i3, i4}, then choose
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one of the two cycles going through i at random, each cycle having probability 1
2 of

being chosen; say, choose j1 → j2 → j3 → j4 → j1 with j1 = i, sample u1, u2, u3, u4
independently from the U(0, tl∗) distribution, let u(1) < u(2) < u(3) < u(4) be the
corresponding order statistics (i.e. the u’s arranged in increasing order) and insert
the corresponding cycle in the l∗ sojourn of x. Thus the proposal x′ is given by n′ =
n + 4, (t′l, χ

′
l) = (tl, χl) (l = 0, 1, . . . , l∗ − 1), (t′l∗+r−1, χ

′
l∗+r−1) = (u(r) − u(r−1), jr)

(r = 1, 2, 3, 4), (u(0) = 0), t′l∗+4 = t′l∗ − u(4), χ′l∗+4 = j1, (t′l, χ
′
l) = (tl−4, χl−4)

(l = l∗ + 5, l∗ + 6, . . . , n + 4). If i /∈ {i1, i2, i3, i4} then x is left unchanged.

(11) Delete a cycle of sojourns. This move type is model dependent, so we make the
same assumptions as in move type (10). Sample l∗ from the uniform distribution on
{0, 1, . . . , n− 4} and let jr = χl∗+r−1 (r = 1, 2, 3, 4, 5). If {jr; r = 1, 2, 3, 4, 5} forms
a cycle in G (i.e. j1 = j5, j1, j2, j3, j4 are distinct and qjrjr+1 > 0 (r = 1, 2, 3, 4))
then that cycle is deleted, so the proposal x′ is given by n′ = n− 4, (t′l, χ

′
l) = (tl, χl)

(l = 0, 1, . . . , l∗ − 1), t′l∗ = tl∗ + tl∗+1 + tl∗+2 + tl∗+3 + tl∗+4, χ′l∗ = χl∗ , (t′l, χ
′
l) =

(tl+4, χl+4) (l = l∗+1, l∗+2, . . . , n−4). If {jr; r = 1, 2, 3, 4, 5} does not form a cycle
in G then x is left unchanged.

(ii) Acceptance probabilities

For i = 1, 2, . . . , 11, let R(i)(x → x′; q, θ) be the density of the transition ker-
nel associated with the proposal x′ for move type (i) and let pi be the probability
of choosing move type (i). The choice of p1, p2, . . . , p11 is discussed in § 6 b, under
implementation. Note that move types (3), (4), (6), (8) and (10) are discrete, so
R(i)(x → x′; q, θ) is in fact a probability, rather than strictly a density, for those
move types. Taking into account the probabilities of choosing the different move
types, the density of the transition kernel for the proposal x′ can be written as

R(x→ x′; q, θ) =
11∑
i=1

piR
(i)(x→ x′; q, θ),

where R(i)(x→ x′; q, θ) = 0 if x′ cannot be obtained from x by move type (i).
Move type (1) does not alter the dimension of x so by (2.7) its acceptance proba-

bility is A = min(1, B), where

B =
p(x′, q, θ | y)R(x′ → x; q, θ)
p(x, q, θ | y)R(x→ x′; q, θ)

. (4.7)

Move types (2)–(11) all alter the dimension of x, so, from the penultimate paragraph
of § 2, B now takes the form

B =
p(x′, q, θ | y)R(x′ → x; q, θ)
p(x, q, θ | y)R(x→ x′; q, θ)

|J |

for an appropriate Jacobian J . It turns out that |J | = 1 for each of move types (2)–
(11), so the acceptance probabilities for all of the move types can be calculated from
(4.7).

From (3.8) and (3.9),

p(x′, q′, θ | y)
p(x, q, θ | y)

=
f(x′ | q)f(y | x′, θ)
f(x | q)f(y | x, θ)

.
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Thus we may write B = B1B2B3, where

B1 =
f(x′ | q)
f(x | q) , B2 =

f(y | x′, θ)
f(y | x, θ)

, B3 =
R(x′ → x; q, θ)
R(x→ x′; q, θ)

.

Now B1 and B2 can be determined using (4.2) and (4.5), respectively, and B3 can
be calculated from the descriptions given for the different move types. The values of
B1, B2 and B3 for each of the move types (1)–(11) are given below. The notation
corresponds to that used when describing the respective move types. The details are
straightforward, so only the results are given. We first introduce some more notation.

Recall the notation x = (n, t,χ), where n is the number of jumps made by x
(so x contains n + 1 sojourns) and t = (t0, t1, . . . , tn) and χ = (χ0, χ1, . . . , χn) are
vectors giving the lengths and states of successive sojourns of x. Recall also that
s0 = 0 and sl =

∑l−1
r=0tr (l = 1, 2, . . . , n + 1), so sn+1 = T . For l = 0, 1, . . . , n, let

El = {r ∈ Z : sl 6 r∆ < sl+1} and nl = |El|. Here, Z denotes the integers and
|El| denotes the number of elements of El. Thus nl is the number of sampling points
in the lth sojourn of x. For l = 0, 1, . . . , n, let ỹl =

∑
r∈Elyr and ỹl,2 =

∑
r∈Ely

2
r .

Define n′l, ỹ′l, ỹ′l,2 (l = 0, 1, . . . , n′) similarly for x′.
For i1, i2 ∈ S, let

B2 =


1, if i1, i2 ∈ O or i1, i2 ∈ C,

D, if i1 ∈ O and i2 ∈ C,

D−1, if i1 ∈ C and i2 ∈ O,

(4.8)

where i1, i2 and D will be determined by the move type. Also, let η1 = σO/σC,

η2 = 1
2

(
1

σ2
O
− 1

σ2
C

)
, η3 =

µO

σ2
O
− µC

σ2
C

, η4 = 1
2

(
µ2

O

σ2
O
− µ2

C

σ2
C

)
.

Move type (1). Let i1 = χj and i2 = χj+1. Then B1 = exp{(tj−u)(qi2i2−qi1i1)},
B3 = 1 and B2 is given by (4.8) with

D = η
nl−nl′
1 exp{−η2(ỹ′l,2 − ỹl,2) + η3(ỹ′l − ỹl)− η4(n′l − nl)}.

Move type (2). Let i1 = i and i2 = j. Then B1 = qijqji exp{(qjj − qii)v}, B2 is
given by (4.8) with

D = η
n′l∗+1
1 exp{η2ỹ

′
l∗+1,2 − η3ỹ

′
l∗+1 + η4n

′
l∗+1},

and

B3 =
−p3tl∗ [1− exp{qjj(tl∗ − u)}]
{p2p̃2(j | i)qjj exp(qjjv)} .

Note that move type (2) changes the dimension of x, so we need to calculate
the associated Jacobian J . Now, given l∗, u and v, t′ is obtained from t using the
invertible deterministic function

t′(t, u, v) = (t0, t1, . . . , tl∗−1, u, v, tl∗ − u− v, tl∗+1, tl∗+2, . . . , tn).

Thus

J =

∣∣∣∣∣∣
0 0 1
1 0 −1
0 1 −1

∣∣∣∣∣∣ = 1.
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Similar calculations hold for move types (3)–(11), but are omitted.

Move type (3). Let i1 = χl∗−1 and i2 = χl∗ . Then

B1 = (qi1i2qi2i1)
−1 exp{tl∗(qi1i1 − qi2i2)},

B2 is given by (4.8) with

D = η−nl∗1 exp{−η2ỹl∗,2 + η3ỹl∗ − η4nl∗},
and

B3 =
−p2p̃2(i2 | i1)qi2i2 exp(qi2i2tl∗)

p3(tl∗−1 + tl∗ + tl∗+1){1− exp(qi2i2(tl∗ + tl∗+1)} .

Move type (4). Let i2 = j. Then

B1 = qi1i2qi2i3 exp{(qi2i2 − qi1i1)(tl∗ − u)}/qi1i3 ,

B2 is given by (4.8) with D = η
n′l∗+1
1 exp{η2ỹ

′
l∗+1,2 − η3ỹ

′
l∗+1 + η4n

′
l∗+1}, and

B3 =
(n− 1)p5tl∗

{p4p̃4(j | i1, i3)n} .

Move type (5). Let i1 = i and i2 = χl∗ . Then

B1 =
qij exp{tl∗(qii − qi2i2)}

(qii2qi2j)
,

B2 is as for move type (3) and

B3 =
(n− 1)p4p̃4(i2 | i, j)
{(n− 2)p5(tl∗−1 + tl∗)} .

Move type (6). Let i1 = j and i2 = i. Then

B1 = πjqji exp{(qjj − qii)u}/πi,

B2 is given by (4.8) with D = η
−n′O
1 exp{−η2ỹ

′
0,2 + η3ỹ

′
0 − η4n

′
0}, and

B3 =
p4t0

(p6p̃6(j | i)) .

Move type (7). Let i1 = χ0 and i2 = χ1. Then

B1 =
πi2 exp{(qi2i2 − qi1i1)t0}

(πi1qi1i2)
,

B2 is given by (4.8) with D = ηn0
1 exp{η2ỹ2,0 − η3ỹ0 + η4n0}, and

B3 =
p6p̃6(i1 | i2)
{p7(t0 + t1)} .

Move type (8). Let i1 = i, i2 = j and r = n′. Then

B1 = qij exp{(qjj − qii)(t− u)},
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B2 is given by (4.8) with D = η
n′r
1 exp{η2ỹ

′
n′,2 − η3ỹ

′
n′ + η4n

′
r}, and

B3 =
p9tn

(p8p̃8(j | i)) .

Move type (9). Let i1 = χn−1 and i2 = χn. Then
B1 = exp{(qi1i1 − qi2i2)tn}/qi1i2 ,

B2 is given by (4.8) with D = η−nn1 exp{−η2ỹn,2 + η3ỹn − η4nn}, and

B3 =
p8p̃8(i2 | i1)
{p9(tn−1 + tn)} .

