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Abstract
We describe the maximum-likelihood parameter estimation problem and how the Expectation-
Maximization (EM) algorithm can be used for its solution. We first describe the abstract
form of the EM algorithm as it is often given in the literature. We then develop the EM pa-
rameter estimation procedure for two applications: 1) finding the parameters of a mixture of
Gaussian densities, and 2) finding the parameters of a hidden Markov model (HMM) (i.e.,
the Baum-Welch algorithm) for both discrete and Gaussian mixture observation models.
We derive the update equations in fairly explicit detail but we do not prove any conver-
gence properties. We try to emphasize intuition rather than mathematical rigor.
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1 Maximum-likelihood

Recall the definition of the maximum-likelihood estimation problem. We have a density function
that is governed by the set of parameters (e.g., might be a set of Gaussians and could

be the means and covariances). We also have a data set of size , supposedly drawn from this
distribution, i.e., . That is, we assume that these data vectors are independent and
identically distributed (i.i.d.) with distribution . Therefore, the resulting density for the samples is

This function is called the likelihood of the parameters given the data, or just the likelihood
function. The likelihood is thought of as a function of the parameters where the data is fixed.
In the maximum likelihood problem, our goal is to find the that maximizes . That is, we wish
to find where

argmax

Often we maximize instead because it is analytically easier.
Depending on the form of this problem can be easy or hard. For example, if

is simply a single Gaussian distribution where , then we can set the derivative of
to zero, and solve directly for and (this, in fact, results in the standard formulas

for the mean and variance of a data set). For many problems, however, it is not possible to find such
analytical expressions, and we must resort to more elaborate techniques.

2 Basic EM

The EM algorithm is one such elaborate technique. The EM algorithm [ALR77, RW84, GJ95, JJ94,
Bis95, Wu83] is a general method of finding the maximum-likelihood estimate of the parameters of
an underlying distribution from a given data set when the data is incomplete or has missing values.

There are two main applications of the EM algorithm. The first occurs when the data indeed
has missing values, due to problems with or limitations of the observation process. The second
occurs when optimizing the likelihood function is analytically intractable but when the likelihood
function can be simplified by assuming the existence of and values for additional but missing (or
hidden) parameters. The latter application is more common in the computational pattern recognition
community.

As before, we assume that data is observed and is generated by some distribution. We call
the incomplete data. We assume that a complete data set exists and also assume (or

specify) a joint density function:

.
Where does this joint density come from? Often it “arises” from the marginal density function

and the assumption of hidden variables and parameter value guesses (e.g., our two exam-
ples, Mixture-densities and Baum-Welch). In other cases (e.g., missing data values in samples of a
distribution), we must assume a joint relationship between the missing and observed values.
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With this new density function, we can define a new likelihood function,
, called the complete-data likelihood. Note that this function is in fact a random variable

since the missing information is unknown, random, and presumably governed by an underlying
distribution. That is, we can think of for some function where
and are constant and is a random variable. The original likelihood is referred to as the
incomplete-data likelihood function.

The EM algorithm first finds the expected value of the complete-data log-likelihood
with respect to the unknown data given the observed data and the current parameter estimates.
That is, we define:

(1)

Where are the current parameters estimates that we used to evaluate the expectation and
are the new parameters that we optimize to increase .

This expression probably requires some explanation. The key thing to understand is that
and are constants, is a normal variable that we wish to adjust, and is a random

variable governed by the distribution . The right side of Equation 1 can therefore be
re-written as:

(2)

Note that is the marginal distribution of the unobserved data and is dependent on
both the observed data and on the current parameters, and is the space of values can take on.
In the best of cases, this marginal distribution is a simple analytical expression of the assumed pa-
rameters and perhaps the data. In the worst of cases, this density might be very hard to obtain.
Sometimes, in fact, the density actually used is but
this doesn’t effect subsequent steps since the extra factor, is not dependent on .

As an analogy, suppose we have a function of two variables. Consider where
is a constant and is a random variable governed by some distribution . Then

is now a deterministic function that could be maximized if
desired.

The evaluation of this expectation is called the E-step of the algorithm. Notice the meaning of
the two arguments in the function . The first argument corresponds to the parameters
that ultimately will be optimized in an attempt to maximize the likelihood. The second argument
corresponds to the parameters that we use to evaluate the expectation.
The second step (the M-step) of the EM algorithm is to maximize the expectation we computed

in the first step. That is, we find:

argmax

These two steps are repeated as necessary. Each iteration is guaranteed to increase the log-
likelihood and the algorithm is guaranteed to converge to a local maximum of the likelihood func-
tion. There are many rate-of-convergence papers (e.g., [ALR77, RW84, Wu83, JX96, XJ96]) but
we will not discuss them here.

Recall that . In the following discussion, we drop the subscripts from
different density functions since argument usage should should disambiguate different ones.
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A modified form of the M-step is to, instead of maximizing , we find some
such that . This form of the algorithm is called Generalized EM
(GEM) and is also guaranteed to converge.

