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We consider the analysis of a class of experiments in which the number of photons in consecutive time
intervals is recorded. Sequence of photon counts or, alternatively, of FRET efficiencies can be studied
using likelihood-based methods. For a kinetic model of the conformational dynamics and state-depen-
dent Poisson photon statistics, the formalism to calculate the exact likelihood that this model describes
such sequences of photons or FRET efficiencies is developed. Explicit analytic expressions for the likeli-
hood function for a two-state kinetic model are provided. The important special case when conforma-
tional dynamics are so slow that at most a single transition occurs in a time bin is considered. By
making a series of approximations, we eventually recover the likelihood function used in hidden Markov
models. In this way, not only is insight gained into the range of validity of this procedure, but also an
improved likelihood function can be obtained.

Published by Elsevier B.V.
1. Introduction

Conformational dynamics of a single molecule can be studied by
analyzing fluorescence emission from dyes attached to the mole-
cule [1–4]. Photophysical properties of the dyes depend on the dis-
tance to a quencher or, in the case of Förster resonance energy
transfer (FRET), on the distance between donor and acceptor dyes.
Conformational changes lead to changes in these distances, which
are reflected in the fluctuations of fluorescence emission. The prob-
lem is how to extract the information about the conformational
dynamics.

Fig. 1 schematically illustrates a simple example of the problem
considered here. Suppose that a protein can exist in only folded and
unfolded state (see Fig. 1(a)). Fig. 1(b) shows a conformational tra-
jectory as the system jumps between the two states. However, this
trajectory is not observed directly. What can be observed are pho-
tons emitted by the donor and acceptor fluorescent dyes attached
to the molecule (see Fig. 1(c)). Since the average distance between
the dyes is different in the two states, the corresponding donor and
acceptor fluorescence intensity will also differ. Time resolution is
not always sufficient to measure photon arrival times, in which case
only numbers of photons during observation (bin) time are moni-
tored. Fig. 1(d) shows a time-binned photon trajectory where the
numbers of acceptor (NA) and donor (ND) photons in time bins of
the same duration T are determined. In this paper, we consider only
this type of measurements. The sequence of photon counts can be
converted into a sequence of FRET efficiencies defined in each bin
as the fraction of acceptor photons, i.e., E = NA/(NA + ND).
B.V.
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A widely used method of analyzing photon counts is to con-
struct histograms of photon counts or, more commonly, the histo-
grams of FRET efficiencies. In such a procedure, the correlation
between successive bins resulting from conformational dynamics
is apparently lost. A different approach involves the analysis of
the whole sequence of photon counts using a likelihood function.
The starting point is the probability distribution of observing the
sequence of photon counts given a model of conformational
dynamics. This distribution is considered as the likelihood that
the model of conformational dynamics describes the observed or-
dered sequence of photons. The likelihood function is then ana-
lyzed to solve various inference problems. These include finding
optimal model parameters (by using gradient methods, or expecta-
tion–maximization, or Monte-Carlo methods), establishing the
most likely conformational state trajectory (e.g., using the Viterbi
algorithm), identification of the number of conformations, and
model comparison among others. During the last decade, likeli-
hood-based methods have been used to analyze many different
biophysical experiments, including those dealing with ion chan-
nels [5,6], molecular motors [7], protein dynamics [8], and unzip-
ping of DNA by nanopores [9]. Even in the specialized area of
single-molecule photon counting, there is now a rather extensive
literature [10–21].

Finding the likelihood function that corresponds to a specific
physical problem is the first and most crucial step in all likeli-
hood-based methods. We recently presented such a study for the
sequences of photons with observed arrival times and photon col-
ors [15]. In this paper, we will consider the likelihood function to
handle single-molecule experiments where only the numbers of
photons in time bins are recorded.
/j.chemphys.2011.06.006
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Fig. 1. FRET and two-state protein folding. (a) Kinetic scheme that describes the
folding and unfolding of a protein with attached donor and acceptor dyes. (b) The
conformational trajectory which is of interest but invisible. (c) The observed photon
trajectory when the arrival time of each detected photon is recorded. (d) A photon
trajectory when only the numbers of acceptor and donor photons in a time bin of
duration T is recorded.
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Sequences of photon counts and FRET efficiencies have been pre-
viously analyzed in the framework of hidden Markov models (HMM)
[14,16,19]. In this technique, a molecule can change its state only at
regularly spaced discrete times [22]. Being in a particular state, the
molecule ‘‘emits a signal’’ (e.g., a number of photons or FRET effi-
ciency) with an ‘‘emission’’ probability distribution associated with
that state. Lee [16] pointed out to the fundamental limitation in the
application of HMM to single-molecule data since transitions be-
tween conformational states in HMM are synchronized with the
beginning of the time bin. Liu et al. [19] found that the parameters
of the model of conformational dynamics determined using HMM
are sensitive to the choice of the ‘‘emission’’ distribution.

