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We compare two different types of hidden Markov modeling (HMM) algorithms, e.g., multivariate HMM
(MHMM) and univariate HMM (UHMM), for the analysis of time-binned single-molecule fluorescence energy
transfer (smFRET) data. In MHMM, the original two channel signals, i.e., the donor fluorescence intensity
(ID) and acceptor fluorescence intensity (IA), are simultaneously analyzed. However, in UHMM, only the
calculated FRET trajectory is analyzed. On the basis of the analysis of both synthetic and experimental data,
we find that, if the noise in the signal is described with a proper probability distribution, MHMM generally
outperforms UHMM. We also show that, in the case of multiple trajectories, analyzing them simultaneously
gives better results than averaging over individual analysis results.

Introduction

Single-molecule fluorescence energy transfer (smFRET) has
been regarded as one of the most powerful and adaptable single-
molecule techniques.1 In smFRET experiments, usually two
fluorescent dye molecules (termed donor and acceptor) are
attached to a single molecule. By measuring the extent of
nonradiative energy transfer between the donor and acceptor,
we get information on their intervening distance. In other words,
FRET acts as a spectroscopic ruler. By tracking FRET changes
over time, conformational dynamics of single molecules can
then be observed in real time. The original signals obtained,
i.e., the time traces, have two channels: donor fluorescence
intensity (ID) and acceptor fluorescence intensity (IA). Usually,
those two traces are converted to one FRET trajectory by
calculating the ratio of acceptor intensity to the total emission
intensity, i.e.,

Ideally, well-defined FRET values can be observed correspond-
ing to stable conformational states of the system (in this paper,
by “conformation”, we just mean the distance of the donor-
acceptor pair rather than general conformations of the molecule).

Typically, the data obtained in smFRET experiments are quite
noisy due to instrumental noise, e.g., shot noise. To analyze
noisy FRET data, many schemes have been suggested.2–8 Among
them, the hidden Markov modeling (HMM) turns out to be the
most accurate and reliable one, because it is conducted in a
fully probabilistic way.5,8 Historically, HMM was first developed
in speech recognition in the mid-1970s.9 Since then, it has been
widely used as a workhorse for temporal pattern recognition in
many fields. In biophysics, HMM has been extensively used in
the analysis of biological sequences (in particular DNA),10 single
ion channel recordings,11,12 molecule motors,13 DNA looping,14

nucleosome unwrapping,15 and smFRET trajectories.5,6,8,16

Even though HMM has been shown to be very successful in
analyzing smFRET data, we are aware that most of those HMM
analyses consider the FRET trajectory alone.6,8 In other words,
a univariate HMM (UHMM) is used, where the analyzed
univariate time series is just the FRET trajectory calculated from
the original two channel signals (ID and IA) according to eq 1.
Presumably, if we could directly analyze the original two
channel signals simultaneously, we would be able to extract
more information simply because we fully utilize the data. A
joint statistical analysis of multichannel time series based on a
joint maximum likelihood estimation method has been per-
formed in FRET data from systems consisting of a single
quantum dot-(Cy5)n hybrid.17 However, to our knowledge, a
multivariate HMM (MHMM) has not been developed for the
fully probabilistic multichannel time-binned smFRET data
analysis. Moreover, conformational changes during biomolecular
interactions are seldom one-dimensional, so there is an increas-
ing interest in extending the reach of FRET to higher dimen-
sions,1 for instance, using the so-called three-color FRET
scheme.18,19 From the HMM point of view, more colors means
more channels. Therefore, an MHMM would be necessary in
this case.

In this work, we develop an MHMM for the time-binned data
analysis of the original two channel signals in two-color
smFRET experiments. We compare the performance of MHMM
with that of UHMM in analyzing both synthetic and experi-
mental data and find that in general MHMM outperforms
UHMM if the noise is characterized with a correct probability
distribution.

Hidden Markov Modeling

Basic Assumptions. As a statistical model, HMM assumes
that the state sequence in the system being modeled is a Markov
process with unknown (hidden) parameters. The state sequence
is not directly visible to the observer or just masked by the
instrumental noise. For example, in the HMM analysis of
smFRET, we first assume that the conformational state-to-state
transitions are governed by single exponential decay kinetics;
i.e., the conformational state sequence is a first-order Markov
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FRET ) IA/(IA + ID) (1)
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chain. This state sequence is always buried in the quite noisy
FRET trajectory. In other words, it is hidden. To analyze the
noisy data in a probabilistic way, we further assume that at each
conformational state the system will emit a random signal with
a well-defined observation probability distribution. This obtained
signal series is called the observation sequence. The challenge
is to extract the hidden model parameters which describe the
state-transition probabilities and the observation probability
distribution, from the noisy observation sequence. The extracted
model parameters can then be used to perform further analysis
to find the optimal state sequence which best explains the
observations, i.e., the experimental data.

For a standard HMM, we denote the state sequence of length
T as q ) (q1, q2, ... , qT), which is a first-order Markov chain:

And the observation sequence associated with the state sequence
is denoted as O ) (O1, O2, ... , Ot). Note that the observation at
time t depends on the state at t only:

Such a standard HMM is characterized by the following
elements. (1) N: the number of hidden states. We denote the
set of states as S ) {1, 2, ... , N}. (2) π: the initial state
distribution. πi ) P(q1 ) i) with 1 e i e N. (3) A: the state-
transition probability matrix. ai,j ) P(qt ) j|qt-1 ) i) with 1
e i, j e N. Here, we assume ai,j is time-independent; i.e., the
hidden Markov chain is time-homogeneous. (4) B: the observa-
tion probability distribution (OPD). bi(O) ) P(Ot ) O|qt )
i) with 1 e i e N. Conventionally, we use the compact notation
λ ) (π, A, B) to denote the whole parameter set of the HMM.

In smFRET data analysis, if the instrument noise is mainly
due to shot noise, and the noises of the two channels (acceptor
and donor) are uncorrelated, one can suggest a simple two-
dimensional Poisson OPD:

with d ) 2. This suggests that, at time t, the system at hidden
state qt ) i emits a random two-dimensional Poisson vector Ot

) (Ot,1, Ot,2) ) (IA(t), ID(t)) with mean vector given by µi )
(µi,1, µi,2) ) (〈IA〉i, 〈ID〉i). Such a HMM with two-dimensional
Poisson OPDs will be called a multivariate Poisson HMM
(MPHMM).