Move type (10). To illustrate the calculation of the acceptance probabilities for
move types (10) and (11), we consider the specific examples given in the descriptions
of those move types. Let v1 = u(1) − u(4), v2 = u(2) − u(1), v3 = u(3) − u(2) and
v4 = u(4) − u(3). Then

B1 = qj1j2qj2j3qj3j4qj4j1 exp{qj1j1v1 + qj2j2v2 + qj3j3v3 + qj4j4v4}
and

B3 =
p11t

4
l∗

(1
2p104!)

.

For l = 0, 1, . . . , n′, let

δ̃′l =

{
1, if χ′l ∈ O,

0, if χl ∈ C.
(4.9)

Further, if j1 ∈ O, let

n∗ =
l∗+3∑
l=l∗+1

(1− δ̃′l)n
′
l, y∗2 =

l∗+3∑
l=l∗+1

(1− δ̃′l)ỹ
′
l,2, y∗ =

l∗+3∑
l=l∗+1

(1− δ̃′l)ỹ
′
l,

while if j1 ∈ C, let

n∗ =
l∗+3∑
l=l∗+1

δ̃′ln
′
l, y∗2 =

l∗+3∑
l=l∗+1

δ̃′lỹ
′
l,2, y∗ =

l∗+3∑
l=l∗+1

δ̃′lỹ
′
l.

Then

B2 =

{
D, if j1 ∈ O,

D−1, if j1 ∈ C,
(4.10)

where
D = ηn

∗
1 exp(η2y

∗
2 − η3y

∗ + η4n
∗).

Note that B2 = 1 if δ′l = δ′l∗ (l = l∗ + 1, l∗ + 2, l∗ + 3).

Move type (11). Let n∗, y∗2 and y∗1 be as for move type (10) but with δ̃′l, ỹ
′
l,2, ỹ

′
l

replaced by δ̃l, ỹl,2, ỹl (l = l∗ + 1, l∗ + 2, l∗ + 3), and δ̃l is given by (4.9) with χ′l
replaced by χl. Then

B1 =
exp{qj1j1(tl∗+1 + tl∗+2 + tl∗+3)− qj2j2tl∗+1 − qj3j3tl∗+2 − qj4j4tl∗+3}

(qj1j2qj2j3qj3j4qj4j1)
,

B2 is given by (4.10) with D = η−n
∗

1 exp(−η2y
∗
2 + η3y

∗ − η4n
∗), and

B3 =
1
24!p10

(p11(t′l∗)4)
.
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5. Using the output from an MCMC sampler

(a) Convergence and related issues

The preceding section provides a method of simulating a realization

{(x(k), q(k), θ(k)); k = 0, 1, . . . , M}
of a Markov chain whose equilibrium distribution is p(x, q, θ | y). In §§ 5 b and 5 c
we describe how the above realization can be used to draw inferences concerning q,
θ and single-channel properties, and reconstruct the unobserved sequence of open
and closed sojourns of the channel, respectively. Before doing so, we briefly discuss
two issues that need to be addressed prior to using the output of an MCMC sam-
pler, namely convergence of the sampler and correlation between successive (x, q, θ)
realizations from the sampler.

In order to implement the MCMC sampler an initial value (x(0), q(0), θ(0)) must
first be obtained. A method for doing this is described in § 6 a. However, the result-
ing (x(0), q(0), θ(0)) will not be distributed according to p(x, q, θ | y). (If it were
straightforward to simulate from the distribution p(x, q, θ | y) then there would be
no need to use MCMC.) Nevertheless, the distribution of (x(k), q(k), θ(k)) converges
to p(x, q, θ | y) as k → ∞, so (x(k), q(k), θ(k)) will be approximately distributed
according to p(x, q, θ | y) provided that k is sufficiently large. There is no simple way
of determining how large k should be before the above approximation becomes ade-
quate. In practice, it is usual to examine time-series plots of the components of q(k)

and θ(k), and perhaps also of some statistics based on x(k). These will usually indicate
a ‘burn-in’ period, k = 0, 1, . . . , k∗ say, during which (x(k), q(k), θ(k)) is approaching
equilibrium, after which it can reasonably be assumed that (x(k), q(k), θ(k)) is dis-
tributed according to p(x, q, θ | y). However, care must be taken in interpreting such
time-series plots since {(x(k), q(k), θ(k)); k = 0, 1, . . . } can display long-range fluctua-
tions.

There is a growing literature on the topic of diagnosing convergence of MCMC
samplers. However, assessing convergence is still something of an art, with conflicting
opinions on the utility of various approaches (see Cowles & Carlin (1996) for a recent
review).

It should be noted that, even after the burn-in period, successive realizations of
(x(k), q(k), θ(k)) will typically be highly correlated. This correlation can be reduced
by subsampling, i.e. by using only every pth realization when making inferences,
etc. However, in many situations subsampling may not be optimal in that it can
increase the Monte Carlo variance of estimates (see, for example, Geyer 1992). In the
following two subsections we assume that inference is based on {(x̃(k), q̃(k), θ̃(k)); k =
1, 2, . . . , M̃}, where

(x̃(k), q̃(k), θ̃(k)) = (x(k∗+1+(k−1)p), q(k∗+1+(k−1)p), θ(k∗+1+(k−1)p)) (k = 1, 2, . . . , M̃),

although, for ease of exposition, we omit the tildes.

(b) Inferences concerning q, θ and single-channel properties

Recall that q = {qij : (i, j) ∈ E} and θ = (µO, σ2
O, µC, σ2

C), and write

q(k) = {q(k)
ij : (i, j) ∈ E} and θ(k) = (µ(k)

O , σ
2(k)
O , µ

(k)
C , σ

2(k)
C )
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in the obvious fashion. The realizations (q(k), θ(k)) (k = 1, 2, . . . , M) can be viewed
as a sample from the posterior distribution p(q, θ | y), and thus they can be used to
estimate p(q, θ | y).

To be specific, consider the problem of making inferences about µO, the mean cur-
rent flowing across an open channel. Then µ

(k)
O (k = 1, 2, . . . , M) is a sample from

p(µO | y). Thus the posterior distribution of µO given the current record y can
be estimated, either pictorially by a histogram of µ

(k)
O (k = 1, 2, . . . , M) or, more

formally, by a kernel-density estimate of the form

p̂(µO | y) =
1

Mh

M∑
k=1

K

(
µO − µ

(k)
O

h

)
, (5.1)

where K is a usually symmetric kernel and h is the window width (or smoothing
parameter) (see, for example, Silverman (1986) for further details of density estima-
tion). Joint posterior distributions, for example p(q | y), can be estimated by similar
methods, although the results are often more difficult to interpret. Posterior means,
variances and covariances of q, θ given y can be estimated by corresponding sample
means, variances and covariances of (q(k), θ(k)) (k = 1, 2, . . . , M).

It is sometimes possible to reduce the variance of MCMC estimates of posterior
means, variances, etc., by using a technique known as Rao–Blackwellization (see, for
example, Gelfand & Smith (1990), Liu et al . (1994) and, in an ion-channel context,
Ball et al . (1996)). For example, suppose we wish to estimate the posterior mean
open-current level

E[µO | y] =
∫

p(µO | y) dµO.

Now

E[µO | y] = E[E[µO | y, x]]
and, from § 4 c, E[µO | y, x] = ȳO. Thus, an unbiased estimator for E[µO | y] is

M−1
M∑
k=1

E[µO | y, x(k)] = M−1
M∑
k=1

ȳ
(k)
O ,

where we have reintroduced the explicit dependence of x, and hence ȳO, on k. This
estimator typically has smaller variance than the standard MCMC estimator given
by

M−1
M∑
k=1

µ
(k)
O .

More generally, if we wish to estimate E[g(q, θ) | y], where g is any specified real-
valued function such that the expectation exists, and E[g(q, θ) | y, x] can be evalu-
ated, then the unbiased MCMC estimator

M−1
M∑
k=1

E[g(q, θ) | y, x(k)]

typically has smaller variance than the usual MCMC estimator

M−1
M∑
k=1

g(q(k), θ(k)).

Proc. R. Soc. Lond. A (1999)

 on June 17, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


2904 F. G. Ball, Y. Cai, J. B. Kadane and A. O’Hagan

For example, such an approach can be used to estimate E[σ2
O | y], and also E[q | y]

provided we assume χ0 to be known (cf. the discussion immediately following (4.3)).
The output from our MCMC sampler can also be used to estimate the posterior

distributions of various model single-channel properties. For example, let πO be the
equilibrium probability that the channel is in an open state and µ̃O be the equilibrium
mean length of a sojourn of the channel in the open states. Then

πO =
∑
i∈O

πi

and

µ̃O =
πO

{∑i∈O πi
∑
j∈C qij}

(see Colquhoun & Hawkes 1977, eqn (73)).
Recall that the equilibrium distribution π is a function of q. Thus πO and µ̃O

are both functions of q and we may write πO = πO(q) and µ̃O = µ̃O(q). For k =
1, 2, . . . , M , let π

(k)
O = πO(q(k)) and µ̃

(k)
O = µ̃O(q(k)). Then

π
(k)
O (k = 1, 2, . . . , M) and µ̃

(k)
O (k = 1, 2, . . . , M)

can be viewed as samples from the posterior distributions p(πO | y) and p(µ̃O | y),
respectively. Hence these posterior distributions can be estimated by the methods
described above for p(q, θ | y). Clearly, estimates of posterior distributions for other
model channel properties can be obtained in a similar fashion.

(c) Reconstruction of the single-channel record

The output from our MCMC sampler can also be used to provide a model-based
Bayesian reconstruction of the unobserved single-channel record, corresponding to
the marginal Bayes restoration of Fredkin & Rice (1992b). Recall the definition (4.4)
of δl (l = 0, 1, . . . , N). For k = 1, 2, . . . , M and l = 0, 1, . . . , N let

δ
(k)
l =

{
1, if x(k)(l∆) ∈ O,

0, if x(k)(l∆) ∈ C.

For l = 0, 1, . . . , N , let

δ̄l = M−1
M∑
k=1

δ
(k)
l .