As presented above, it’s not clear how exactly to “code up” the algorithm. This is the way,
however, that the algorithm is presented in its most general form. The details of the steps required
to compute the given quantities are very dependent on the particular application so they are not
discussed when the algorithm is presented in this abstract form.

3 FindingMaximumLikelihoodMixture Densities Parameters via EM

The mixture-density parameter estimation problem is probably one of the most widely used appli-
cations of the EM algorithm in the computational pattern recognition community. In this case, we
assume the following probabilistic model:

where the parameters are such that and each is a
density function parameterized by . In other words, we assume we have component densities
mixed together with mixing coefficients .

The incomplete-data log-likelihood expression for this density from the data is given by:

which is difficult to optimize because it contains the log of the sum. If we consider as incomplete,
however, and posit the existence of unobserved data items whose values inform us
which component density “generated” each data item, the likelihood expression is significantly
simplified. That is, we assume that for each , and if the sample was
generated by the mixture component. If we know the values of , the likelihood becomes:

which, given a particular form of the component densities, can be optimized using a variety of
techniques.

The problem, of course, is that we do not know the values of . If we assume is a random
vector, however, we can proceed.

We first must derive an expression for the distribution of the unobserved data. Let’s first guess
at parameters for the mixture density, i.e., we guess that are the
appropriate parameters for the likelihood . Given , we can easily compute
for each and . In addition, the mixing parameters, can be though of as prior probabilities
of each mixture component, that is component j . Therefore, using Bayes’s rule, we can
compute:
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and

where is an instance of the unobserved data independently drawn. When we
now look at Equation 2, we see that in this case we have obtained the desired marginal density by
assuming the existence of the hidden variables and making a guess at the initial parameters of their
distribution.

In this case, Equation 1 takes the form:

(3)

In this form, looks fairly daunting, yet it can be greatly simplified. We first note that
for ,

(4)

since . Using Equation 4, we can write Equation 3 as:

(5)

To maximize this expression, we can maximize the term containing and the term containing
independently since they are not related.
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To find the expression for , we introduce the Lagrange multiplier with the constraint that
, and solve the following equation:

or

Summing both sizes over , we get that resulting in:

For some distributions, it is possible to get an analytical expressions for as functions of everything
else. For example, if we assume -dimensional Gaussian component distributions with mean and
covariance matrix , i.e., then

(6)

To derive the update equations for this distribution, we need to recall some results from matrix
algebra.

The trace of a square matrix tr is equal to the sum of ’s diagonal elements. The trace of a
scalar equals that scalar. Also, tr tr tr , and tr tr which implies
that tr where . Also note that indicates the determinant of a
matrix, and that .

We’ll need to take derivatives of a function of a matrix with respect to elements of that
matrix. Therefore, we define to be the matrix with entry where is the

entry of . The definition also applies taking derivatives with respect to a vector. First,
. Second, it can be shown that when is a symmetric matrix:

if
if

where is the cofactor of . Given the above, we see that:

if
if diag

by the definition of the inverse of a matrix. Finally, it can be shown that:

tr
Diag
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Taking the log of Equation 6, ignoring any constant terms (since they disappear after taking
derivatives), and substituting into the right side of Equation 5, we get:

(7)

Taking the derivative of Equation 7 with respect to and setting it equal to zero, we get:

with which we can easily solve for to obtain:

To find , note that we can write Equation 7 as:

tr

tr

where .
Taking the derivative with respect to , we get:

diag diag

diag

diag

where and where . Setting the derivative to zero, i.e.,
diag , implies that . This gives

or
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Summarizing, the estimates of the new parameters in terms of the old parameters are as follows:

Note that the above equations perform both the expectation step and the maximization step
simultaneously. The algorithm proceeds by using the newly derived parameters as the guess for the
next iteration.

4 Learning the parameters of an HMM, EM, and the Baum-Welch
algorithm

A Hidden Markov Model is a probabilistic model of the joint probability of a collection of random
variables . The variables are either continuous or discrete observa-
tions and the variables are “hidden” and discrete. Under an HMM, there are two conditional
independence assumptions made about these random variables that make associated algorithms
tractable. These independence assumptions are 1), the hidden variable, given the
hidden variable, is independent of previous variables, or:

and 2), the observation, given the hidden variable, is independent of other variables, or:

In this section, we derive the EM algorithm for finding the maximum-likelihood estimate of the
parameters of a hidden Markov model given a set of observed feature vectors. This algorithm is also
known as the Baum-Welch algorithm.

is a discrete random variable with possible values . We further assume that
the underlying “hidden” Markov chain defined by is time-homogeneous (i.e., is inde-
pendent of the time ). Therefore, we can represent as a time-independent stochastic
transition matrix . The special case of time is described
by the initial state distribution, . We say that we are in state at time if . A
particular sequence of states is described by where is the state at
time .

A particular observation sequence is described as . The
probability of a particular observation vector at a particular time for state is described by:

. The complete collection of parameters for all observation distri-
butions is represented by .