Note that the multivariate HMM (MHMM) actually has been
well developed in speech recognition.9 In general, the MHMM
regards an ordered sequence of vectors as noisy multivariate
observations of a Markov chain. The most general representation
of the OPD is a finite mixture of multivariate Gaussian
distributions:

with N (O, µim, Σim) ) [1/(2π)d/2|Σim|1/2] exp{-1/2(O -
µim)′ ·Σim

-1 · (O - µim)}. Here, O is the vector being modeled, M
is the number of mixture components, and Cim is the mixture

coefficient for the mth mixture in state i. The prime denotes
vector transpose. µim and Σim are the mean vector and covariance
matrix for the mth mixture component in state i. Note that the
mixture coefficients Cim satisfy the stochastic constraint ∑m)1

M Cim

) 1 and Cim > 0 for all components so that the OPD is properly
normalized.

In smFRET data analysis with two-channel signal (d ) 2), if
the instrument noise has complicated components rather than
simple shot noise, the above finite mixture of multivariate
Gaussians with d ) 2 will be a good candidate of the OPD.
The number of mixture components M can be a tunable
parameter. Such a HMM will be called a multivariate Gaussian-
mixture HMM (MGmHMM). A special case of MGmHMM is
that M ) 1; i.e., there is just one Gaussian component. It will
be called a multivariate Gaussian HMM (MGHMM).

In analyzing the smFRET trajectory alone with a univariate
HMM, one still has different candidates of OPD. If the
instrument noise is mainly shot noise, then it has been argued
that the FRET distribution can be described by a Beta OPD.
The reason follows. If the mean values of two independent
Poisson distributions are large enough, e.g., 〈IA〉i, 〈ID〉i g 5, then
the random variable FRET(t) ≡ IA(t)/[IA(t) + ID(t)] can be well
described by a Beta distribution:20,21

Here, the mean value Ri/(Ri + �i) ) 〈IA〉i/(〈IA〉i + 〈ID〉i) ) FRETi

is the idealized FRET value for the conformational state i. The
normalization factor B(Ri, �i) ) Γ(Ri)Γ(�i)/Γ(Ri + �i), with Γ(x)
being the Gamma function, is called the Beta function. Such a
HMM with one-dimensional Beta OPDs will be called a
univariate Beta HMM (UBHMM).

In a previous work, it was assumed that the FRET distribu-
tions can be approximated well by Gaussian distributions with
mean µi and standard deviation σi:8

Here, µi ) FRETi is the idealized FRET value for the
conformational state i and Ot ) FRETt is the observed FRET
value. We call such a HMM with one-dimensional Gaussian
OPDs a univariate Gaussian HMM (UGHMM).

Up to now, we have defined five different HMMs. On the
basis of whether their OPDs are multivariate or univariate, they
can be classified as two types: (1) multivariatesMPHMM,
MGHMM, and MGmHMMsor (2) univariatesUBHMM and
UGHMM. A natural question arises here: Which HMM can best
explain the noisy smFRET data? In principle, one expects that
an MHMM should work better than a UHMM simply because
MHMM fully utilizes the data. However, this is just an intuitive
conjecture, which has to be systematically tested.

Basic Problems. There are three basic problems for HMMs.9

First, “evaluation”: Given the observation sequence O and a
model λ, calculate the probability of the observation sequence
given the model P(O|λ). This problem is efficiently solved by
the forward-backward algorithm with time complexity
O (N2T). Second, “decoding”: Given the observation sequence
O and a model λ, choose the optimal state sequence q which
best explains (fits) the observation sequence O. This is solved
by the Viterbi algorithm, which finds the state sequence q

P(qt|qt-1, Ot-1; ... ; q1, O1) ) P(qt|qt-1) (2)

P(Ot|qt; qt-1, Ot-1; ... ; q1, O1) ) P(Ot|qt) (3)

bi(Ot) ) ∏
k)1

d e-µi,kµi,k
Ot,k

Ot,k!
(4)

bi(Ot) ) ∑
m)1

M

CimN(Ot, µim, Σim) (5)

bi(Ot; Ri, �i) )
Ot

Ri-1(1 - Ot)
�i-1

B(Ri, �i)
(6)

bi(Ot) )
1

√2πσi

exp{- (Ot - µi)
2

2σi
2 } (7)
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maximizing P(q|O, λ): the probability of the state sequence given
the model and the observation sequence. The optimal state
sequence q is called the Viterbi path. Third, “learning”: Given
the observation sequence O, adjust the model parameters λ to
maximize the likelihood function P(O|λ). This is solved by the
Baum-Welch algorithm, which iteratively reestimates the
hidden parameters by their expected values λ̃ until some limiting
point is reached. In practice, this is implemented by setting a
stop criterion, i.e., the log-likelihood difference ∆log P ≡
log P(O|λ̃) - log P(O|λ) is smaller than a constant, e.g., 10-4.
Though this procedure only leads to local maxima of the
likelihood function, it has been found that as long as reasonable
initial guesses are made with respect to the parameters the
algorithm converges to the true values.9

Those algorithms mentioned above have been well described
in the literature. Here, we want to emphasize the reestimation
formulas used in the Baum-Welch algorithm. Those reestima-
tion formulas can be derived directly by maximizing Baum’s
auxiliary function:

(In case there are some constraints, the standard constrained
optimization technique, i.e., the Lagrange multiplier method,
can be used.) Here, λ ) (π, A, B) are our initial (or previous)
estimates of the parameters. λ̃ ) (π̃, Ã, B̃) are being optimized.
Q is the space of all state sequences of length T. An elegant
proof using Jensen’s inequality shows that, if Q(λ, λ̃) > Q(λ, λ),
then P(O|λ̃) > P(O|λ); i.e., the maximization of Q(λ, λ̃) leads to
increased likelihood.22

For a general HMM, the reestimation formulas of the model
parameters π̃ and Ã can be easily derived:9,22,23

Here,

is the probability of being in state i at time t and state j at time
t + 1, which can be easily calculated using the forward-backward
algorithm.9 From �t(i, j), we can easily calculate

which is the probability of being in state i at time t, given the
observation sequence and the model.

Obviously, the reestimation formulas of the model parameter
B̃ depend on the OPD of the HMM. For MPHMM with OPD
given by eq 4, we have

See Appendix section 1.2 for the derivation.
For MGmHMM with OPD given by eq 5, we have

where

is the probability of being in state i at time t with the mth mixture
component accounting for Ot.

For UBHMM with OPD given by eq 6, it can be shown that
the reestimation formulas for the model parameter B are
implicitly given by

See Appendix section 1.1 for the derivation and the definitions
of f(x, y) and g(x, y).