Then δ̄l is an MCMC estimator of p(δl = 1 | y). An MCMC marginal Bayes estimator
of δl, δ̂l say, is then given by

δ̂l =

{
1, if δ̄l > 0.5,

0, if δ̄l < 0.5.
(5.2)

6. Implementation

(a) Initial state (x(0), q(0), θ(0)) of the MCMC sampler

In view of the convergence issues discussed in § 5 a, it is clearly important that
the initial state (x(0), q(0), θ(0)) of the MCMC sampler be distributed as close to
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p(x, q, θ | y) as possible. A poor choice for (x(0), q(0), θ(0)) results in a sampler that
can take a very long time to converge. Note from § 4 c that when updating θ only the
current value of x is used. Also, from § 4 b, the algorithm for updating q requires only
the current values of x and q, but the current value of q is required only in order to
calculate the acceptance probability of the proposal q′. Thus, if, just for the initial
update, we were always to accept the proposal then again only the current value of
x would be required. Thus once an initial value for x is available it is straightforward
to generate initial values of q and θ. Since ion-channel records are typically long, the
behaviour of q(k) and θ(k) is largely determined by that of x(k). Thus it is essential
that a sensible choice is made for x(0).

Our method for determining x(0) proceeds in three distinct steps:
Step 1. Determine the class, open or closed, of x(0)(l∆) (l = 0, 1, . . . , N);
Step 2. Given these classes, determine x(0)(l∆) (l = 0, 1, . . . , N);
Step 3. Given x(0)(l∆) (l = 0, 1, . . . , N), fill in the missing paths {x(0)(t); l∆ < t <
(l + 1)∆} (l = 0, 1, . . . , N − 1).
We now describe each of these steps in turn.

Step 1. Determine a threshold current level y∗, either from past experience or by
examining the current record y, and then determine the class, Al say, of x(0)(l∆) by
setting

Al =

{
O, if yl > y∗,
C, if yl < y∗.

Step 2. Make a prior guess of the transition-rate matrix Q of {X(t); t > 0}
and determine the corresponding equilibrium distribution π. Let P = exp(∆Q) be
the corresponding transition matrix of the discrete time-Markov chain {X(l∆); l =
0, 1, . . . }. Partition

Q =
[
QOO QOC
QCO QCC

]
, π = [πO,πC], P =

[
POO POC
PCO PCC

]
,

where, for example, QOO corresponds to transitions of X that remain within the
open states and QOC to transitions from the open states to the closed states. Also,
write P = [pij ].

For l = 0, 1, . . . , N − 1 and i ∈ Al, let

αli = Pr(X(k∆) ∈ Ak, k = l + 1, l + 2, . . . , N | X(l∆) = i)

=
{[N−1∏

k=l

PAkAk+1

]
1
}
i

, (6.1)

where 1 is an mAN × 1 column vector of ones. Then

Pr(X(0) = i | X(k∆) ∈ Ak, k = 0, 1, . . . , N) =
πiα0i∑

j∈A0
πjα0j

(i ∈ A0), (6.2)

for k = 1, 2, . . . , N − 1,

Pr(X(k∆) = i | X(l∆) = il, l = 0, 1, . . . , k−1 and X(l∆) ∈ Al, l = k, k+1, . . . , N)

=
pik−1iαki∑

j∈Ak pik−1jαkj
(i ∈ Ak), (6.3)

Proc. R. Soc. Lond. A (1999)

 on June 17, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


2906 F. G. Ball, Y. Cai, J. B. Kadane and A. O’Hagan

Pr(X(N∆) = i | X(l∆) = il, l = 0, 1, . . . , N − 1 and X(N∆) ∈ AN )

=
piN−1i∑

j∈AN piN−1j
(i ∈ AN ). (6.4)

Thus x(0)(l∆) (l = 0, 1, . . . , N) can be determined by sampling successively from the
distributions given by (6.2), (6.3) with k = 1, 2, . . . , N − 1 and (6.4).

When N is large, underflow errors are likely to occur when computing the αli.
However, αli only enters (6.2) and (6.3) via the ratio αli/αlj , and consequently these
underflow errors can be overcome by appropriate scaling. We have found that the
following scaling works well in practice.

Define vectors α′′N−1,α
′′
N−2, . . . ,α

′′
0 as follows. Let

α′′N−1 = PAN−1AN1, α′N−1 = α′′N−1/‖α′′N−1‖ (6.5)
and, for l = N − 2, N − 3, . . . , 0, let

α′′l = PAlAl+1α
′
l+1, α′l = α′′l /‖αl‖. (6.6)

(For a vector, u = (u1, u2, . . . , up)T say, where ‘T’ denotes transpose, ‖u‖ denotes
the usual norm of u, given by ‖u‖ = (

∑p
i=1ui)

1/2.) Further, let

αl =
[N−1∏
k=l

PAkAk+1

]
1 (l = 0, 1, . . . , N − 1).

Then the vectors αl (l = 0, 1, . . . , N − 1) contain the elements αli (l = 0, 1, . . . , N −
1; i ∈ Al) defined in (6.1). Also,

αN−1 = α′′N−1, αl = (‖α′′l+1‖‖α′′l+2‖ · · · ‖α′′N−1‖)α′′l (l = 0, 1, . . . , N − 2).
It follows that (6.2) and (6.3) hold with αkj replaced by α′′kj , etc. Note that (6.5)
and (6.6) provide a simple way of computing α′′l (l = 0, 1, . . . , N − 1).

Step 3. First note that, by the Markov property, for k = 0, 1, . . . , N−1 and i, j ∈ S,
{X(t); k∆ < t < (k + 1)∆ | X(k∆) = i,

X((k + 1)∆) = j, X(t) = x(0)(t) (t /∈ [k∆, (k + 1)∆])}
has the same distribution as

{X(t); k∆ < t < (k + 1)∆ | X(k∆) = i, X((k + 1)∆) = j}.
Thus x(0)(t) (k∆ < t < (k + 1)∆) can be obtained by simulating from

{X(t); k∆ < t < (k + 1)∆ | X(k∆) = i, X((k + 1)∆) = j}.
We shall describe how to do this for the case k = 0. The cases k = 1, 2, . . . , N − 1
are done similarly.

For v > 0, let Jv be the random variable defined by

Jv =

{
1, if X jumps in (0, v),
0, if X does not jump in (0, v).

Then, for i, j ∈ S and v > 0, let
pJ(v | i, j) = Pr(Jv = 1 | X(0) = i, X(v) = j)

=

{
1, if i 6= j,

1− exp(qiiv)/pii(v), if i = j,
(6.7)
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where P (v) = [pij(v)] = exp(vQ). If Jv = 1, let U = mint>0{t : X(t) 6= X(0)} be the
time of the first jump of X. For i, j ∈ S and v > 0, let f(u | i, j, v) (0 < u < v) be
the probability density function of U given Jv = 1, X(0) = i and X(v) = j, and let

p(k | i, j, u, v) = Pr(X(U) = k | U = u, X(0) = i, X(v) = j, Jv = 1)
(k ∈ S, k 6= i).

Then

f(u | i, j, v) =
∑
k 6=i

fijk(u | v) (0 < u < v; i, j ∈ S) (6.8)

and

p(k | i, j, u, v) =
fijk(u | v)
f(u | i, j, v)

(k ∈ S, k 6= i), (6.9)

where

fijk(u | v) =
exp(qiiu)qikpkj(v − u)
1− [exp(qiiv)/pii(v)]δij

(0 < u < v; i, j, k ∈ S, k 6= i), (6.10)

and

δij =

{
1, if i = j,

0, if i 6= j.

The path x(0)(t) (0 < t < ∆), given x(0)(0) = i and x(0)(∆) = j, is simulated as
follows. Sample J1 from the distribution pJ(∆ | i, j), given by (6.7) with v = ∆. If
J1 = 0 then set x(0)(t) = i (0 < t < ∆), and the required path is now simulated. If
J = 1 then sample u1 from the distribution f(u1 | i, j, ∆) (i.e. from the distribution
having probability density function given by (6.8) with v = ∆) and then sample k1
from the distribution p(k1 | i, j, u1, ∆), given by (6.9) with v = ∆. Set x(0)(t) = i
(0 < t < u1) and x(0)(u1) = k1. Now determine whether or not x(0) jumps in (u, ∆),
by sampling J2 from the distribution pJ(∆ − u1 | k1, j). If J2 = 0, so x(0) does not
jump in (u1, ∆), then set x(0)(t) = k1 (u1 < t < ∆) and the required path is now
simulated. If J2 = 1 then sample u2 from the distribution f(u2 | k1, j, ∆ − u1) and
then sample k2 from the distribution p(k2 | k1, j, u2, ∆ − u1), and set x(0)(t) = k2
(u1 < t < u1+u2) and x(0)(u1+u2) = k2. This procedure is continued until eventually
Jl = 0, for some l, in which case x(0) makes no further jumps in (0, ∆). A procedure
for sampling from the distribution f(u | i, j, v) is described in the appendix.

Note that when performing step 3 the description ((t(0)
l , χ

(0)
l ); l = 0, 1, . . . , n(0)) of

x(0) can be determined as the intervals [k∆, (k + 1)∆] are gone through in turn.
For models with more than two states, i.e. having m > 2, we have found it beneficial

to first fit the two-state model (figure 1a) and use the corresponding reconstruction
(5.2) to determine Al (l = 0, 1, . . . , N). This will provide an initial realization x(0)

whose distribution is closer to p(x | y) than one obtained by using step 1. Conse-
quently, the resulting MCMC sampler will have a shorter burn-in period.