In this paper, we focus on the study of the likelihood function
for the sequence of photons detected in consecutive time bins.
Other inference problems such as methods of optimization are out-
side the scope of the present paper. Our approach is based on the
exact likelihood function corresponding to the model of photon
statistics and conformational dynamics described below in Sec-
tion 2. Although we are primarily interested in FRET, in the next
section we will assume that all detected photons have the same
color. The reason is that the mathematical formalism is more trans-
parent in this case and can readily be generalized to FRET with
two- and even three-color photons [2], as will be shown below
in Section 4. The exact likelihood function is rather complicated.
Therefore, we make a series of controlled approximations to derive
likelihood functions that are practically useful, rather then simply
postulating them. The relationship of these likelihood functions
with those used in HMM will be established. In addition to the se-
quence of photon counts, the sequence of FRET efficiencies and cor-
responding likelihood functions are considered in Section 5. The
last section summarizes results and gives concluding remarks.

2. The model

The model of conformational and photophysical dynamics
adopted here is as follows. The molecule has M discrete conforma-
Please cite this article in press as: I.V. Gopich, Chem. Phys. (2011), doi:10.1016
tional states. Being in a particular state, the molecule emits pho-
tons whose statistics are Poissonian (shot noise). This means that
when the system is in state i, the distribution of the number of
photons, N, detected in a time bin of duration T is (niT)-
N exp(�niT)/N!, where ni is the average number of photons that
are detected per unit time (i.e., the photon count rate of state i).
The mean number of photons in a bin is hNi = niT. For the photons
of two colors, statistics of photons depend on two parameters, i.e.,
acceptor, nAi, and donor, nDi, photon count rates.

The interconversion among conformations is described by a set
of rate equations for the population of state i at time t, pi(t). In ma-
trix notation, these equations are written as dp/dt = Kp. The ijth
off-diagonal element of the rate matrix K, Kij, is the rate constant
that describes the transition from state j to i. The diagonal element,
Kii, describes escape from state i and is equal to the negative of the
sum of all rates that deplete state i, Kii ¼ �

P
j–iKji. The vector of

normalized equilibrium populations, peq, is obtained by solving
Kpeq = 0. Detailed balance imposes the constraints on the matrix
elements, Kijpeq(j) = Kjipeq(i).

The above model of photon statistics is based on the separation
of all processes that influence fluorescence emission into fast and
slow compared to the average time between detected photons,
which is usually on the microsecond time scale. When all fluctua-
tions are fast, the photon statistics are Poissonian. A detection de-
vice such as CCD camera may distort this distribution. Here we
follow Liu et al. [19] and assume that, after appropriate scaling,
the resulting fluorescence intensity is still Poissonian. The Poisson
distribution depends on the count rate that involves the parame-
ters of fast processes. The count rate is determined by many factors
such as dye excitation, energy transfer, decay of the donor and
acceptor excited states, spectral crosstalk, linker and dye orienta-
tion dynamics on submicrosecond time scale, as well as the detec-
tion efficiency and Poissonian background noise [23]. Fortunately,
all these complications should be considered only if one wishes to
interpret the extracted count rates in structural terms (e.g., to get
the interdye distance). They do not affect the parameters of confor-
mational dynamics.

Dynamical processes that are comparable or slower than the
mean interphoton time modulate photon count rates and alter
the statistics of photon counts. We define a ‘‘conformation’’ in a
broad sense as any state of the molecule that has different photon
count rates. This may be due to a different interdye distance that
changes on a microsecond time scale and slower. This may be also
due to ‘‘long-lived’’ photophysical states of the fluorophores
[20,24], labeling permutations [3,25], etc.

The kinetic model of conformational dynamics is not restrictive
as may appear at first sight. If conformational space is continuous
(e.g., diffusion on a free energy surface), we can discretize it and
construct the rate matrix from the finite difference approximation
of the appropriate differential evolution operator. To describe con-
formational states whose lifetime distribution is multiexponential,
we can introduce several, appropriately connected, Markovian
states that have identical photon count rates.

It is interesting to note that the model adopted in this paper is a
special case of what is called a Markov Modulated Poisson Process
in the statistics literature [26]. This model has been applied to treat
photon sequences in time-resolved experiments with recorded
interphoton times [13,15,17,20,21].
3. Photons of the same color

We start by considering photons of one color. First, we obtain
the exact likelihood function for a sequence of photon counts
assuming that conformational dynamics are described by
conventional rate equations and statistics of photons in each
/j.chemphys.2011.06.006
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conformational state are Poissonian (see Section 2). Then we
discuss various approximations that eventually lead to the
likelihood function used in the standard HMM.