Q(λ, λ̃) ≡ ∑
q∈Q

P(O, q|λ) log P(O, q|λ̃) (8)

π̃i ) γ1(i) (9)

ãij )
∑
t)1

T-1

�t(i, j)

∑
t)1

T-1

γt(i)

(10)

�t(i, j) ) P(qt ) i, qt+1 ) j|O, λ)

)
P(qt ) i, qt+1 ) j, O|λ)

P(O|λ)
(11)

γt(i) ) ∑
j)1

N

�t(i, j) ) P(qt ) i|O, λ) )
P(qt ) i, O|λ)

P(O|λ)
(12)

µ̃i,k )
∑
t)1

T

ot,kγt(i)

∑
t)1

T

γt(i)

(13)

C̃ik )
∑
t)1

T

γt(i, m)

∑
t)1

T

∑
m)1

M

γt(i, m)

(14)

µ̃im )
∑
t)1

T

γt(i, m)Ot

∑
t)1

T

γt(i, m)

(15)

Σ̃im )
∑
t)1

T

γt(i, m)(Ot - µ̃im)(Ot - µ̃im)′

∑
t)1

T

γt(i, m)

(16)

γt(i, m) ) γt(i)
CimN(Ot, µim, Σim)

∑
m)1

M

CimN(Ot, µim, Σim)

(17)

f̃(R̃i, �̃i) )
∑
t)1

T

log Otγt(i)

∑
t)1

T

γt(i)

(18)

g̃(R̃i, �̃i) )
∑
t)1

T

log(1 - Ot)γt(i)

∑
t)1

T

γt(i)

(19)
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For UGHMM with OPD given by eq 7, one simply has

It is often the case that we have multiple observation
sequences (traces). For example, smFRET experiments routinely
generate about 20 traces. In the presence of multiple independent
traces from the same system, the modification of the reestimation
procedure is straightforward. The formal derivation is shown
in Appendix section 2.

Application to Synthetic Data. Determining the Number
of Hidden States. In analyzing smFRET data, the number of
underlying FRET states is the first quantity we want to extract.
In a previous work, this was done by plotting a two-dimensional
pseudohistogram graph from compiling hundreds of fit traces.8

This graph is often called the transition density plot (TDP),
which is obtained by summing up Gaussian functions for every
transition found, with centers corresponding to the initial and
final FRET value for the transition. The number of underlying
FRET states is determined by counting the peaks in the TDP.
For a general N-state system which is ergodic or fully connected,
i.e., every state of the system could be reached from every other
state in one transition, N(N - 1) peaks should appear in the
TDP.

Here, we consider a much simpler procedure to determine
the number of underlying FRET states, which is suitable even
in the presence of only one trace. This procedure is based on
information criteria which have been used in the HMM analysis
of smFRET data5,24 and molecular motor data.13 The information
criteria are tools for model selection. The goal is to best explain
the data with a minimum of free parameters, i.e., select the most
parsimonious model. We know that adding parameters to any
model will always improve the fit but not necessarily the
statistical significance. All of the information criteria are
essentially penalized log-likelihood scores, which take into
account the trade-off between bias and variance in model
selection.25 Here, we use the three most popular ones: Akaike
information criterion (AIC), Bayesian information criterion
(BIC), and Hannan-Quinn information criterion (HIC) defined
as

with L being the maximized value of the likelihood function
for the estimated model, k the number of free parameters, and
n the number of data points. In our studies, log L )
max[log P(O|λ)] which can be approximately replaced by

log P(O|λBW), i.e., the (local) maximum log-likelihood found
by the Baum-Welch algorithm. It is easy to count that k ) N2

+ 2N - 1 for MPHMM, UGHMM, and UBHMM and k ) N2

+ (6M - 1)N - 1 for MGmHMM with M mixture components.
In both cases, n ) T, i.e., the length of the trace. Given a data
set, we can vary N within a reasonable range and perform the
Baum-Welch reestimation procedure for each N. Then, all of
the competing models with different N can be ranked according
to their information criteria, with the one having the lowest AIC
(or BIC, HIC) being the best.

For example, let us consider a system with five states. Its
model parameters (π, A, B) are given by

(1) Initial probability π ) (0.2, 0.2, 0.2, 0.2, 0.2)
(2) Transition matrix

(3) Observation probability distribution bi(O) (two-dimen-
sional Poisson distribution) with mean vectors µ1 )
(10, 90), µ2 ) (30, 70), µ3 ) (50, 50), µ4 ) (70, 30), and
µ5 ) (90, 10). Correspondingly, FRET1 ) 0.1, FRET2

) 0.3, FRET3 ) 0.5, FRET4 ) 0.7, and FRET5 ) 0.9.
Figure 1 shows the state and observation sequence of length

T ) 500 generated from the above model with five states.
Numerically, the observations (IA, ID) are generated from two-
dimensional Poisson distributions randomly. And we assume
the absence of all other fluctuations due to variable background
photon levels, laser intensity fluctuations, and changes in
collection efficiency, etc. For example, if the system stays in
the fourth state with µ4 ) (70, 30) for T ) 500 time steps, the
observation sequence and corresponding histograms are shown
in Figure 2. The two-channel signal (IA, ID) is of course
described by the two-dimensional Poisson distribution where it
is generated from. More interestingly, it is found that the FRET
distribution can be approximated by both Beta and Gaussian
distributions very well. Here, the parameters of the Beta distri-
bution b(O; R, �) are set as R ) 〈IA〉 and � ) 〈ID〉, with 〈IA〉 (or
〈ID〉) being the mean value of the IA (or ID) sequence. For the
Gaussian distribution, mean is just the mean value of the FRET
trajectory (〈FRET〉) and standard deviation is just the standard
deviation of the FRET trajectory (σ(FRET)).

For this given observation sequence, with reasonable initial
estimation and varying N, UGHMM, UBHMM, and MPHMM
analyses are performed. The corresponding Viterbi paths at N
) 5 are plotted on top of the hidden state sequence and noisy
FRET data. One sees that all three Viterbi paths match the
hidden state sequence very well.

Figure 3 shows the information criteria as functions of N in
MPHMM, UGHMM, and UBHMM analysis for this system
with different trace lengths T ) 100 and 800. The maximum
log-likelihood found by the Baum-Welch algorithm
(log P(O|λBW)) is also plotted. We find that, even for a short
trace with T ) 100, the correct number of hidden states (N )
5) can be obtained by observing where the information criteria
reach their minima. In particular, we find that the BIC often
shows a relatively more significant minimum, comparing to AIC
and HIC. At first sight, the maximum log-likelihood
log P(O|λBW) itself does not serve as a good criterion in
determiningN.However,wefindthat its slope, i.e.,∂ log P(O|λBW)/

µ̃i )
∑
t)1

T

γt(i)Ot

∑
t)1

T

γt(i)

(20)

σ̃i
2 )

∑
t)1

T

γt(i)(Ot - µ̃i)
2

∑
t)1

T

γt(i)

(21)

AIC ) -2 log L + 2k (22)

BIC ) -2 log L + k log n (23)

HIC ) -2 log L + 2k log(log n) (24)