When analysing data for which the sampling interval ∆ is small relative to the
lengths of typical open and closed sojourns of the channel, the computing time
required to obtain an initial x(0) can sometimes be reduced by fitting a model with
a larger ∆ to a corresponding fraction of the data. Of course, once an initial x(0) has
been obtained, the complete data should be used in the subsequent MCMC run.
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(b) Choice of move types

The move types (1)–(11) for updating x, described in § 4 d (i), can be grouped into
three classes, A = {1}, B = {2, 4, 6, 8, 10} and C = {3, 5, 7, 9, 11} corresponding to
boundary move, insertion and deletion, respectively. Note that the move types in C
are the respective inverses of those in B, while the inverse of a boundary move is also
a boundary move. The set of move types used in a particular application is dictated
by its graph G. Move types (1), (6)–(9) should always be used. Move types (2) and
(3) should be used whenever G contains a cycle of length 2. (For an integer r > 2,
i1 → i2 → · · · → ir → i1 forms a cycle of length r in G if i1, i2, . . . , ir are distinct and
(il, il+1) ∈ E (l = 1, 2, . . . , r), where ir+1 = i1. Thus G contains a cycle of length 2 if
and only if there exists i, j ∈ S such that qij > 0 and qji > 0. Note that G necessarily
contains cycles of length 2 if X is time reversible.) Move types (4) and (5) should be
used if there are distinct i, j, k ∈ S with (i, j) ∈ E, (j, k) ∈ E and (i, k) ∈ E. Note
that if X is time reversible then move types (4) and (5) should be used if G contains
cycles of length 3. Move types (10) and (11) should be used if G contains cycles of
length > 3.

The move types chosen for successive x updates are obtained by sampling inde-
pendently from the distribution pi (i = 1, 2, . . . , 11) (cf. § 4 d (ii)) as follows. First the
class of the move type is determined by sampling from the distribution (pA, pB, pC),
where, for example, pB is the probability that a class-B move is chosen. Then if a
class-B or class-C move is chosen, the actual move is found by sampling ĩ from a
distribution (p̃1, p̃2, . . . , p̃5) and choosing move type 2̃i if a class-B move is required
and move type 2̃i + 1 if a class-C move is required. Thus p1 = pA and p2k = pB p̃k,
p2k+1 = pC p̃k (k = 1, 2, . . . , 5).

The distributions (pA, pB, pC) and (p̃1, p̃2, p̃3, p̃4, p̃5) need to be specified by the
user. Clearly, for k = 1, 2, 5, p̃k should be zero if the corresponding move type is
precluded by G. It seems sensible to choose p̃1, p̃2, p̃3, p̃4 to be in approximately the
same ratio as the number of sojourns of the corresponding type in x. Recall that x
has n + 1 sojourns. If the graph G dictates that p̃2 = 0 then (p̃1, p̃3, p̃4) could be
chosen to be directly proportional to (n − 1, 1, 1). Otherwise, let n∗1 be the number
of intermediate sojourns of x whose two adjacent sojourns are in the same state
and n∗2 be the number of intermediate sojourns of x whose two adjacent sojourns
are in distinct states, i, j say, such that (i, j) ∈ E. Then (p̃1, p̃2, p̃3, p̃4) could be
chosen to be directly proportional to (n∗1, n

∗
2, (n

∗
1 + n∗2)/n, (n∗1 + n∗2)/n). Of course,

this is impossible in practice since x is unobserved. However, one can either let p̃i
(i = 1, 2, . . . , 5) depend on the current x realization x(k) (in which case the acceptance
probabilities given in § 4 d (ii) need to be modified accordingly) or run the sampler
with a sensible initial choice of p̃i (i = 1, 2, . . . , 5) until it has converged and then
use the ‘converged’ realization x(k) to reset p̃i (i = 1, 2, . . . , 5). However, p̃i should
never be set to zero if the corresponding move type is permissible in G.

In examples described in § 8, which are based on simulated data, (pA, pB, pC) =
(1

2 , 1
4 , 1

4), if G contains cycles of length greater than or equal to 3 then p̃5 = 0.4 and
p̃1, p̃2, p̃3, p̃4 are chosen using the simulated realization x, as described above.

In ion-channel records, the observation period [0, T ] is typically long relative to the
individual state sojourns of x. In such circumstances the variances of the posterior
distributions p(q | x, θ, y) and p(θ | x, q, y) are small, so consequently the behaviour
of {x(k); k = 0, 1, . . . , M} dictates to a large extent the behaviour of the complete
sampler {(x(k), q(k), θ(k)); k = 0, 1, . . . , M}. Thus it seems sensible to update x con-
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siderably more frequently than q and θ. Hence, we recommend that x be updated
n∗ times for each update of (q, θ). Clearly, there are no hard and fast rules for the
choice of n∗, (pA, pB, pC) and (p̃1, p̃2, . . . , p̃5), and experimentation may be required
to find values that work well for a given application.

(c) Computation aspects

The MCMC sampler is straightforward to implement numerically on a computer.
Recall that the sampler delivers a realization {(x(k), q(k), θ(k)); k = 0, 1, . . . , M} of
a Markov chain having equilibrium distribution p(x, q, θ | y). In order to implement
the sampler we store the current values of x(k), q(k) and θ(k), together with various
sufficient statistics based on x(k), and update (overwrite) accordingly each time x, q
or θ is updated.

The information concerning x can be stored efficiently as follows. Suppose that
the n + 1 sojourns of x are labelled 0, 1, . . . , n. Then for l = 0, 1, . . . , n the following
are stored: the length and state of the lth sojourn, tl and χl, the number of sampling
points in the lth sojourn nl and the corresponding statistics ỹl and ỹl,2, used for
calculating the acceptance probabilities of moves that change x (see § 4 d (ii)). All the
above variables can be stored in arrays indexed by l. However, there is no need to store
the successive sojourns of x sequentially. Indeed, it is computationally cheaper not
to do so. Instead, two pointers are attached to each sojourn indicating the indices of
its preceding and succeeding sojourns in x. Initially, the sojourns of x(0) are stored in
sequential order. Then, inserted sojourns are added at the end of the list of sojourns,
while deleted sojourns are removed and replaced by sojourns taken from the end
of the list. In both cases, appropriate changes need to be made to the pointers of
the deleted/inserted sojourns and their preceding and succeeding sojourns in x. As
well as the above sojourn-based information, one should also store the current values
of the sufficient statistics nij (i, j = 1, 2, . . . m, i 6= j) and t̃i (i = 1, 2, . . . , m) for
updating q (see § 4 b) and nO, yO, yO,2, nC, yC, yC,2 for updating θ (see § 4 c). All these
sufficient statistics are very easy to update each time x changes.

The above indicates how to simulate {(x(k), q(k), θ(k)); k = 0, 1, . . . , M} efficiently.
Of course, one also needs to store the output of the MCMC sampler for analysis as
appropriate. Thus, if our aim is to make inferences concerning q and θ then we need
to save successive values of q(k) and θ(k), possibly after subsampling. Alternatively,
if our aim is to reconstruct the unobserved single-channel record, as in § 5 c, then we
need to determine and save δ

(k)
l (l = 0, 1, . . . , N) for successive values of k.

7. Constraints on (q, θ)

In many applications constraints may be imposed on the parameters q and θ, for
example, owing to {X(t); t > 0} being time reversible. In this section, we describe
how such constraints can be incorporated into our MCMC sampler.

(a) Constraint on mean current levels µO and µC

Clearly, one would expect a priori that the mean open current level is larger than
the mean closed current level, and consequently there is a strong case for incorpo-
rating this information into the prior distribution for θ. Suppose that the prior (3.5)
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for θ is replaced by

p(µO, σ2
O, µC, σ2

C) = (σ2
Oσ2

C)−1 (−∞ < µC < µO <∞, 0 < σ2
O, σ2

C <∞),

which is still improper. Then the functional form of the posterior p(θ | x, q, y) is
still given by (4.6), except now it is only valid over the region {−∞ < µC < µO <∞,
0 < σ2

O, σ2
C <∞}. It still follows that

p(σ2
O, σ2

C | x, q, y, µO, µC) = p(σ2
O | x, y, µO)p(σ2

C | x, y, µC),

so σ2
O and σ2

C can be updated as before. However, µO and µC are no longer a posteriori
independent given x, q, y, σ2

O, σ2
C. Indeed, it follows from (4.6), with the constraints

µC < µO, that

p(µO, µC | x, q, y, σ2
O, σ2

C) ∝ exp
{
−nO(µO − ȳO)2

2σ2
O

− nC(µC − ȳC)2

2σ2
C

}
for −∞ < µC < µO <∞. Thus, a posteriori (given x, q, y, σ2

O, σ2
C) µO and µC follow

‘independent’ normal distributions conditioned so that µO > µC. Hence, (µO, µC)
can be updated by repeatedly sampling (µ∗O, µ∗C) from the pair of independent normal
distributions, N(ȳO, σ2

O/nO) and N(ȳC, σ2
C/nC), until a pair satisfying µ∗O > µ∗C is

obtained, and then updating (µO, µC) to (µ∗O, µ∗C). In most applications, the values
of ȳO, σ2

O/nO, ȳC and σ2
C/nC will be such that the first pair of (µ∗O, µ∗C) will be

accepted almost all of the time.

(b) Reversibility

In many applications the underlying single-channel gating process {X(t); t > 0} is
necessarily time reversible. This places constraints on the set of permissible q, which
need to be reflected in the prior p(q).

If {X(t); t > 0} is time reversible then, for i, j ∈ S, qij > 0 if and only if qji > 0.
It follows that the directed graph G may be replaced by an undirected graph, G∗
say, in which, for any i, j ∈ S, there is an (undirected) arc between i and j if and
only if qij > 0. Kolmogorov’s criterion for reversibility states that {X(t); t > 0}
is time reversible if and only if for any cycle of states in G∗, the product of the
transition rates qij one way round the cycle is the same as the product the other way
round (see Kelly 1979, theorem 1.8). Thus if G∗ is a tree, as in the mechanisms of
figure 1a, b, {X(t); t > 0} is necessarily time reversible. Consequently, no constraints
need to be imposed on q and we can proceed as before. However, if G∗ contains
cycles, Kolmogorov’s criterion imposes constraints on q that must be incorporated
into p(q).