The likelihood function is equal to the probability distribution
of observing a sequence of photon counts in consecutive time bins
(i.e., N1,N2,N3, . . .). This distribution is related to the probability to
detect N photons during the time interval of duration T and to be in
conformational state i at the end of the time interval, given the
molecule was in state j at the beginning. We denote this probabil-
ity by Pij(N). In general, this is a complex object because the system
can visit many states during the time interval and the number of
photon counts is correlated with the visited states.

Let assume for simplicity that the observed sequence of photons
consists of three time bins with recorded numbers of one-color
photons N1, N2, and N3. The probability to observe such sequence
(the likelihood function) is

L ¼
XM

i;j;k;l¼1

PlkðN3ÞPkjðN2ÞPjiðN1ÞpeqðiÞ ¼ 1>PðN3ÞPðN2ÞPðN1Þpeq ð1Þ

where P(N) is the matrix with elements Pij(N) and 1> is the trans-
pose of a column vector with every element equal to unity. This
probability has a transparent interpretation. Reading from right to
left, the first term, peq(i), is the probability that the system is in state
i at the beginning of the first time interval. Since i can be any state,
we sum over i. The next term Pji(N1) is the probability that the sys-
tem starts in the state i at the beginning of the interval and is in
state j at the end and N1 photons have been detected. The next term,
Pkj(N2), corresponds to the second bin, in which N2 photons have
been detected, and so on.

The generalization to a larger number of time bins (J) is:

L ¼ 1>PðNJÞ � � �PðN3ÞPðN2ÞPðN1Þpeq ð2Þ

The above expression is the likelihood that the parameters of the ki-
netic model (i.e., the rates Kij and photon count rates ni) describe the
observed sequence of photon counts. The likelihood function is pre-
sented as a product of matrices. Note this formally exact likelihood
function involves the probabilities Pij(N) that depend on the initial
(j) and final (i) states in the bin interval.

In order to be able to estimate the model parameters, we need
to specify the matrix P(N). This matrix can be found analytically
only for a two-state system. The two states (e.g., unfolded and
folded states in Fig. 1(a)) are characterized by the photon count
rates n1 and n2. The transitions between the states are described
by the rates k1 (1 ? 2) and k2 (2 ? 1). The exact expressions for
the matrix elements Pij(N) can be obtained by averaging the Poisso-
nian distribution of photon counts over the distribution of the time
spent in one of the two interconverting states. This distribution can
be found by generalizing the distribution in Ref. [27]. For n2 > n1, it
can be shown that the diagonal (ii = 11,22) and off-diagonal
(ij = 12,21) matrix elements are

Pii ¼
ðniTÞN

N!
e�ðniþkiÞT þ ki

Z T

0

½n1t þ n2ðT � tÞ�N

N!
e�ðn1þk1Þt�ðn2þk2ÞðT�tÞ

� k1ðT � tÞ=ðk2tÞð Þi�3=2I1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k1k2tðT � tÞ

q� �
dt

Pij ¼ kj

Z T

0

½n1t þ n2ðT � tÞ�N

N!
e�ðn1þk1Þt�ðn2þk2ÞðT�tÞ

� I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k1k2tðT � tÞ

q� �
dt ð3Þ

where I0(x) and I1(x) are the modified Bessel functions. Eqs. (2) and
(3) provide an exact analytical expression for the likelihood func-
tion in the case of two-state conformational dynamics. This result
can be readily generalized to photons of two and three photon
colors.
Please cite this article in press as: I.V. Gopich, Chem. Phys. (2011), doi:10.1016
Even in the case of the two-state model, the exact likelihood
function is rather complicated. To simplify it and to treat more
than two states, we start with the generating function of the matrix
P(N), for which a compact expression was previously obtained
[23,28]

X1
N¼0

kNPðNÞ ¼ eðK�ð1�kÞN ÞT ð4Þ

Here N is a diagonal matrix with the photon count rates of the con-
formations on the diagonal (N ij ¼ nidij, where dij is the Kronecker
delta defined so that it is unity when i = j and zero otherwise). This
relation means that P(N) is the coefficient of kN in the expansion of
the matrix exponential, expððK � ð1� kÞN ÞTÞ, in powers of k.