A ) (0.9 0.025 0.025 0.025 0.025
0.025 0.9 0.025 0.025 0.025
0.025 0.025 0.9 0.025 0.025
0.025 0.025 0.025 0.9 0.025
0.025 0.025 0.025 0.025 0.9

)
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∂N changes dramatically at N ) 5, which suggests that it can
also be used to determine N. Therefore, we have two different
types of measures to determine N consistently. Moreover, we
find that, in UGHMM, those measures sometimes display large
fluctuations as varying N. (For example, see Figure 3b, T )
100, around N ) 6.) We have tested for longer traces with T
from 200 up to 10 000 and found that those fluctuations appear
often in UGHMM, while in UBHMM and MPHMM, all
measures show a well-defined trend for all of the trace lengths
we have tested. Detailed analysis finds that this is due to the
fact that UGHMM gets trapped in local maxima of the likelihood
function more often than UBHMM and MPHMM, an observa-
tion which will be further studied in the next section. Consider-
ing this, we conclude that, for the synthetic data generated from
two-dimensional Poisson distributions, UBHMM and MPHMM
are better than UGHMM in determining the number of hidden
states.

Reliability. To compare the performance of MPHMM,
UGHMM, and UBHMM further, we test their reliability for a
simple two-state system. Simulated acceptor (and donor) time
traces are generated by adding Poisson noise to a series of
idealized values. FRET trajectories are then calculated according
to eq 1. The standard parameters (π, A, B) are as follows:

(1) Initial probability

(2) Transition matrix

(3) Observation probability distribution bi(O) (two-dimen-
sional Poisson distribution) with mean vectors

Correspondingly, FRET1 ) 0.3 and FRET2 ) 0.7.
We vary different parameters (or their combinations) but keep

the others constant to test different impacts on the algorithm
performance. For each given parameter set, 100 traces are
generated and analyzed using UGHMM (eq 7), UBHMM (eq
6), and MPHMM (eq 4). The standard trace length is T )
10 000.

Figure 1. Synthetic observation and state sequences of the tested five-state system. (a) The two-channel signal (acceptor and donor), i.e., the shot
noise, is generated from two-dimensional Poisson distributions of the five-state system. (b) The FRET trajectory is calculated from the acceptor and
donor signals using eq 1. The “hidden” state sequence is buried under the noisy FRET trajectory. Using MPHMM, UGHMM, and UBHMM, we
can extract the model parameter and calculate the Viterbi paths which fit the original state sequence very well. (c) The deviations of the calculated
Viterbi paths from the “hidden” state sequence.

π ) (0.5, 0.5) (25)

A ) (0.95 0.05
0.02 0.98 ) (26)

µ1 ) (300, 700), µ2 ) (700, 300) (27)
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To be fair, the UGHMM, UBHMM, and MPHMM reesti-
mation procedures (based on the Baum-Welch algorithm) start
from the same initial random guesses of the transition matrix
A and initial state distribution π. And the initial estimates of
the observation probability distribution B for UGHMM, UB-
HMM, and MPHMM are related to each other according to eq
1. Also, the UGHMM, UBHMM, and MPHMM reestimation
procedures are stopped according to the same criterion, i.e.,
∆log P ) 10-4.

As pointed out in ref 9, either random (subject to stochastic
constraints) or uniform initial estimates of π and A parameters
would be adequate for giving meaningful reestimates of those
parameters in almost all cases. However, for B parameters, good
initial estimates are essential.15 For simplicity, in our tests, the
initial estimates for the B parameters are obtained by analyzing
the histograms of signals. For example, in analyzing the FRET
trajectories of the two-state systems using UGHMM, the initial
guesses of the mean FRET values for the two states are assigned

to be 〈FRET〉 ( σFRET. Here, 〈FRET〉 and σFRET are the mean
and standard deviation of the FRET distribution, respectively.
Similar initial estimates are made for IA and ID in MPHMM.

Similarly to what was done in a previous work,8 the successes
of MPHMM, UGHMM, and UBHMM are quantified in two
different reliability measures. (1) Pf: the fraction of the 100
traces that returned the true FRET values: FRET1 ( 0.05 and
FRET2 ( 0.05. (2) |log(k/k*)|: the systematic error in the
transition rate, with k ) a12 being the deduced transition rate
from state 1 to state 2 and k* ) a12* the true input value.
Obviously, when the input model parameters are perfectly
recovered, Pf ) 1 and |log(k/k*)| ) 0. These two measures are
shown in Figure 4 with solid and open symbols, respectively.

Figure 4a shows the effect of changing ∆FRET ≡ FRET1 -
FRET2, i.e., the spacing between the two FRET states. It is
clearly seen that both the MPHMM and UBHMM respond very
well with Pf ∼ 1 and |log(k/k*)| ∼ 0 for the whole ∆FRET
range [0.02, 0.5] we have tested. However, for UGHMM, its

Figure 2. Synthetic observation sequences of the fourth state of the tested five-state system. (a) The two-channel signal (acceptor and donor), i.e.,
the shot noise, is generated from a two-dimensional Poisson distribution according to the state parameter µ4 ) (70, 30). (b) The FRET trajectory
is calculated from the acceptor and donor signals using eq 1. (c) The (normalized) histograms of IA and ID. Symbols represent components of the
two-dimensional Poisson distribution. (d) The (normalized) histogram of FRET. Both Beta and Gaussian distributions fit the FRET distribution
very well.
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reliability generally decreases with decreasing ∆FRET. Note
that, for ∆FRET e 0.05, Pf for UGHMM goes to 1, which
naively suggests that it works well in this regime. However,
this is just due to the fact that in defining Pf the size of the
error bar is set to be 0.05. In fact, the reliability of UGHMM
becomes worse for ∆FRET e 0.05, which can be clearly seen
from the finite |log(k/k*)| values in this regime.

Figure 4b shows the effect of FRET noise level, parametrized
by the average FRET peak width δ. For the simple two-state
system, we have δ ≡ σ1 + σ2 with σi (i ) 1, 2) being the
standard deviation of the Gaussian FRET distribution for state
i (see eq 7). Since the simulated FRET trajectories are calculated
from the acceptor and donor time traces, σi and consequently δ
cannot be tuned explicitly in our simulation. However, they can
be read from the UGHMM output. In our tests, we find that σ1

≈ σ2 in all cases and the FRET peak width δ is highly correlated
with the total intensity (Itot) of acceptor and donor signals in
such a way: δ ≈ 0.92/(Itot)1/2. Therefore, we can vary Itot but
keep other parameters fixed to study the impact of FRET noise
level. In our tests, we tune Itot from 1000 down to 10. We find
that MPHMM responds very well to increased noise level (or

decreased Itot), with slightly decreased reliability only when δ
> 0.2 (corresponding to Itot < 20). (In a previous work,8 it was
found that the univariate HMM breaks down when δ > 0.4.
We notice that δ was explicitly tunable there, while, in our tests,
it can be tuned only by varying Itot. Nevertheless, our result is
consistent with theirs.) The UBHMM also responds fairly well
to increased noise level but with decreased reliability for δ >
0.15 (corresponding to Itot < 40). On the other hand, the
UGHMM does not respond well for all of the noise levels we
have tested.