Suppose, for simplicity, that G∗ contains just one cycle, as in the mechanisms
of figure 1c, d. Then one of the qij , say qi0j0 , can be expressed as a function
of the others. For example, for the mechanism of figure 1c, we can set i0 = 1,
j0 = 2 and Kolmogorov’s criterion implies that q12q23q31 = q13q32q21, so that
q12 = (q13q32q21)/(q23q31). Let E′ = E\{(i0, j0)} be the set of edges in G excluding
(i0, j0) and qE′ = {qij : (i, j) ∈ E′}. Then, as a consequence of Kolmogorov’s crite-
rion, we can write qi0j0 = qi0j0(qE′). Thus if we specify a prior for qE′ , p(qE′) say,
then that will induce a prior for q. However, our prior beliefs about {qij : (i, j) ∈ E}
can no longer be independent, and consequently we may wish our prior beliefs about

Proc. R. Soc. Lond. A (1999)

 on June 17, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Bayesian inference for ion-channel gating mechanisms 2911

qi0j0 to influence p(qE′). One approach would be to take

p(qE′) ∝
[ ∏

(i,j)∈E′
p(qij)

]
p(qi0j0(qE′)), (7.1)

where p(qij) ((i, j) ∈ E) is given by (3.4). However, there is arbitrariness in the choice
of (i0, j0) and it is easily verified that a different choice for (i0, j0) in (7.1) would
yield a different distribution for q, owing to the nonlinear nature of the constraints
imposed on q by Kolmogorov’s criterion.

The above undesirable property of p(qE′) can be avoided as follows. For (i, j) ∈ E
let rij = ln qij and write r = {rij : (i, j) ∈ E} and rE′ = {rij : (i, j) ∈ E′}.
Equations (3.3) and (3.4) induce a prior, p(r) say, for r, from which a prior p(rE′) can
be derived analogously to the method of (7.1). Note that the constraint imposed by
Kolmogorov’s criterion is linear in r, and hence the induced prior on (time reversible)
r is invariant to the particular choice of (i0, j0). Finally, we obtain a prior p(qE′) by
the retransformation qij = exp(rij) ((i, j) ∈ E′). Following this recipe yields

p(qE′) ∝
[ ∏

(i,j)∈E′
p(qij)

]
qi0j0(qE′)p(qj0j0(qE′)). (7.2)

It is readily verified that the distribution on time reversible q induced by (7.2) is
invariant to the choice of (i0, j0).

More generally, if the graph G∗ contains two or more cycles, the edge set E can
be partitioned into E = E′ ∪ E′′, with the transition rates qE′ = {qij : (i, j) ∈ E′}
being free and the transition rates qE′′ = {qij : (i, j) ∈ E′′} being a function of qE′ ,
determined by Kolmogorov’s criterion. The above method of constructing a prior for
qE′ then yields

p(qE′) ∝
∏

(i,j)∈E′
{qαij−1
ij exp(−βijqij)}

∏
(i,j)∈E′′

{[qij(qE′)]αij exp(−βijqij(qE′))},

(7.3)

where (αij , βij) ((i, j) ∈ E) satisfy the conditions following (3.5).
Turning now to our MCMC sampler, to update qE′ we generate a proposal q′E′ =

{q′ij : (i, j) ∈ E′} by sampling, for (i, j) ∈ E′, q′ij independently from the gamma
distribution p̃(qij | x) given by (4.3). It follows from (2.7) that the acceptance prob-
ability for this proposal is A′ = min(1, B′), where

B′ =
p(x, q′E′ , θ | y)

∏
(i,j)∈E′ p̃(qij | x)

p(x, qE′ , θ | y)
∏

(i,j)∈E′ p̃(q′ij | x)

=
πχ0(q

′
E′)
∏

(i,j)∈E′′{qij(q′E′)}αij+nij exp{−(t̃i + βij)qij(q′E′)}
πχ0(qE′)

∏
(i,j)∈E′′{qij(qE′)}αij+nij exp{−(t̃i + βij)qij(qE′)}

,

using (3.8), (3.9), (4.2) (with q replaced by qE) and (7.3). Note that there is arbi-
trariness in the choice of partition E = E′∪E′′, although all choices of partition yield
the same prior for q. Thus different choices of partition can be made in successive
updates of q.

A disadvantage of the above method of obtaining a prior p(q) when {X(t); t > 0}
is time reversible is that the resulting prior p(qE′) does not follow a convenient
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distributional form, and consequently it is not possible to determine the prior mean,
variances and covariances of the individual qij . This can be overcome by replacing
the initial prior p(q) (given by equation (3.3)) by a product of lognormal densities,
namely

p(q) =
∏

(i,j)∈E
{(qij

√
2πσij)−1 exp[−(log qij − µij)2/2σ2

ij ]}

and then deriving a prior p(qE′) as before. Thus we now assume that, without the
reversibility constraints, a priori log qij ∼ N(µij , σij) ((i, j) ∈ E), independently.
The multiplicative reversibility constraints on the qij become additive constraints
on the log qij , and it follows that p(qE′) is a multivariate lognormal density. Indeed,
taking account of the reversibility constraints, q a priori follows a singular multi-
variate lognormal distribution, and explicit expressions can be obtained for the prior
means, variances and covariances of the qij . A drawback of the lognormal prior is
that p(q) is no longer nearly conjugate for f(x | q). However, this is not a great
problem. The parameter qE′ can be updated by generating a proposal q′E′ by sam-
pling, for (i, j) ∈ E′, q′ij from the gamma distribution p̃(qij | x) given by (4.3), but
with αij = 1 and βij = 0, and modifying the acceptance probability accordingly. In
practice, the number of sojourns in the data will be sufficiently large to ensure that
the gamma distributions are much narrower than the prior distribution, and hence
nearly all sampled q will have acceptance probabilities equal to or close to 1. Thus
very little efficiency is lost by this approach.

(c) Models specified in terms of parameters governing q

In many applications, the transition rates of the continuous-time Markov chain
used to model single-channel gating are themselves functions of a set of channel
kinetic parameters, ψ say. For example, the mechanism of figure 1d, which has been
used by Colquhoun & Sakmann (1985) for the frog muscle nAChR, is often presented
in the form shown in figure 2.

In figure 2, C represents the closed channel, O the open channel and A the agonist.
The six independent parameters are KB, the agonist binding constant; K01, the
CA
 OA equilibrium constant; K02 the CA2 
 OA2 equilibrium constant; kon, the
association rate of agonist and receptor; and h1 and h2, the channel opening rates
when one and two molecules of the agonist are bound to the channel, respectively.
The parameter a denotes the concentration of the agonist, which is controlled by the
experiment and thus is known. Hence, for this mechanism, we may write q = q(ψ),
where ψ = (KB, K01, K02, kon, h1, h2).

For models like the one above, it is natural to express our prior beliefs in terms of
a prior, p(ψ) say, for ψ, rather than by a prior p(q). (Of course, p(ψ) will induce a
prior on q.) We shall then require an MCMC sampler {(x(k), ψ(k), θ(k)); k = 0, 1, . . . }
whose equilibrium distribution is the posterior p(x, ψ, θ | y). Such a sampler can
be obtained by using the same method of updating θ and x as before, except q is
replaced by q(ψ) when updating x, though clearly the method for updating q needs
modifying. We now describe a method for updating ψ for the model of figure 2, but
using notation that reflects the general case.

Proc. R. Soc. Lond. A (1999)

 on June 17, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Bayesian inference for ion-channel gating mechanisms 2913

For the model of figure 2, the transition rates q determine the parameter ψ in that
we have, for example,

KB = 2q43/(aq34), K01 = q41/q14, K02 = q32/q23,

kon = q43/a, h1 = q41, h2 = q32,

}
(7.4)

where the states are labelled as in figure 1d.
Let

E′ = {(4, 3), (3, 4), (4, 1), (1, 4), (3, 2), (2, 3)},
E′′ = E\E′ = {(1, 2), (2, 1), (4, 5), (5, 4)},

qE′ = {qij : (i, j) ∈ E′}, qE′′ = {qij : (i, j) ∈ E′′}.
Then we may write ψ = ψ(qE′), where the function ψ(qE′) is given by (7.4).

Let (x(k), ψ(k), θ(k)) = (x, ψ, θ) denote the current state of our MCMC sampler.
Then we generate a proposal ψ′ for ψ by first making a proposal q′E′ for qE′ by
sampling, for (i, j) ∈ E′, q′ij independently from the gamma distribution p′(qij |
x) = Ga(qij | nij + 1, t̃i), and then setting ψ′ = ψ(q′E′). Thus the density of the
transition kernel for the proposal ψ′ is

R(ψ → ψ′;x, θ) =
{ ∏

(i,j)∈E′
p′(q′ij(ψ

′) | x)
}
|J(ψ′)|, (7.5)

where the Jacobian J(ψ) is given by

J(ψ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂q43

∂KB

∂q43

∂K01

∂q43

∂K02

∂q43

∂kon

∂q43

∂h1

∂q43

∂h2

∂q34

∂KB

∂q34

∂K01

∂q34

∂K02

∂q34

∂kon

∂q34

∂h1

∂q34

∂h2

∂q41

∂KB

∂q41

∂K01

∂q41

∂K02

∂q41

∂kon

∂q41

∂h1

∂q41

∂h2

∂q14

∂KB

∂q14

∂K01

∂q14

∂K02

∂q14

∂kon

∂q14

∂h1

∂q14

∂h2

∂q32

∂KB

∂q32

∂K01

∂q32

∂K02

∂q32

∂kon

∂q32

∂h1

∂q32

∂h2

∂q23

∂KB

∂q23

∂K01

∂q23

∂K02

∂q23

∂kon

∂q23

∂h1

∂q23

∂h2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

2akonh1h2

(KBK01K02)2 .

Using (2.7), the acceptance probability for this proposal is A = min(1, B), where

B =
p(x, ψ′, θ | y)R(ψ′ → ψ;x, θ)
p(x, ψ, θ | y)R(ψ → ψ′;x, θ)

=

p(ψ′)πχ0(q(ψ
′))|J(ψ)|

∏
(i,j)∈E′′

[{qij(ψ′)}nij exp{−qij(ψ′)t̃i}]

p(ψ)πχ0(q(ψ))|J(ψ′)|
∏

(i,j)∈E′′
[{qij(ψ)}nij exp{−qij(ψ)t̃i}]

, (7.6)
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kon/KB 2kon/KB
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2K01kon

K02KB

CA CA2

OA OA2

Figure 2. A five-state model with transition rates.

using (3.8), (3.9) and (4.2), with obvious modification, and (7.5).
In order to implement the above we need to specify the prior p(ψ). One possibility

is to use the improper vague prior p(ψ) = 1, in which case the terms p(ψ) and p(ψ′)
cancel in (7.6).