To make progress, we consider the important special case when
conformational dynamics is so slow that at most a single transition
can occur during the bin time. In this limit, the transition rates are
small, KijT� 1, and one can expand the generating function in Eq.
(4) to linear order in K [29]

X1
N¼0

kNPðNÞ � e�ð1�kÞN T þ
Z T

0
e�ð1�kÞN ðT�tÞKe�ð1�kÞN tdt ð5Þ

Expanding the right hand side in a power series in k and equating
the coefficients of kN, we find

PiiðNÞ � ð1þ KiiTÞ
ðniTÞN

N!
e�niT ¼ 1�

X
j–i

KjiT

 !
ðniTÞN

N!
e�niT ð6Þ

When i – j,

PijðNÞ � KijT
Z T

0

½njt þ niðT � tÞ�N

N!
e�njt�niðT�tÞdt=T ð7Þ

Both of these equations have a simple physical interpretation.
Pii(N) corresponds to the molecule that has the same state i in
the beginning and in the end of the bin time. In the limit of slow
conformational dynamics, this means that no transition has oc-
curred during the bin time. Therefore, the probability Pii(N) is the
product of the Poisson distribution of photon counts in state i (with
count rate ni) and the probability to have no transitions, which we
denote by Aii. This probability is Aii ¼ 1�

P
j–iKjiT . The above

expansion is valid only if
P

j–iKjiT < 1; therefore, Aii is positive.
Now consider Pij(N) with different initial and final states, i – j.

In the limit of slow conformational dynamics, this means that a
transition from j to i must have occurred at some moment t in
the time interval 0 6 t 6 T. The probability that this happened is
approximately Aij = KijT. Note that the probabilities Aij are normal-
ized,

PM
i¼1Aij ¼ 1 (which means that the molecule either stays in

state i or jumps to some other state). If the transition from j to i oc-
curred at time t, then the mean number of photons is njt + ni(T � t)
and the distribution of photons in such bins is Poissonian with the
corresponding mean. Since the transition can occur anywhere in
the interval with equal probability, one must average over t, as
done in Eq. (7).

Eqs. (6) and (7) can be combined into a single expression valid
for i = j and i – j:

PijðNÞ � AijBijðNÞ ð8Þ

where Aij = dij + KijT and

BijðNÞ ¼
Z T

0

½nit þ njðT � tÞ�N

N!
e�nit�njðT�tÞdt=T ð9Þ

The integral in the above equation can be evaluated analytically and
Bij(N) can be expressed in terms of the incomplete gamma-function,
C(N,nT):
/j.chemphys.2011.06.006
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(a)

(b)

Fig. 2. Comparison of various approximations for the probability Bij(N) of detecting
N photons in the bins that undergo a single j ? i transition. The exact (EX)
distribution (dots, Eq. (10)) is compared with the negative binomial (NB) distribu-
tion (open circles, Eqs. (13) and (12)), the Gaussian (G) distribution (solid line, Eqs.
(12) and (14)), the Poisson (PA) distribution with the average count rate (crosses,
Eq. (15)), and the Poisson distribution (P) with the photon count rate of the initial
state (triangles, Eq. (16)), which is implicit in the standard hidden Markov models.
Mean numbers of photons in a bin in states i and j are (a) niT = 10, njT = 20; (b)
niT = 10, njT = 50.
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BijðNÞ ¼
CðN þ 1;niTÞ � CðN þ 1;njTÞ

ðnj � niÞTN!
ð10Þ

Note that Bij(N) is normalized as
P1

N¼0BijðNÞ ¼ 1. The diagonal term
is just a Poisson distribution, Bii(N) = (niT)Nexp(�niT)/N!

The likelihood function for three bins of photons in Eq. (1) can
be written in terms of Aij and Bij(N) as

L ¼
XM

i;j;k;l¼1

AlkBlkðN3ÞAkjBkjðN2ÞAjiBjiðN1ÞpeqðiÞ ð11Þ

The above equations present the likelihood function that can be ap-
plied to study conformational dynamics at times long compared to
the bin time. It is assumed that no more than one transition can oc-
cur during the bin time. The structure of this likelihood function is
similar to that in HMM [22] if Aij are identified with the transition
probabilities from j to i and Bij(N) with the ‘‘emission’’ probabilities.
However, Bij(N) depends on both initial and final conformational
states, unlike HMM where it is implied that a transition can occur
only between two bins (which we refer here to as the standard
HMM) and, therefore, the ‘‘emission’’ probability depends only on
the initial state. Note that our likelihood function is to be read from
right to left and the matrix of transition probabilities is the trans-
pose of that used in statistical literature [22].