Figure 4c shows the effect of state lifetime τ1, i.e., the mean
dwell time of state 1. It is easy to derive that τ1 ) (1 - a11)-1.
Therefore, we can tune τ1 by varying a11. However, to study
the impact of τ1 only, we should consider traces with (almost)
the same number of transitions (Ntr). In our tests, we find that
Ntr ≈ 0.6Ta12. This suggests that, to keep Ntr ) const, we have
to vary the trace length T accordingly as we vary a12. In our
tests, we set Ntr ) 90, which is large enough to see all of the
state transitions. We find that both UBHMM and MPHMM are
reliable for the whole range of τ1 we have tested. For UGHMM,

Figure 3. Information criteria (solid symbols) and maximized log-likelihood (open squares) as functions of N (number of hidden states) in MPHMM
(a,d), UGHMM (b,e), and UBHMM (c,f) analysis for a five-state system. The analysis is performed on a single trace with length T ) 100 (a-c)
and 800 (d-f).
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Figure 4. Algorithm responses to changes in model and trace parameters for MPHMM (red triangles), UGHMM (green squares), and UBHMM (blue cycles)
with 100 traces. Open symbols: systematic error |log(k/k*)| ) |log(a12/a12* )|. Solid symbols: the probability (the fraction of the 100 traces) that obtained FRET
values match the true values of both states. (a) Varying spacing between the two FRET states. (b) Varying FRET peak width (δ) by simply changing the total
intensity (〈IA〉 + 〈ID〉). (c) Varying the dwell time of FRET state 1 by tuning a12* (also keeping the number of state transitions constant by changing the length of
trance accordingly). (d) Varying the number of state transitions by simply changing the length of trace.

Figure 5. The increasing log-likelihood during the Baum-Welch iterations. Those analyses are conducted on the traces generated with the standard
input model parameters (eqs 25 and 27). (left) With MPHMM, all 100 trace analyses return the true model parameters after only two iterations
(niteration ) 2). (middle) With UGHMM, a significant fraction of the 100 trace analyses get trapped in local maxima. Generally, niteration used in
UGHMM is much larger than that used in MPHMM. (right) With UBHMM, all 100 trace analyses return the true model parameters after up to four
iterations (niteration e 4). Note that there are some traces showing decreasing log(P), which is due to the fact that there is no closed form of reestimation
formula for UBHMM. For details, see Appendix section 1.1.
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it responds very well for τ1 e 3 only. Its reliability is
significantly reduced for τ1 > 10.

Figure 4d shows the effect of the number of transitions Ntr,
which is tuned by simply varying T while keeping all other
parameters fixed. We see that, as long as Ntr > 5, both UBHMM
and MPHMM respond very well. For Ntr < 5, the reliabilities
of UBHMM and MPHMM decrease dramatically. This is
reasonable because, without enough state transitions, any HMM
would not work at all. We also find that for the Ntr range
UBHMM and MPHMM work very well and UGHMM always
shows reduced reliability.

All of the tests shown in Figure 4 suggest that, for the
synthetic data generated from two-dimensional Poisson distribu-
tions, given the same initial guess and the same stop criterion,
MPHMM and UBHMM outperform UGHMM in response to
various model and trace parameters. Why is UGHMM not as

reliable as UBHMM and MPHMM? Detailed analysis finds that,
in contrast to UBHMM and MPHMM, UGHMM gets trapped
more easily in local maxima of the likelihood function P(O|λ)
during the reestimation procedure. Generally, it is also found
that the number of iterations (niteration) in UGHMM is much larger
than that in UBHMM and MPHMM (see Figure 5).

Fortunately, in our tests of the simple two-state system,
trapping in local maxima can be easily detected. We find that
UGHMM sometimes obtains two almost identical FRET values
for the two states with ∆FRET < 0.001. This is apparently
wrong, since in all our tests we have ∆FRET g 0.01. In this
case, trapping can easily be avoided by resetting the transition
matrix A and restarting the reestimation procedure until the
algorithm jumps away from the local maxima. Of course, this
takes extra computing time. However, with this effort, it can
be shown that the modified UGHMM is as reliable as UBHMM
and MPHMM in response to different model and trace param-
eters (data not shown here). Generally, for complex systems
with more states, trapping would be much more difficult to
detect than in the simple two-state system. Therefore, it is hard
to improve UGHMM to avoid local maxima. MPHMM or
UBHMM would be the better choice.

Analyzing Multiple Traces. In previous work, multiple traces
obtained in smFRET experiments were analyzed one by one
and then averaged in the following way.8 Transition rates were
found to be distributed asymmetrically and argued to obey the
log-normal distribution. To obtain the representative average
values, one can average over their logarithms. The mean values
are then converted back by exponentiation. For FRET values,
a simple average is good enough. We call this method I.

We mentioned that, when multiple traces are independent
from each other, we can analyze them simultaneously using
either UGHMM, UBHMM, or MPHMM. In this way, no extra
average is needed at all. We call this method II.

Figure 6. Histograms of a12, a21, FRET1, and FRET2 obtained from 100 traces with length T ) 100, by using MPHMM (red pulses), UGHMM
(green boxes), and UBHMM (blue boxes). Number of states: N ) 2. The true (input) values of those model parameters are plotted in purple lines.

TABLE 1: The Difference between the Results of Two
Methods in Analyzing Multiple Tracesa

result of
method I

result of
method II

input MPHMM UGHMM UBHMM MPHMM UGHMM UBHMM

a12 ) 0.05 0.06841 0.07096 0.06661 0.05262 0.05262 0.05262
(36.8%) (41.9%) (33.2%) (5.2%) (5.2%) (5.2%)

a21 ) 0.02 0.02502 0.03070 0.02503 0.02099 0.02099 0.02099
(25.1%) (53.5%) (25.1%) (4.95%) (4.95%) (4.95%)

FRET1 ) 0.3 0.3147 0.3216 0.3158 0.3003 0.3001 0.3003
(4.9%) (7.2%) (5.3%) (0.1%) (0.03%) (0.1%)

FRET2 ) 0.7 0.6993 0.6936 0.6996 0.6997 0.6999 0.6997
(0.1%) (0.9%) (0.06%) (0.04%) (0.01%) (0.04%)

a Method I: average over individual trace analysis. Method II:
analysis of multiple traces simultaneously. For each method, we
also compare the performance of using MPHMM, UGHMM, and
UBHMM. The tested system is a simple two-state system with
model parameters given by eqs 25-27. Trace length T ) 100.
Number of traces M ) 100. Data shown in parentheses present the
percentage errors.
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We compare the performance of those two methods for the
simple two-state system used in the previous section. We
generate 100 traces of length T ) 100 randomly according to
the standard model parameters. Then, we analyze those traces
with the two methods mentioned above. The results are shown
in Figure 6 and Table 1.