Note that again there is arbitrariness in the choice of the partition E = E′ ∪ E′′,
and different partitions could be used for successive updates of ψ. For the example of
figure 2, it seems sensible that (4, 1), (1, 4), (3, 2) and (2, 3) always belong to E′ and
that E′ is completed by choosing one edge from each of (5, 4), (4, 3), (1, 2) and (4, 5),
(3, 4), (2, 1), perhaps by maximizing nij , the number of transitions from i to j in
the current x(k). This approach aims at putting the maximum posterior information
into the gamma proposal distributions, hence maximizing acceptance probabilities.

In general there may not be a one-to-one correspondence between q and ψ, in
which case the function ψ(qE′) may not be well defined, i.e. for given qE′ there may
be several ψ such that qE′(ψ) = qE′ . Let QE′ and ψ denote the spaces of possible
values for qE′ and ψ, respectively. If q and ψ are not in one-to-one correspondence,
the above algorithm for sampling ψ can be modified as follows. First note that the
prior distribution on ψ induces a prior p(qE′) on qE′ . In the case of a one-to-one
correspondence between ψ and qE′ , this is p(qE′) = p(ψ)|J(ψ)|−1, but otherwise
p(qE′) will typically be more complex. Given qE′ , there is also an induced conditional
distribution p(ψ | qE′) with support on the set Ψ(qE′) of ψ values for which qE′(ψ) =
qE′ . Since the likelihood depends on ψ only through qE′ , this conditional distribution
is not modified by the data, so the posterior conditional distribution is the same
as the prior p(ψ | qE′). (One consequence is that it is necessary that these prior
conditional distributions be proper. Otherwise the posterior distribution would also
be improper.)

In implementing the MCMC sampler we generate only qE′ values, and do not
at this stage convert a sampled qE′ into a value of ψ. We sample qE′ as above,
by sampling qij for each (i, j) ∈ E′ independently from the gamma distribution
p′(qij | x). The new value q′E′ is accepted with probability A = min(1, B), where B
is given by (7.6) except that p(ψ)|J(ψ)|−1 is replaced by p(qE′), and p(ψ′)|J(ψ′)|−1
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by p(q′E′). We do not need to go further and generate a value for ψ at this stage,
because qE′ implies q, which is all that is needed for updating x and θ.

We only generate ψ values to correspond to the qE′ values that are retained in
the final MCMC sample. This saves computation because ψ need not be generated
during burn-in, nor for any iterations after burn-in that are not retained if we draw
the final sample by thinning. For each retained qE′ , we sample ψ within Ψ(qE′) from
the conditional distribution p(ψ | qE′). (Note that this step would be impossible if
p(ψ | qE′) were improper.) In fact, the Rao–Blackwellization device mentioned in
§ 5 b means that we could make inferences about ψ by averaging these conditional
distributions, rather than actually generating ψ values from them.

8. Examples

We tested the performance of our MCMC sampler, using simulated data from the
four gating mechanisms depicted in figure 1. For each gating model and each set of
parameters, we simulated a realization x of the gating process and then obtained
a current record by adding Gaussian noise as described by (3.1). We then ran our
sampler on the resulting data.

The method of choosing the probabilities of the different move types for updating
x has been discussed in § 6 b. Move types 2, 4, 6 and 8 require further probability
distributions to be specified, namely, in the notation of § 4 d (i), p̃2(j | i), p̃4(j | i1, i3),
p̃6(j | i) and p̃8(j | i). These were all taken to be uniform on the corresponding set
of permissible states. In describing the results, an iteration of the MCMC sampler
consists of single updates of q and θ, followed by n∗ updates of x (see § 6 b), where
n∗ = 200 for the two-state model and n∗ = 400 for the other models.

(a) Two-state model

We first considered the two-state model of figure 1a, for which parameter estima-
tion for time-interval omitted sojourn time data has been studied in depth by Yeo
et al . (1988). We took q12 = 500 and q21 = 100 (where the units are transitions per
second) and simulated a current record with N = 104, ∆ = 10−4 s, µO = 1, µC = 0
and σO = σC = 0.4. This gave rise to a channel record consisting of 88 open sojourns
and 89 closed sojourns. The above parameter values correspond broadly to those
used by Fredkin & Rice (1992b, example 4.1), although the variance of the noise is
slightly smaller.

For this example we did not use the method of § 6 a for choosing the initial value
x(0). Instead we set

x(0)(l∆) =

{
1, if yl > 0.5,

2, if yl < 0.5,

to yield data in the form of discrete time sojourns. These were then converted into
continuous-time sojourns by assuming that if x(0)(l∆) = x(0)((l + 1)∆) then the
same sojourn spans l∆ and (l + 1)∆, while if x(0)(l∆) 6= x(0)((l + 1)∆) then x(0)

has a single jump in (l∆, (l + 1)∆), at a point sampled uniformly in that interval.
Although this initial value is unlikely to be as good as one obtained by the method
of § 6 a, it should provide an indication of the mixing properties of our sampler.

We assumed an improper vague prior for q and ran the sampler for 70 000 itera-
tions. The results are shown in figure 3, where a burn-in of 5000 iterations was used
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Figure 3. (a) Convergence plots and marginal plots for parameters of a two-state model. Con-
vergence plot of q12 (1), q21 (2), µO (3), µC (4), σO (5), σC (6). Marginal plot of q12 (7), q21 (8),
µO (9), µC (10), σO (11), σC (12).
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Figure 3. (b) Convergence plots and marginal plots for features of a two-state model. Conver-
gence plot of pMIS (1), π0 (2), µ̃0 (3), µ̃C (4). Marginal plot of pMIS (5), π0 (6), µ̃0 (7), µ̃C (8).

for the marginal plots and the Bayesian reconstruction, after which the samples were
collected every tenth iteration. (All the MCMC output figures in this paper were
produced using the statistical package S-plus. The marginal plots are kernel den-
sity estimates (see § 5 b), using a Gaussian kernel K and the S-plus default window
width h. Thus, for example, the marginal plot of µO is a graph of p̃(µO | y) as defined
by (5.1).) It is clear from the convergence and marginal plots in figure 3a that the
sampler is working satisfactorily for this model. Note the rapid movement in the
convergence plots from the poor initial values of the parameters to their correspond-
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Figure 3. (c) Restoration of single-channel record for a two-state model. Original sequence (1),
noisy sequence (2), Bayesian reconstruction of r (3), crude threshold reconstruction of r (4).

ing equilibrium regions. The values of q
(k)
12 and q

(k)
21 , for small k, were far too large

because the crude threshold algorithm used for determining x(0) yielded a realization
having far too many jumps, owing to the noise in the current record y. Note also
that the marginal posterior distributions of µC and σC are more concentrated than
those for µO and σO. This is because, for the parameter values chosen, the channel
spends more time being closed than being open, so consequently the current record
y contains more information about (µC, σC) than about (µO, σO).

Figure 3b shows the convergence and marginal plots for the proportion of misclas-
sified sampling points in x(k) (denoted by pMIS), the equilibrium probability πO that
the channel is open, and the equilibrium mean length of a sojourn of the channel in
open and closed states, µ̃O and µ̃C. Again these are very satisfactory. The estimated
means and variances of the marginal distributions were 0.1704 and 4.282× 10−4 for
πO, 1.8709×10−3 s and 4.695×10−8 s2 for µ̃O and 9.169×10−3 s and 1.095×10−6 s2

for µ̃C. The true values of these channel properties were πO = 0.1667, µ̃O = 2×10−3 s
and µ̃C = 10−2 s.

Figure 3c shows, for the first 501 sampling points, the true sequence of open and
closed sojourns of the channel, the corresponding noisy current record, the MCMC
marginal Bayesian reconstruction given by (5.2) and the crude threshold reconstruc-
tion, which decides whether the channel is open or closed at time l∆ according to
whether yl > 1

2 or yl < 1
2 . The MCMC marginal Bayes reconstruction performs

very well. The proportion of misclassified sampling points in this reconstruction was
6.099 × 10−3, compared with 0.1095 in the crude threshold reconstruction and an
average of 9.962× 10−3 in x(k), as k ranges over the samples collected after burn-in.
When comparing the performances of the MCMC marginal Bayes and crude thresh-
old reconstructions it should be borne in mind that the latter would never be used
in practice, since, if presented with data resembling the simulated records of the
examples, an experimentalist would either filter the data before thresholding and/or
use some form of time-course fitting, both of which would significantly reduce the
number of misclassified sampling points.

This example took 84 min to run on a Sun Sparcstation 10.
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Figure 4. (a) Convergence plots and marginal plots for parameters of a three-state linear model
with parameter set 1. Convergence plot of q12 (1), q21 (2), q23 (3), q32 (4), µO (5), µC (6), σO

(7), σC (8). Marginal plot of q12 (9), q21 (10), q21 (11), q32 (12), µO (13), µC (14), σO (15), σC

(16).

(b) Three-state linear model

The three-state model of figure 1b was used by Fredkin & Rice (1992a) to exam-
ine the performance of their hidden Markov maximum-likelihood algorithm. They
considered three sets of values for the transition rates q, only one of which could be
estimated satisfactorily. The failure to estimate the other two sets satisfactorily is
not an inherent problem with their procedure but rather a consequence of the near
unidentifiability of the model with those parameter values. We tested our MCMC
sampler on simulated data from two of the three sets of parameter values considered
by Fredkin & Rice. The unit of time in those examples was a second, and is not
explicitly shown in the following discussion.

We first considered parameter set 1, in which q12 = 94, q21 = 50, q23 = 91 and
q32 = 4, which Fredkin & Rice (1992a) could resolve. We simulated a current record
with N = 7.5 × 105, ∆ = 1.28 × 10−4, µO = 1, µC = 0 and σO = σC = 0.3,
yielding a channel record consisting of 210 open sojourns and 211 closed sojourns.
(The values for ∆, µO, µC, σO and σC were taken from Fredkin & Rice (1992a).)
We determined the initial x(0) by first fitting a two-state model and then using
the method described in § 6 a, with the prior guess for q being twice its true value
(so leading to an initial reconstruction with too many sojourns). We took a fairly
uninformative prior by setting αij = 0.01qij , βij = 0.01 ((i, j) ∈ E). We ran the
sampler for 70 000 iterations, with a burn-in of 25 000 iterations, after which the
samples were collected every tenth iteration. The results are shown in figure 4. Their
discussion is delayed to later.