Now we turn to the consideration of the ‘‘emission’’ distribution
Bij(N). The diagonal term, Bii(N), is just a Poisson distribution.
Hence we focus on the distribution with nonequal initial and final
states, i – j. The analytical expression for this distribution,
although it is available for one-color photons, cannot be extended
to photons of two and three colors in general. Therefore, we pro-
ceed to various approximations, which will be also employed later
in Section 4. These approximations are based on the mean lij and
variance r2

ij of the number of photons N in the bins that have a
transition from j to i during the bin time. They are defined as
lij = hNiij and r2

ij ¼ hN
2iij � hNi

2
ij, where h. . .iij means averaging with

distribution Bij(N), Eq. (9). Evaluating the averages, we have:

lij ¼ ðni þ njÞT=2

r2
ij ¼ lij þ ðni � njÞ2T2=12

ð12Þ

An approximation of Bij(N) that gives the correct mean and var-
iance can be obtained using a negative binomial distribution:

BijðNÞ �
CðN þ rijÞ
N!CðrijÞ

lij

r2
ij

 !rij

1�
lij

r2
ij

 !N

ð13Þ

where rij ¼ l2
ij=ðr2

ij � lijÞ. This distribution can be considered as the
Poisson distribution with a random count rate distributed according
to a gamma distribution. The negative binomial distribution re-
duces to the Poisson distribution when ni = nj.

When N is sufficiently large, we can use a Gaussian distribution
with the correct mean and variance, Eq. (12):

BijðNÞ � 2pr2
ij

� ��1=2
exp �

ðN � lijÞ
2

2r2
ij

 !
ð14Þ

Another approximation of Bij(N) is to use the midpoint rule to
evaluate the integral in Eq. (9) (i.e., set t = T/2). In this way, we find

BijðNÞ �
ððni þ njÞT=2ÞN

N!
e�ðniþnjÞT=2 ð15Þ

This approximation is the Poisson distribution with a count rate in
between ni and nj. This gives the correct mean number of photons
averaged over all bins that have a transition from j to i. However,
the approximation results in the incorrect variance, which is equal
to the mean in this case.
Please cite this article in press as: I.V. Gopich, Chem. Phys. (2011), doi:10.1016
The crudest approximation is to evaluate the integral in Eq. (9)
by setting t = 0:

BijðNÞ �
ðnjTÞN

N!
e�njT ð16Þ

This is the Poisson distribution with the count rate of the initial
state. Substituting Eq. (16) into Eq. (11), we get the likelihood func-
tion for a three-bin sequence of photons that corresponds to this
approximation

L ¼
XM

i;j;k¼1

ðnkTÞN3

N3!
e�nkT Akj

ðnjTÞN2

N2!
e�njT Aji

ðniTÞN1

N1!
e�niT peqðiÞ ð17Þ

Here we used
P

lAlk ¼ 1. This is the likelihood functions that one
would use when applying the standard HMM to binned trajectories
with photons of one color.

In Fig. 2, we compare various approximation for Bij(N), Eqs.
(13)–(16) with the exact result in Eq. (10). It can be seen that even
the simplest approximation (a Poisson distribution with the aver-
age count rate, Eq. (15), labeled as PA in Fig. 2) improves the ‘‘emis-
sion’’ probability associated with the initial state, Eq. (16) (labeled
as P). This is the simplest way of improving the likelihood function
in Eq. (17). The Gaussian (G) approximation in Eq. (14) or more
sophisticated negative binomial (NB) distribution in Eq. (13) are
preferable when the fluorescence intensity of the initial and final
states differ considerably. Note that the figure refers to the bins
that have a transition during the bin time. The number of such bins
is small when the conformational dynamics are slow. The majority
/j.chemphys.2011.06.006
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of the bins is described by the Poisson ‘‘emission’’ probability,
Bii(N) = (niT)N/N!exp(�niT), which is the same for all
approximations.

4. Two and three color FRET

In this section we extend the previous ideas and approxima-
tions to FRET where photons of two or more colors are observed.
We start with the likelihood function for a sequence of donor
and acceptor photon counts (see Fig. 1(d)). The molecule in confor-
mational state i now emits acceptor and donor photons distributed
according to a Poisson distribution with count rates nAi and nDi. The
likelihood function for a sequence containing both donor and
acceptor photons is the generalization of Eq. (2). This can be writ-
ten in terms of the probability Pij(NA,ND) to detect NA acceptor and
ND donor photons and to be in state i at the end of the bin time, gi-
ven that the molecule is in state j at the beginning. All these prob-
abilities are considered as elements of matrix P(NA,ND).1 The
generating function for P(N) discussed in the previous section (see
Eq. (4)) can be readily generalized to account for two photon colors
[23,28]:

X1
NA ;ND¼0

kNA
A kND

D PðNA;NDÞ ¼ eðK�ð1�kAÞN A�ð1�kDÞN DÞT ð18Þ

where ½N A�ij ¼ nAidij and [ND]ij = nDidij. The likelihood function for a
sequence of J bins with two-color photons is (c.f. Eq. (2))

L ¼ 1>PðNAJ;NDJÞ � � �PðNA3;ND3ÞPðNA2;ND2ÞPðNA1;ND1Þpeq ð19Þ

These expressions provide an exact likelihood function for a time-
binned sequence of donor and acceptor photons.