For method I, we get distributions of parameter values (see
Figure 6). After averaging, the mean values deviate from the
true values significantly, especially for the transition rates (see
Table 1). Note that the transition rates are averaged in the special
way as mentioned above. If we average them directly, the
deviations from the true values are even larger. Moreover, we
notice that, for method I, MPHMM gives the best result, while
UGHMM gives the worst.

Comparing with method I, the parameter values obtained in
method II are much closer to the true input values. Also, we
notice that, in this method, MPHMM, UBHMM, and UGHMM
give almost the same high-quality result. This can be well
explained by noticing that, in analyzing M ) 100 traces
simultaneously, a much larger data set (actually 100 times larger
than the single trace case) is taken into account. Simply because
we have more data points, it is harder for UGHMM, UBHMM,
and MPHMM to get trapped in local maxima. The difference
in their performances will be negligible.

Application to Experimental Data. In the previous section,
we assume that the shot noise is the only source of noise, so
the synthetic two-channel signals are generated from the two-
dimensional Poisson distribution (eq 4). (For example, the
histograms of IA, ID, and FRET for a particular state in the tested
five-state system are shown in Figure 2.) Considering this, the
better performances of MPHMM and UBHMM than UGHMM
are easily understood. However, in analyzing real experimental
data, will MPHMM and UBHMM still be better than UGHMM?

Shall we use more general MHMM such as MGHMM or
MGmHMM?

Here, we apply all the different HMMs to the analysis of
experimental data on RecA binding and dissociation. We have
previously reported that binding and dissociation RecA proteins
on a ssDNA can be observed with single monomer resolution
using smFRET.26 ssDNA is a highly flexible polymer, and when
RecA proteins bind and form a filament, ssDNA is stretched;
therefore, its end to end distance is increased. We labeled two
positions on a ssDNA with donor and acceptor fluorophore so
that we can detect three different RecA bound states at the 5′
filament end: no RecA bound state with highest FRET value
∼0.8, one RecA bound state with FRET ∼0.6, and two RecA
bound state with FRET ∼0.45.

Figure 7 shows the experimental observation sequences of
the bare ssDNA measured by the EMCCD camera. The
histograms of IA and ID are shown in Figure 8a. It is clearly
seen Gaussians fit the histograms while Poissonians do not. The
reason why Poissonians do not fit the histograms of intensities
is that there is an additional scaling factor during the conversion
from the actual photon count to the measured intensity processed
by the EMCCD camera. This scaling process can actually
introduce additional noise, such as spurious noise (also called
clock induced charge) and amplification noise. For the same
reason, the Beta distribution does not fit the histogram of the
apparent FRET calculated from the donor and acceptor intensi-
ties using eq 1. However, we find that Gaussian fits the FRET
distribution very well (see Figure 8b). Those results suggest
that naive application of MPHMM or UBHMM on the
experimental data measured by EMCCD will definitely fail due
to the bad choice of OPDs. Instead, we expect MGHMM (or
more generally MGmHMM) and UGHMM will work.

Figure 7. Experimental observation sequences of the bare DNA. (a) The two-channel signal (acceptor and donor) suffers from instrument noise,
e.g., shot noise, spurious noise (also called clock induced charge), and amplification noise. (b) The FRET trajectory is calculated from the acceptor
and donor signals using eq 1.
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Figure 8. (a) The (normalized) histograms of IA and ID of the experimental observation sequence of the bare DNA. Symbols represent Poissonians, while
blue lines represent Gaussians. Note that those histograms cannot be fit by Poissonians due to the scaling factor during the conversion from the actual
photon count to the measured intensity processed by EMCCD. Instead, Gaussians fit the histograms of intensities very well. (b) The (normalized) histogram
of FRET. Again, due to the scaling factor, Beta distribution does not fit the FRET distribution, while Gaussian does. (c) With the linear scaling assumption,
one can get back the “photon count” data from the intensity data. Then, the histograms of the approximate “photon count” can be fit by Poissonians. (d)
The (normalized) histograms of the “FRET” values calculated from the approximate “photon count” data can be fit by Beta distribution.

Figure 9. Experimental observation sequence of RecA binding. (a) Acceptor and donor channel signals. (b) The FRET trajectory is calculated
from the acceptor and donor signals using eq 1.
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If one can get back the actual photon count from the measured
intensity, then we expect MPHMM and UBHMM will work.
However, the conversion from the intensity to photon count is
highly nontrivial. Here, we make a simple linear approximation,
i.e., assuming the scaling between the intensity I and the actual
photon count C is linear: f ) I/C. Then, the scaling factor f can
be estimated easily. We assume the noise in photon count is
just shot noise, so we have

Here, V represents variance and σ represents standard deviation.
Due to the linear assumption, we have σC ) σI/f and 〈C〉 )
〈I〉/f. Plugging those two equations into eq 28, one has σI/f )
(〈I〉/f)1/2, which yields

Note that the scaling factor could be different for different
channels. For example, for sequences shown in Figure 7, we

get a scaling factor of fA ) 7.73 for the acceptor channel and fD

) 6.78 for the donor channel. With fA and fD, we can then get
back the “photon count” data from the intensity data. Here,
quotes mean that the “photon count” we get is just an
approximation of the actual photon count. To check the quality
of the linear scaling approximation, we fit the histograms of
the approximate photon count with Poissonians. As shown in
Figure 8c, the fits are very good. Moreover, the histogram of
“FRET” values calculated from “photon count” data can be fit
by Beta distribution very well. Those self-consistent checks
indicate that the linear scaling is a good approximation, at least
from the point of view of the noise distribution.

On the basis of the analysis of noise distributions, we have
the following choices in performing HMM on the EMCCD data:
(1) Analyze the measured two-channel intensity data (IA and
ID) either using MGHMM or more generally MGmHMM. (2)
Analyze the calculated FRET trajectory alone using UGHMM.
(3) Analyze the calculated two-channel “photon count” data (CA

and CD) using MPHMM. (4) Analyze the calculated “FRET”
trajectory alone using UBHMM.

Figure 9a shows a typical experimental observation sequence
of RecA binding to ssDNA measured by EMCCD. The Viterbi
paths found by the five different HMMs are shown in Figure

Figure 10. Information criteria (solid symbols) and maximized log-likelihood (open squares) as functions of N (number of hidden states) in
MPHMM (a), UBHMM (b), UGHMM (c), MGHMM (d), and MGmHMM (e) analysis of the experimental observation sequence of RecA binding.