We also considered parameter set 2, in which q12 = 94, q21 = 50, q23 = 4 and
q32 = 91, which Fredkin & Rice (1992a) could not resolve satisfactorily. We simulated
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Figure 4. (b) Convergence plots and marginal plots for features of a three-state linear model
with parameter set 1. Convergence plot of pMIS (1), π0 (2), µ̃0 (3), µ̃C (4). Marginal plot of pMIS

(5), π0 (6), µ̃0 (7), µ̃C (8).

0 500 1000 1500 2000 2500 3000

10.8

0.4

0.0

30.8

0.4

0.0

40.8

0.4

0.0

21.0

0.0

–1.0

Figure 4. (c) Restoration of single-channel record for a three-state linear model with parameter
set 1. Original sequence (1), noisy sequence (2), Bayesian reconstruction (3), crude threshold
reconstruction (4).

a current record with N = 3.2×105 and ∆, µO, σO, µC, σC as before. This yielded a
channel record consisting of 1290 open sojourns and 1291 closed sojourns. The initial
x(0) and the prior p(q) were determined using the same method as for parameter
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Figure 5. (a) Convergence plots and marginal plots for parameters of a three-state linear model
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(16).

set 1. We ran the sampler for 560 000 iterations, with a burn-in of 120 000 iterations,
after which the samples were collected every 80th iteration. The results are shown
in figure 5.

It is clear from the convergence and marginal plots of figures 4a and 5a that the
MCMC sampler is performing reasonably satisfactorily for both sets of parameter
values. However, closer examination of the plots for parameter set 2 shows that,
unlike for parameter set 1, the variances of the posterior distributions p(q23 | y) and
p(q32 | y) are both relatively large. This is related to the aforementioned identifiability
problems experienced by Fredkin & Rice (1992a). Note that the plots for the MCMC
runs give an indication of which parameters are being estimated well and which
are not. This feature of the MCMC plots was more marked in other runs that we
performed, although the results are not presented here as the sampling interval ∆
was unrealistically large.

The plots for πO, µ̃O and µ̃C, shown in figure 4b, c, are all highly satisfactory
for both sets of parameter values. For parameter set 1, the estimated means and
variances of the marginal posterior distributions were 0.026 60 and 1.0145 × 10−5

for πO, 0.012 25 s and 7.4916× 10−7 s2 for µ̃O and 0.4528 s and 2.1612× 10−3 s2 for
µ̃C. The true values of these channel properties were πO = 0.021 91, µ̃O = 0.010 64 s
and µ̃C = 0.4750 s. For parameter set 2, the estimated means and variances of the
marginal posterior distributions were 0.3422 and 8.0023 × 10−5 for πO, 0.01092 s
and 9.4449 × 10−8 s2 for µ̃O and 0.020 99 s and 3.6765 × 10−7 s2 for µ̃C. The true
values were πO = 0.3375, µ̃O = 0.010 64 s and µ̃C = 0.020 88 s. Note that for both
parameter sets, all of the above channel properties are well estimated by our MCMC
procedure, in spite of the difficulties associated with estimating some of the qij for
parameter set 2. The estimates of channel properties for parameter set 2 are more
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accurate than those for parameter set 1 because the simulated channel record for
parameter set 2 contains considerably more open and closed sojourns than that for
parameter set 1.

Figures 4c and 5c show, for the first 3001 sampling points, various reconstruc-
tions of the single-channel records for the two sets of parameter values. Again the
MCMC marginal Bayes reconstruction performs extremely well. For parameter set 1
(parameter set 2) the proportion of misclassified sampling points in the marginal
Bayes reconstruction was 8.5333×10−6 (1.0750×10−3), compared with 4.7712×10−2

(4.7625×10−2) in the crude threshold reconstruction and an average of 1.1254×10−4

(1.6356× 10−3) in x(k), as k ranges over the samples collected after burn-in.
For parameter set 1, it took 21 h on a Sun Sparcstation 10 to determine the initial

x(0) by fitting a two-state model and a further 26.75 h to then run the MCMC
sampler for the three-state model. The corresponding times for parameter set 2 were
9.5 and 42 h, respectively. Although the time to obtain x(0) may seem relatively
large, experience shows that a poorly chosen x(0) typically leads to burn-in times far
in excess of these figures. Therefore time taken to ensure a more realistic x(0) is a
good investment.

(c) Three-state cyclic model

The three-state model of figure 1c is the simplest model containing a cycle of
length greater than or equal to 3, so we used it to test the performance of our sample
on a model that contains cycles. We took q12 = 50, q13 = 90, q21 = 30, q23 = 72,
q31 = 60 and q32 = 80 (again the units are in seconds and are omitted) and simulated
a current record with N = 105, ∆ = 10−4, µO = 1, µC = 0 and σO = σC = 0.5. This
yielded a channel record consisting of 334 open sojourns and 334 closed sojourns.
The initial x(0) was determined as for the three-state linear model, using a prior
guess for q obtained by adding six to each of the qij . The prior p(q) was chosen by
setting αij = 0.01qij , βij = 0.01 ((i, j) ∈ E) and using the method described in § 7 b
to take account of reversibility. We ran the sampler for 2.1 × 105 iterations, with
a burn-in of 3 × 104 iterations, after which the samples were collected every 30th
iteration. The results are shown in figure 6.

The convergence and marginal plots for q and θ are shown in figure 6a. The plots
for q23 are not given since reversibility implies that q23 is determined by the other
five elements of q. The plots for θ = (µO, σ2

O, µC, σ2
C) are generally very satisfactory,

though there may be some doubt as to whether the convergence plots for µO and σ2
O

have reached equilibrium. The plots for q are less good, although the marginal poste-
rior plots are broadly centred about the corresponding known true values. However,
the convergence plots for q indicate that the time-series {q(k)} clearly has long-range
dependence and that equilibrium may not yet have been attained. In contrast, the
convergence plots for πO, µ̃O and µ̃C shown in figure 6b are extremely well behaved
and the corresponding marginal plots are nicely centred around their respective
‘true values’. The estimated means of the marginal posterior distributions p(πO | y),
p(µ̃O | y) and p(µ̃C | y) were 0.2408, 7.2162×10−3 s and 2.2796×10−2 s, respectively.
The true values of these channel properties were πO = 0.2400, µ̃O = 7.1429× 10−3 s
and µ̃C = 2.2619 × 10−2 s. The MCMC marginal Bayes reconstruction shown in
figure 6c is again excellent. The proportion of misclassified sampling points in this
reconstruction was 4.5230×10−3, compared with 1.5792×10−1 in the crude threshold
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Figure 6. (a) Convergence plots and marginal plots for a reversible three-state cyclic model.
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reconstruction and an average of 6.6266× 10−3 in x(k), as k ranges over the samples
collected after burn-in. For this example, it took 4 h on a Sun Sparcstation 10 to
determine the initial x(0) by fitting a two-state model, and a further 13 h to then
run the MCMC sampler on the full model.

(d) Five-state model

Our final example is the five-state model of figure 1d, which has been discussed
previously in § 7 c. Using the parametrization described in that section, we took
KB = 1.3 × 104 M−1, K01 = 0.32, K02 = 32.0, kon = 105 ms−1M−1, h1 = 3.1 ms−1,
h2 = 31 ms−1 and agonist concentration a = 10−5 M (these parameter values are
taken from Ball & Sansom (1989)), and simulated a current record with N = 105,
∆ = 0.001 ms, µO = 1, µC = 0 and σO = σC = 0.4, to yield a channel record
consisting of 74 open sojourns and 74 closed sojourns. The initial x(0) was determined
as for the three-state models, with a prior guess for ψ given by KB = 1.31 × 104,
K01 = 0.5, K02 = 50.0, kon = 1.0011 × 105, h1 = 4.6 and h2 = 46.0. An improper
uniform prior was chosen for ψ. We ran the sampler for 70 000 iterations, with a
burn-in of 10 000 iterations, using the method for updating ψ described in § 7 c. The
results are shown in figure 7.

The convergence and marginal plots shown in figure 7a, b are all satisfactory. The
convergence plots all appear to have reached their equilibrium and the marginal
plots are all roughly centred around their corresponding true values. The estimated
means of the marginal posterior distributions p(πO | y), p(µ̃O | y) and p(µ̃C | y) were
0.3582, 0.4465 and 0.8687, respectively. The true values of these channel properties
were πO = 0.3282, 0.4692 and 0.9601. The MCMC marginal Bayes reconstruction
shown in figure 7c is again very good. The proportion of misclassified sampling points
in this reconstruction was 6.6700× 10−4, compared with 1.0639× 10−1 in the crude
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Figure 6. (b) Convergence plots and marginal plots for a reversible three-state cyclic model.
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threshold reconstruction and an average of 8.4017 × 10−4 in x(k), as k ranges over
the samples collected after burn-in. The running time for this example on a Sun
Sparcstation 10 was 8.25 h to determine the initial x(0) by fitting a two-state model,
and a further 7 h to run the MCMC sampler on the full model. Admittedly, the value
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Figure 7. (c) Restoration of single-channel record. Original sequence (1), noisy sequence (2),
Bayesian reconstruction (3), crude threshold reconstruction (4).

of ∆ used in this example is unrealistically small. We plan to explore examples with
more realistic values of ∆. However, we are experiencing difficulties with convergence
in this example.

9. Concluding comments

We have demonstrated that our MCMC sampler can be successfully used for making
inferences directly from single-channel recordings. The sampler generally performed
very satisfactorily for estimating the mean and variance of conductance levels cor-
responding to open and closed sojourns, and also for reconstructing the unobserved
single-channel record. Its performance for estimating the transition rate q depends
on how identifiable q is from the actual sequence of open and closed sojourns of the
channel. However, examination of the convergence and marginal plots for the com-
ponents of q will often indicate whether identifiability problems are present and, if
so, which components of q are most affected.