As before, we are interested in the case when conformational
dynamics are so slow that at most one transition occurs during
the bin time. In this case the generating function can be expanded
to linear order in K (see Eq. (5)), resulting in the probability that
generalizes Eq. (8):

PijðNA;NDÞ � AijBijðNA;NDÞ ð20Þ

Here the transition probability Aij is the same as before, Aij = dij + -
KijT. The ‘‘emission’’ probability is

BijðNA;NDÞ ¼
Z T

0

½nAit þ nAjðT � tÞ�NA

NA!

� ½nDit þ nDjðT � tÞ�ND

ND!
e�nit�njðT�tÞdt=T ð21Þ

where ni = nAi + nDi. This is just what one would expect from the
extension of the expression in Eq. (9) for one-color photons to donor
and acceptor photons. However, there is no closed form expression
for this integral in general. When i = j, Bij(NA,ND) in Eq. (21) is the
product of two Poisson distributions with the acceptor and donor
count rates nAi and nDi. As in the case of one-color photons,
Bij(NA,ND) (i – j) depends on both initial and final states in the bin,
unlike the ‘‘emission’’ probability in the standard HMM.

To simplify the ‘‘emission’’ probability, we can make the same
series of approximations for the off-diagonal Bij(NA,ND), i – j, as be-
fore. First, we find the mean (lAij and lDij), variance (r2

Aij and r2
Dij),

and the correlation (qij) of acceptor and donor photon counts in the
bins that have a single j ? i transition. They are defined as
lFij = hNFiij, r2

Fij ¼ hðNF � lFijÞ
2iij, and q2

ij ¼ hðNA � lAijÞðND � lDijÞiij=
rAijrDij, where index F = A,D denotes acceptor or donor, h. . .iij
1 The joint probability distribution of acceptor and donor photons in all bins of
duration T, P(NA,ND), is obtained by averaging over all initial and final conformational
states, P(NA,ND) = 1>pP(NA,ND)peq. This quantity is central to all approaches [4,23,30]
that focus on analyzing FRET efficiency histograms.
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means averaging using the distribution Bij(NA,ND) in Eq. (21). Eval-
uating the averages, we find

lFij ¼ ðnFi þ nFjÞT=2

r2
Fij ¼ lFij þ ðnFi � nFjÞ2T2=12

qijrAijrDij ¼ ðnAi � nAjÞðnDi � nDjÞT2=12

ð22Þ

Previously we presented two approximations that have the cor-
rect mean and variance, namely, a discrete negative binomial and a
continuous Gaussian distributions. Here for the sake of simplicity
we present only the generalization of Eq. (14), which is a bivariate
Gaussian distribution:

BijðNA;NDÞ� 2prAijrDij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�q2

ij

q� ��1

�exp �
ðNA�lAijÞ

2

2r2
Aijð1�q2

ijÞ
�
ðND�lDijÞ

2

2r2
Dijð1�q2

ijÞ
þ

qijðNA�lDijÞðND�lDijÞ
rAijrDijð1�q2

ijÞ

 !

ð23Þ

where the parameters of the Gaussian are given by Eq. (22). As be-
fore, this approximation is applied only when i – j.

The approximation that generalizes Eq. (15) is the product of
the Poisson distributions for acceptor and donor photons with
the count rates in between those in state i and j

BijðNA;NDÞ �
ððnAi þ nAjÞT=2ÞNA

NA!

ððnDi þ nDjÞT=2ÞND

ND!
e�ðniþnjÞT=2 ð24Þ

where ni = nAi + nDi is the total count rate in state i. This distribution
has the correct mean but incorrect variance and correlation.

Finally, the approximation in the spirit of HMM that involves
only the parameters of the state in the beginning of the bin (j) is

BijðNA;NDÞ �
ðnAjTÞNA

NA!

ðnDjTÞND

ND!
e�njT ð25Þ

This is a generalization of Eq. (16) for one-color photons.
The distribution in the above equation is one of the ‘‘emission’’

probabilities used in the framework of HMM [19] in the analysis of
binned sequences of acceptor and donor photon counts. It follows
from our derivation that the likelihood function presented as the
product of the transition and ‘‘emission’’ probabilities (as implied
in the standard HMM) can be used only when conformational
dynamics are slow on the time scale of the bin time. Even in this
case, the ‘‘emission’’ probability can be improved by using the
approximations in Eq. (23) or Eq. (24) instead of the simple Poisson
distribution as in Eq. (25).