There are two forms of output distributions we will consider. The first is a discrete observation
assumption where we assume that an observation is one of possible observation symbols
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. In this case, if , then . The second form
of probably distribution we consider is a mixture of multivariate Gaussians for each state where

.
We describe the complete set of HMM parameters for a given model by: . There

are three basic problems associated with HMMs:

1. Find for some . We use the forward (or the backward) procedure
for this since it is much more efficient than direct evaluation.

2. Given some and some , find the best state sequence that explains .
The Viterbi algorithm solves this problem but we won’t discuss it in this paper.

3. Find argmax . The Baum-Welch (also called forward-backward or EM for

HMMs) algorithm solves this problem, and we will develop it presently.

In subsequent sections, we will consider only the first and third problems. The second is addressed
in [RJ93].

4.1 Efficient Calculation of Desired Quantities

One of the advantages of HMMs is that relatively efficient algorithms can be derived for the three
problems mentioned above. Before we derive the EM algorithm directly using the function, we
review these efficient procedures.
Recall the forward procedure. We define

which is the probability of seeing the partial sequence and ending up in state at time .
We can efficiently define recursively as:

1.

2.

3.

The backward procedure is similar:

which is the probability of the ending partial sequence given that we started at state
at time . We can efficiently define as:

1.

2.

3.
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We now define

which is the probability of being in state at time for the state sequence . Note that:

Also note that because of Markovian conditional independence

so we can define things in terms of and as

We also define

which is the probability of being in state at time and being in state at time . This can also
be expanded as:

or as:

If we sum these quantities across time, we can get some useful values. I.e., the expression

is the expected number of times in state and therefore is the expected number of transitions away
from state for . Similarly,

is the expected number of transitions from state to state for . These follow from the fact that

and

where is an indicator random variable that is when we are in state at time , and is
a random variable that is when we move from state to state after time .
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Jumping the gun a bit, our goal in forming an EM algorithm to estimate new parameters for the
HMM by using the old parameters and the data. Intuitively, we can do this simply using relative
frequencies. I.e., we can define update rules as follows:

The quantity
(8)

is the expected relative frequency spent in state at time 1.
The quantity

(9)

is the expected number of transitions from state to state relative to the expected total number of
transitions away from state .

And, for discrete distributions, the quantity

(10)

is the expected number of times the output observations have been equal to while in state
relative to the expected total number of times in state .

For Gaussian mixtures, we define the probability that the component of the mixture
generated observation as

where is a random variable indicating the mixture component at time for state .
From the previous section on Gaussian Mixtures, we might guess that the update equations for

this case are:

When there are observation sequences the being of length , the update equations be-
come:
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and

These relatively intuitive equations are in fact the EM algorithm (or Balm-Welch) for HMM
parameter estimation. We derive these using the more typical EM notation in the next section.

4.2 Estimation formula using the function.

We consider to be the observed data and the underlying state sequence
to be hidden or unobserved. The incomplete-data likelihood function is given by

whereas the complete-data likelihood function is . The function therefore
is:

where are our initial (or guessed, previous, etc.) estimates of the parameters and where is the
space of all state sequences of length .

Given a particular state sequence , representing is quite easy. I.e.,

The function then becomes:

(11)
Since the parameters we wish to optimize are now independently split into the three terms in the
sum, we can optimize each term individually.

The first term in Equation 11 becomes

since by selecting all , we are simply repeatedly selecting the values of , so the right hand
side is just the marginal expression for time . Adding the Lagrange multiplier , using the
constraint that , and setting the derivative equal to zero, we get:

For the remainder of the discussion any primed parameters are assumed to be the initial, guessed, or previous param-
eters whereas the unprimed parameters are being optimized.

Note here that we assume the initial distribution starts at instead of for notational convenience. The
basic results are the same however.
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Taking the derivative, summing over to get , and solving for , we get:

The second term in Equation 11 becomes:

because for this term, we are, for each time looking over all transitions from to and weighting
that by the corresponding probability – the right hand side is just sum of the joint-marginal for time

and . In a similar way, we can use a Lagrange multiplier with the constraint to
get:

The third term in Equation 11 becomes:

because for this term, we are, for each time , looking at the emissions for all states and weighting
each possible emission by the corresponding probability – the right hand side is just the sum of the
marginal for time .

For discrete distributions, we can, again, use use a Lagrange multiplier but this time with the
constraint . Only the observations that are equal to contribute to the proba-
bility value, so we get:

For Gaussian Mixtures, the form of the function is slightly different, i.e., the hidden vari-
ables must include not only the hidden state sequence, but also a variable indicating the mixture
component for each state at each time. Therefore, we can write as:

where is the vector that indicates the mixture component for each
state at each time. If we expand this as in Equation 11, the first and second terms are unchanged
because the parameters are independent of which is thus marginalized away by the sum. The
third term in Equation 11 becomes:

This equation is almost identical to Equation 5, except for an addition sum component over the
hidden state variables. We can optimize this in an exactly analogous way as we did in Section 3,
and we get:
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and

As can be seen, these are the same set of update equations as given in the previous section.
The update equations for HMMs with multiple observation sequences can similarly be derived

and are addressed in [RJ93].
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