Identifiability problems are an important aspect of single-channel analysis, al-
though they have not been directly addressed in this paper. Identifiability problems
will arise if distinct underlying single-channel gating processes give rise to aggregated
processes (i.e. sequences of successive open and closed sojourns) that are probabilis-
tically indistinguishable, or very similar (see Kienker (1989) and Larget (1994) for
detailed discussions, and also Fredkin et al . (1985), Fredkin & Rice (1992a) and
Edeson et al . (1994)). If an improper uniform prior is assumed for p(q), then uniden-
tifiability will be reflected in the posterior p(q | y), in that p(q | y) will have two
or more peaks of equal, or nearly equal height, or p(q | y) will not have a sharp
maximum but will have a ‘ridge’ of q values for which p(q | y) is almost constant.
As noted above, the MCMC convergence and marginal plots for q may detect such
behaviour, though, if p(q | y) has several modes, there is a danger that the MCMC
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sampler will not visit all of them if the run is not sufficiently long (cf. Ball et al .
1996). Whether or not these problems persist for other choices of p(q) depends on
the strength of the information in the prior. Time-interval omission can also induce
identifiability problems even when there is no such difficulty in the underlying gating
process (see, for example, Yeo et al . (1988) and Ball et al . (1994) for detailed discus-
sion in the context of the two-state model of figure 1a). It is not known whether the
channel current model, described by (3.1), can give rise to unidentifiability, although
an extensive investigation of the corresponding likelihood surface for the two-state
model, using the algorithm of Fredkin & Rice (1992a), failed to find more than one
peak.

The MCMC marginal plots for q and θ give the experimenter an estimate of the
posterior uncertainty attached to these parameters. It is only an estimate in the
sense that the MCMC plot for qij , say, approximates the posterior beliefs p(qij | y).
If the MCMC sampler is run for sufficiently long then this approximation will become
extremely good. This is in sharp contrast to the classical approximate standard errors
obtained from the curvature of the likelihood function at its maximum, which are
likely to be unreliable in the present ion-channel setting (Fredkin & Rice 1992a).

An important issue in single-channel analysis is the identification of the ‘best’
model from a range of competing models (see, for example, Horn 1987; Ball & San-
som 1989). Given the Bayesian formulation of our method, it is natural to employ
Bayesian model choice theory. In principle, we can regard the model identifier simply
as another parameter ω, taking possible values 1, 2, . . . , M , where M is the number
of competing models. However, changing ω entails changes to q and x, since these
take model-specific values, and furthermore the dimension of q depends on ω. This
is another situation where the reversible jump MCMC method of Green (1995) is
appropriate. One simply adds the possibility of ω changes to the Markov chain, and
a single MCMC run covers all of the competing models. We intend to explore this
approach in future work. In practice, the implementation of such a sampler requires
care in formulating the model jumps. The values of q and x in the new model should
be such that the jump acceptance probability is not too low. Other difficulties may
arise when prior information on the parameters within models is weak: there is work
in progress to adapt the fractional Bayes factor of O’Hagan (1995) to MCMC com-
putation, so that such problems may also be overcome.

The basic MCMC sampler can be extended to capture other possible features in
ion-channel data. Following Fredkin & Rice (1992b), the effects of low-pass filtering
can be incorporated by replacing the model (3.1) by

Yl =
m−1∑
k=0

akc(x((l − k)∆)) + εl (l = m− 1, m, . . . , N),

where the sequence (a0, a1, . . . , am−1) is a discretization of the impulse response of
the filter, and thus are known, and εm−1, εm, . . . , εN are independent and identically
distributed normal random variables, with mean 0 and variance σ2. The MCMC sam-
pler is easily adapted to this model, where now θ = (µO, µC, σ2). The method for
updating q is unchanged. The parameter θ can still be updated by single-component
Gibbs steps, though of course the details are now different. The proposals for updat-
ing x are the same as before, though their acceptance probabilities are different owing
to the new model for the recorded current y.
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Hodgson (1999) considered an alternative model for the filter, in which the noise
is filtered with the signal. He considered a single-channel gating model in which
successive open and closed sojourns follow independent gamma distributions. He
developed an MCMC sampler for his model, which has many features in common
with our sampler. He used a form of simulated tempering to improve the mixing
properties of his MCMC sampler. This involved splitting the observation period
[0, T ] up into a number of shorter intervals and considering a model in which, in our
notation, q can vary from one interval to another in a carefully specified fashion. He
then only used those realizations of his MCMC in which q(k) is the same for all of
the intervals. Provided things are set up correctly this will yield realizations from
p(x, q, θ | y). It would be interesting to try a similar approach with our sampler.

The sampler is easily extended to the situation when the channel has more than
two conductance levels. Indeed, in some circumstances, such multiconductance-level
ion-channel data may prove easier to analyse since the state space of the under-
lying continuous-time Markov chain is partitioned into more aggregates and con-
sequently more information may be available about the underlying process. The
sampler can also be extended in principle to data from multiple ion channels, where
the total current flowing across p > 1 channels is observed (cf., for example, Yeo
et al . 1989; Colquhoun & Hawkes 1990; Fredkin & Rice 1991). We simply treat the
unobserved realizations of the p-channel gating mechanisms as unknown parameters
in the MCMC. However, there are likely to be mixing problems with the ensuing
sampler. The sampler can also be generalized to incorporate baseline drift, by allow-
ing the mean open and closed conductance levels, µO and µC, to vary slowly through
the channel record according to a specified random process. Other artefacts of the
recording process, such as breakdown of the electrical seal, present a greater mod-
elling challenge. Finally, although we have described our sampler in the context of
equilibrium channel data, its extension to perturbation experiments and models with
desensitization is immediate.

A disadvantage of our present MCMC sampler is the large amount of computing
time required to fit models, even for records with relatively few openings. The key
to the performance of our sampler is the mixing properties of the simulated process
{x(k); k = 0, 1, . . . }. The burn-in time depends very much on the choice of x(0)

and there may be scope for obtaining a good x(0) more cheaply than described, for
example by filtering the current record before determining the class Al of x(0)(l∆)
(l = 0, 1, . . . , N). There is considerable scope for varying the parameters and move
types associated with the updating of x, in order to increase acceptance probabilities
and improve the mixing of our sampler, with a consequence that the MCMC sampler
would not have to be run for so long in order to obtain adequate results.

In some of the examples, useful information about the unknown parameters has
been obtained from very short stretches of data. An important practical question
is how long a record does the experimenter need to collect in order to estimate
adequately the parameters of the underlying single-channel gating mechanism. This
question does not admit a simple answer. In broad terms, in the absence of strong
prior information, the standard deviation of the posterior distribution for a given
parameter is roughly inversely proportional to the square root of the length of the
current record. However, the constant of proportionality varies appreciably from
one model to another. For example, in the three-state linear model, the parameters
governing the lengths of closed sojourns are fitted better for parameter set 1 than
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for parameter set 2, even though the latter was based on about six times as many
sojourns. As noted previously, the MCMC convergence and marginal plots provide
the experimenter with information about identifiability issues and the precision of
parameter estimates, and hence they can be used to give an indication of whether
or not more data need to be collected.

In summary, the MCMC methods presented in this paper provide a promising and
flexible approach to the analysis of ion-channel data in a wide variety of settings.

This research was supported by the Engineering and Physical Sciences Research Council, under
research grant numbers GR/J99780 and GR/K76696.

Appendix A.

In the appendix we describe a method for simulating a realization of a random
variable, U say, having probability density function f(u | i, j, v) given by (6.8) and
(6.10). We suppose that the transition-rate matrix Q is diagonalizable with eigen-
values λ1 = 0, λ2, . . . , λm and corresponding linearly independent right eigenvectors
b1, b2, . . . , bm. This will necessarily be the case if Q is the transition-rate matrix of
a time-reversible continuous-time Markov chain, in which case the eigenvalues and
right eigenvectors are all real and λk < 0 (k = 2, 3, . . . , m). Let B be the m×m matrix
whose ith column is bi (i = 1, 2, . . . , m) and let C = B−1. Further, for i = 1, 2, . . . , m,
let ci denote the ith row of C. Then Q admits the spectral representation

Q =
m∑
k=1

λkEk,

where Ek = bkck (k = 1, 2, . . . , m). Moreover, the matrices E1, E2, . . . , Em satisfy

EiEj =

{
Ei, if i = j,

0, if i 6= j,

and

E1 + E2 + · · ·+ Em = I,

where I is the m×m identity matrix.
It then follows that

P (v − u) = exp((v − u)Q)

= E1 +
m∑
l=2

exp(λl(v − u))El, (A 1)

thus providing a method of computing P (v − u).
For i, j ∈ S and 0 < u < v, let

F (u | i, j, v) =
∫ u

0
f(w | i, j, v) dw

be the distribution function of U . Then from (6.8) and (6.10),

F (u | i, j, v) =
∑
k 6=i

Fijk(u | v),
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where

Fijk(u | v) =

∫ u

0
exp(qiiw)qikpkj(v − w) dw

1− [exp(qii − v)/pii(v)]δij
.

Using (A 1),∫ u

0
exp(qii − w)qikpkj(v − w) dw =

qik
qii

(E1)kj(exp(qiiu)− 1)

+
m∑
l=2

qik(El)kj exp(λlv)
(exp{(qii − λl)u} − 1)

(qii − λl)
,

provided that λl 6= qii (l = 2, 3, . . . , m). (If λl = qii then the expression

(exp{(qii − λl)u} − 1)
(qii − λl)

in the above is replaced by u.) Thus Fijk(u | v), and hence F (u | i, j, v) can be
computed.

We can simulate a realization of the random variable U by simulating a realization,
u∗ say, from the U(0, 1) distribution and then solving F (u | i, j, v) = u∗ for u. This
latter step is easily accomplished numerically, since F (u | i, j, v) is strictly increasing
with u, F (0 | i, j, v) = 0 and F (v | i, j, v) = 1.
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