4.1. Three-color FRET

The likelihood function and its approximations for one- and
two-color photons can be readily extended to three-color FRET.
Consider a molecule with three labels attaches, namely, one donor,
D, and two acceptors, A and B. The molecule in conformational
state i can emit three kinds of photons with count rates nAi, nBi,
and nDi. As in the case of two-color FRET, it is not necessary to have
a microscopic theory for these quantities in order to be able to ex-
tract the rates of conformational changes from photon trajectories.
Instead of presenting the straightforward generalization of the pre-
vious theory, we right away consider the case of slow conforma-
tional dynamics so that only none or one transition occurs during
a bin. In this case the likelihood function for three bins can be writ-
ten as

L ¼ 1>PðNA3;NB3;ND3ÞPðNA2;NB2;ND2ÞPðNA1;NB1;ND1Þpeq ð26Þ

where

PijðNA;NB;NDÞ � AijBijðNA;NB;NDÞ ð27Þ
/j.chemphys.2011.06.006
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with the transition probability Aij = dij + KijT and the ‘‘emission’’
probability

BijðNA;NB;NDÞ ¼
Z T

0

½nAit þ nAjðT � tÞ�NA

NA!

½nBit þ nBjðT � tÞ�NB

NB!

� ½nDit þ nDjðT � tÞ�ND

ND!
e�nit�njðT�tÞdt=T ð28Þ

where ni = nAi + nBi + nDi. As before, this can be evaluated numeri-
cally or various approximations can be made.

The approximations for the ‘‘emission’’ probability for two-color
FRET considered before can be readily extended to three colors. The
approximation in the spirit of HMM [19], which generalizes Eq.
(25), is the product of three Poisson distributions that involve only
the parameters of the state at the beginning of the bin (j). The
approximation that generalizes Eq. (24) is the product of three
Poisson distributions with the count rates in between those in
states i and j:

BijðNA;NB;NDÞ �
lNA

Aij

NA!

lNB
Bij

NB!

lND
Dij

ND!
e�lAij�lBij�lDij ð29Þ

where lFij = (nFi + nFj)T/2 and index F now stands for A, B, and D.
The generalization of the Gaussian approximation in Eq. (23) in-

volves three variables:

BijðNA;NB;NDÞ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ3 det R
q e

�1
2

P
F;F0
ðNF�lFijÞðNF 0 �lF 0 ijÞ½R

�1 �FF 0

ð30Þ

where R is the covariance matrix with elements [R]FF 0 = lFijdFF 0 +
(nFi � nFj)(nF 0 i � nF 0j)T2/12 (cf. Eq. (22)). In the above equation, the
summation is over all F and F 0, which take values A, B, and D.

5. FRET efficiencies

Instead of studying sequences of donor and acceptor photon
counts, one can construct and then analyze sequences of FRET effi-
ciencies. They are particularly advantageous for the single-mole-
cule measurements of the molecules diffusing through a laser
spot because FRET efficiencies are less influenced by the fluctua-
tions of the laser intensity inside the spot [31]. FRET efficiencies
are calculated from photon counts in a bin as Ei = NAi/(NAi + NDi).
For example, the sequence of photons shown in Fig. 1(d) can be
converted to the sequence of FRET efficiencies, E1 = NA1/(NA1 + ND1),
E2 = NA2/(NA2 + ND2), E3 = NA3/(NA3 + ND3). The likelihood that
parameters of the model are consistent with such a trajectory
now depends on one variable (FRET efficiency), not two as in Eq.
(19). The likelihood function for the sequence of J bins can be ex-
pressed in terms of matrix P(E), similar to Eq. 2:

L ¼ 1>PðEJÞ � � �PðE3ÞPðE2ÞPðE1Þpeq ð31Þ

The matrix element Pij(E) is the probability that FRET efficiency falls
into an interval E ± h of size h for the bins in which the molecule is
in state i at the end of the bin interval and in state j at the begin-
ning.2 This probability is related to Pij(NA,ND) and can be obtained
from the latter by summing over NA and ND such that NA/
(NA + ND) = E ± h.

Now we proceed directly to the limit of slow conformational
transitions, in which case Pij(E) can be presented as the product
of the transition probabilities, Aij = dij + KijT, and the ‘‘emission’’
probabilities, Bij(E), similarly to Eqs. (8) and (20):

PijðEÞ � AijBijðEÞ ð32Þ
2 The FRET efficiency histogram, FEH(E), which is obtained from the set of
efficiencies irrespective of order, is related to P(E) as FEH(E) = 1>P(E)peq.
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The ‘‘emission’’ probability Bij(E) is the probability of E when at
most a single transition occurs in a bin. This can be obtained only
numerically from Bij(NA,ND), Eq. (21), by summing over NA and ND.
So the strategy we adopt here to simplify Bij(E) is to find the mean
and variance of Bij(E) and then to use them to construct either a Beta
or a Gaussian distribution.