σC ) √VC ) √〈C〉 (28)

f )
σI

2

〈I〉 )
VI

〈I〉 (29)
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9b. Physically, there are three possible states in the system (N
) 3), as mentioned above. To determine N from the observation
sequence, we calculate the information criteria. The results are
shown in Figure 10. We find that, for MGmHMM (with M )
3 components), the BIC gives the correct number of states, while
AIC and HIC overestimate N. For all other HMMs, all three
information criteria overestimate N. It is interesting to mention
that BIC has been shown to provide a rigorous upper limit on
the true number of states for an infinitely long sequence.27 Study
on the performance differences of different information criteria
in model selection is interesting itself but is beyond the scope
of the current work. Actually, additional information criteria
such as peak localization error and chi-square probability-based
goodness-of-fit have been studied in HMM analysis of short
single-molecule intensity trajectories.24

To compare the performances of the five HMMs further, we
plot the normalized histograms of FRET values found from the
optimal Viterbi paths of the 96 traces of RecA binding using

the five different HMMs. The results are shown in Figure 11.
We find that FRET histograms of all five HMMs vividly show
three main peaks corresponding to the three states in the system.

Transition density plots (TDPs) calculated from the total 96
traces of RecA binding using different HMMs are shown in
Figure 12. Here, the x-axis (or y-axis) represents the FRET value
before (or after) transition, respectively. We find that all five
HMMs except UBHMM give clear state transitions at expected
positions, represented by the peaks around (0.45, 0.6), (0.6,
0.45), (0.6, 0.8), and (0.8, 0.6) on the TDPs. We also notice
that the spanning of the peaks in MGmHMM’s TDP are slightly
narrower than all other HMMs. Nevertheless, it is hard to draw
a conclusion that MGmHMM is the best choice in analyzing
the RecA binding data measured by EMCCD. What we learn
is that, for smFRET data measured by EMCCD, the perfor-
mances of MHMM and UHMM are very comparable and
MGmHMM seems to slightly outperform other HMMs.

Figure 11. Normalized histograms of FRET values found from a total of 96 traces of RecA binding using different HMMs: MPHMM (a), UBHMM
(b), UGHMM (c), MGHMM (d), and MGmHMM (e).
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Summary

In sum, we compared two different types of HMM analysis
algorithms for the time-binned smFRET data analysis: multi-
variate HMM and univariate HMM. For a multivariate HMM,
at each conformational state, the two-channel signal (IA, ID) can
be described by a two-dimensional distribution, e.g., Poisson,
Gaussian, or a finite mixture of Gaussian distributions. The

corresponding HMMs are denoted as MPHMM, MGHMM, or
MGmHMM, respectively. For a univariate HMM, the calculated
FRET trajectory is analyzed alone. At each conformational state,
the signal (FRET) is described with a one-dimensional distribu-
tion, e.g., a Beta or Gaussian distribution. We denote the
corresponding HMMs as UBHMM or UGHMM, respectively.
We find that generally MHMM outperforms UHMM. For

Figure 12. Transition density plots (TDPs) calculated from a total of 96 traces of RecA binding using different HMMs: MPHMM (a), UBHMM
(b), UGHMM (c), MGHMM (d), and MGmHMM (e). Here, the x-axis (or y-axis) represents the FRET value before (or after) transition, respectively.

Multivariate and Univariate Hidden Markov Modelings J. Phys. Chem. B, Vol. 114, No. 16, 2010 5399

http://pubs.acs.org/action/showImage?doi=10.1021/jp9057669&iName=master.img-011.jpg&w=376&h=581


synthetic data, with a two-channel signal generated from two-
dimensional Poisson distributions, numerical tests in (1) deter-
mining number of hidden states and (2) reliability in response
to varying model parameters show that MPHMM and UBHMM
are much better than UGHMM. We also show that, in the case
of multiple trajectories, analyzing them simultaneously gives
much better results than averaging over individual analysis
results. For experimental data, in particular the data measured
by EMCCD, due to the complicated noise source, we find that
generally UHMM and MHMM work comparably well. How-
ever, MGmHMM seems to be the best one, according to the
transition density plot. Those studies clearly show that choosing
correct observation distribution functions are very important in
conducting HMM analysis for smFRET data.
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Appendix

1. Reestimation Formulas for Single Observation
Sequence

1.1. UBHMM. Here, we consider a UHMM with Beta
observation probability distribution:

Given a particular state sequence q and model parameter λ̃,
P(O, q|λ̃) can be easily written as

Then Q(λ, λ̃) becomes

We can optimize each term individually, leading to the
reestimation formulas for π, A, and B, respectively. The
optimizations of the first two terms are very simple and general
for any HMM.28

Here, we show the optimization of the third term. Consider
a Beta distribution for the UHMM (eq 6). The third term of eq
42 can be written as

Taking the derivative with respect to R̃i, setting it to be zero,
and doing the same thing for �̃i, we have

where ψ(x) ) Γ′(x)/Γ(x) is the digamma function. We define

Then, rearranging the terms in eq 33 yields

These reestimation formulas implicitly contain R̃i and �̃i. Though
we cannot get closed forms for R̃i and �̃i, we can numerically
calculate them by solving eq 34 for given f̃(R̃i, �̃i) and g̃(R̃i, �̃i)
values. In practice, a look-up table and bisection search can be
used to speed up the calculation. However, we should mention
that the numerically inverse is not an exact method to get R̃i

and �̃i. It sometimes can cause decreased likelihood during the
Baum-Welch reestimation, as shown in Figure 5. This is just
a numerical effect.

Note that sometimes, to capture the anticorrelated feature of
the donor and acceptor mean intensities, we use the constraint

Here, Ii
tot ) Ri + �i ) 〈IA〉i + 〈ID〉i is the total emission

intensity at state i. ∆ID and ∆IA between different states are not

bi(o; Ri, �i) )
oRi-1(1 - o)�i-1

B(Ri, �i)

P(O, q|λ̃) ) π̃q1
b̃q1

(o1) ∏
t)1

T-1

ãqtqt+1
b̃qt+1

(ot+1) (30)
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q∈Q
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∑
t)1

T-1
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∑
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N
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T
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(33)

{f̃(R̃i, �̃i) ≡ ψ(R̃i) - ψ(R̃i + �̃i)

g̃(R̃i, �̃i) ≡ ψ(�̃i) - ψ(R̃i + �̃i)
(34)
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∑
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tot ) Itot ) const (36)
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identical unless the quantum yield (φ) and detection frequency
(η) are comparable. For the various FRET pairs, the correction
factor γ is defined as (ηAφA/ηDφD) and used to correct for
absolute FRET as follows:29

For the most popular FRET pair, Cy3 and Cy5, the γ factor is
1 (∆ID and ∆IA); therefore, we can assume that Ii

tot is a constant.
With the constraint (eq 36), the reestimation formula can be

easily derived. Consider the third term of eq 42. Taking the
derivative with respect to R̃i and setting it to be zero, we have

We define

Then, rearranging the terms in eq 38 yields

Then, R̃i can be calculated numerically by inversing h̃(R̃i):

We want to emphasize that, from the HMM point of view,
the constraint (eq 36) is not necessary at all. It is not a basic
element of HMM but just appropriate for the usual two-color
smFRET data analysis. For a more complicated FRET scheme,
e.g., the three-color FRET scheme, different constraints should
be considered.

1.2. MPHMM. Without loss of generality, we consider an
MHMM with multivariate observations. As shown in the
previous section, Baum’s auxiliary function can be written as

We optimize each term individually. Here, we consider the
third term. Consider a d-dimensional Poisson distribution for
the MHMM (eq 4); the third term of eq 42 can be written as

Without any constraints, this term can be optimized by setting
the derivative with respect to µ̃i,k to be zero, which yields

Rearranging the terms yields the reestimation formula

If we consider the constraint ∑k)1
d µ̃i,k ) Ii

tot ) const, we can
add a Lagrange multiplier θ, and again setting the derivative
with respect to µ̃i,k to be zero:

Taking the derivative yields

Rearranging the terms and summing over k yields

One then solves for µ̃i,k:

E ) IA/(ID + γIA) (37)

∑
t)1

T

[ψ(Ii
tot - R̃i) - ψ(R̃i) + log Ot -

log(1 - Ot)]P(O, qt ) i|λ) ) 0 (38)

h̃(R̃i) ≡ ψ(Ii
tot - R̃i) - ψ(R̃i) (39)

h̃(R̃i) )
∑
t)1

T

[log(1 - Ot) - log Ot]P(O, qt ) i|λ)

∑
t)1

T

P(O, qt ) i|λ)

)
∑
t)1

T

[log(1 - Ot) - log Ot]γt(i)

∑
t)1

T

γt(i)

(40)

R̃i ) h̃-1[ ∑
t)1

T

[log(1 - Ot) - log Ot]γt(i)

∑
t)1

T

γt(i) ] (41)

Q(λ, λ̃) ) ∑
q∈Q

log π̃q1
P(O, q|λ) +

∑
q∈Q

∑
t)1

T-1

log ãqtqt+1
P(O, q|λ) + ∑

q∈Q
∑
t)1

T

log b̃qt
(Ot)P(O, q|λ)

(42)

∑
q∈Q

∑
t)1

T

log b̃qt
(Ot) · P(O, q|λ) ) ∑

i)1

N

∑
t)1

T

log b̃i(Ot) · P(O, qt ) i|λ)

) ∑
i)1

N

∑
t)1

T

log(∏
k)1

d e-µ̃i,kµ̃i,k
ot,k

ot,k! ) ·

P(O, qt ) i|λ)

) ∑
i)1

N

∑
t)1

T

∑
k)1

d

log(e-µ̃i,kµ̃i,k
ot,k

ot,k! ) ·

P(O, qt ) i|λ)

) ∑
i)1

N

∑
t)1

T

∑
k)1

d

[-µ̃i,k + ot,k log µ̃i,k -

log(ot,k!)] · P(O, qt ) i|λ)
(43)

∑
t)1

T (-1 +
ot,k

µ̃i,k
)P(O, qt ) i|λ) ) 0 (44)

µ̃i,k )
∑
t)1

T

ot,kP(O, qt ) i|λ)

∑
t)1

T

P(O, qt ) i|λ)

)
∑
t)1

T

ot,kγt(i)

∑
t)1

T

γt(i)

(45)

∂

∂µ̃i,k
{ ∑

i)1

N

∑
t)1

T

∑
k)1

d

[-µ̃i,k + ot,k log µ̃i,k - log(ot,k!)] ·

P(O, qt ) i|λ) + θ( ∑
k)1

d

µ̃i,k - Ii
tot)} ) 0 (46)

∑
t)1

T (-1 +
ot,k

µ̃i,k
)P(O, qt ) i|λ) + θ ) 0 (47)

θ ) ∑
t)1

T

(1 - Itot i
-1 ∑

k)1

d

ot,k)P(O, qt ) i|λ) (48)
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2. Reestimation Formulas for Multiple Observation
Sequences

Now, we consider a set of observation sequences

where

with 1e meM. Generally, the multiple observation probability
given the model can be expressed as

If we assume

then the weights are given by

In practice, those weights are difficult to calculate. Therefore,
the reestimation procedure is hard to implement. Nevertheless,
it can be formally derived.30 The basic idea follows.

The Baum auxiliary function can be constructed as

with

Note that since ωm are not functions of λ̃, the Lagrange
multiplier method can be used to maximize the Baum auxiliary
function. Since now

it follows that

We can optimize each term individually just as we did for
the single observation sequence case. The reestimated formulas
are as follows:

For UGHMM,

For UBHMM (eq 6) with constraint (eq 36),

µ̃i,k )

Ii
tot ∑

t)1
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( ∑
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For two-dimensional Poisson HMM (eq 4) with constraint (eq
36),

Assuming that these observation sequences are independent
of each other, i.e.,

which is a reasonable assumption in many cases, then the
weights become

and eqs 59, 60, 61, 62, 63, and 64 become
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ãij )
∑
m)1

M

∑
t)1

Tm-1

�t
(m)(i, j)

∑
m)1

M

∑
t)1

Tm-1

γt
(m)(i)

(68)

µ̃i )
∑
m)1

M

∑
t)1

Tm

γt
(m)(i)ot

(m)

∑
m)1

M

∑
t)1

Tm

γt
(m)(i)

(69)

σ̃i
2 )

∑
m)1

M

∑
t)1

Tm

γt
(m)(i)(ot

(m) - µ̃i)
2

∑
m)1

M

∑
t)1

Tm

γt
(m)(i)

(70)

f(R̃i) )
∑
m)1

M

∑
t)1

Tm

[log(1 - ot
(m)) - log ot

(m)]γt
(m)(i)

∑
m)1

M

∑
t)1

Tm

γt
(m)(i)

(71)

µ̃i,k )

Ii
tot ∑

m)1

M

∑
t)1

Tm

ot,k
(m)γt

(m)(i)

∑
m)1

M

∑
t)1

Tm

( ∑
k)1

d

ot,k
(m))γt

(m)(i)

(72)

Multivariate and Univariate Hidden Markov Modelings J. Phys. Chem. B, Vol. 114, No. 16, 2010 5403