The mean FRET efficiency of all bins in which the molecule is in
state j and i at the beginning and end of the bin time is complicated
unless the total count rates are independent of conformation. Since
the idea of using FRET efficiency rather than the number of accep-
tor and donor photons is only a good one when the total count rate
does not depend on conformation, we shall now assume that this is
the case here, i.e., nAi + nDi = n is independent of i. Then, evaluating
the average hEiij � hNA/(NA + ND)iij using the distribution Bij(NA,ND)
in Eq. (21), we have

E ij � hEiij ¼
1
2

E i þ E j
� �

ð33Þ

where E i ¼ nAi=ðnAi þ nDiÞ ¼ nAi=n is the average apparent FRET effi-
ciency of conformation i.

Similarly, one can show that the variance r2
ij � hE

2iij � hEi
2
ij is

r2
ij ¼ E ijð1� E ijÞhN�1i þ 1

12
ðE j � E iÞ2ð1� hN�1iÞ ð34Þ

where hN�1i is the mean of the reciprocal of the sum of acceptor and
donor counts in a bin. Since the total count rate does not depend on
the conformational state, hN�1i is also state-independent.

Using the mean and variance in the above equations, Bij(E) can
be approximated as a continuous Gaussian distribution:

BijðEÞ � 2pr2
ij

� ��1=2
exp �ðE� E ijÞ2

2r2
ij

 !
ð35Þ

Alternatively, one can use a Beta distribution

BijðEÞ �
Cðaij þ bijÞ
CðaijÞCðbijÞ

Eaij�1ð1� EÞbij�1 ð36Þ

with the parameters chosen such that the mean and the variance
are exact:

aij ¼ E2
ijð1� E ijÞ=r2

ij � E ij

bij ¼ E ijð1� E ijÞ2=r2
ij � 1þ E ij

ð37Þ

Note that the ‘‘emission’’ probabilities in Eqs. (35) and (36) are ap-
plied for both i = j and i – j.

Both Beta and Gaussian distributions were used to describe se-
quences of FRET efficiencies in the framework of HMM [14,19].
However, the distributions used in these works differ from our
approximations in two ways. First, our distributions depend on
the initial and final states, which accounts for the fact that transi-
tions between the conformational states can occur at any time dur-
ing the bin, not just at the beginning. Second, the parameters of our
Beta and Gaussian distributions are not free but related to the
model parameters (i.e., FRET efficiencies of the states). The addi-
tional parameter hN�1i can be obtained from the experimentally
measured distribution of the total number of photons.

In addition to the Beta distribution with parameters in Eq. (37),
we consider a simpler set of parameters. Replacing
r2

ij ! E ijð1� E ijÞ=½ðnAj þ nDjÞT� in Eq. (37) and using E ij, Eq. (33),
we get at (nAj + nDj)T	 1:

aij ¼ ðnAi þ nAjÞT=2
bij ¼ ðnDi þ nDjÞT=2

ð38Þ

These parameters involve the average count rates, by analogy with
Eqs. (15) and (24).
/j.chemphys.2011.06.006
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Fig. 3. Comparison of various approximations for the probability of FRET efficiency,
Bij(E), in the bins that undergo a single j ? i transition. The exact (EX) histograms
(bars) are calculated using Eq. (21). They are compared with the Gaussian (G)
distribution (solid line, Eqs. (33)–(35)) and with Beta distributions, Eq. (36), with
three different sets of parameters: parameters B1 result in the correct mean and
variance (dashed line, Eq. (37)), B2 are determined by the average count rates
(dotted, Eq. (38)), and B3 by the count rates of the initial state (dashed-dotted, Eq.
(39)). Mean number of donor and acceptor photons in a bin is nT = 100, FRET
efficiencies of the states are (a) E i ¼ 0:5, E j ¼ 0:7; (b) E i ¼ 0:3, E j ¼ 0:7.

I.V. Gopich / Chemical Physics xxx (2011) xxx–xxx 7
Finally, we consider a third set of parameters for the Beta distri-
bution, which depend only on the state of the molecule at the
beginning of the bin:

aij ¼ nAjT

bij ¼ nDjT
ð39Þ

These are equal the mean numbers of acceptor and donor photons
detected during bin time T when the molecule is in state j.

Fig. 3 shows various approximations of the ‘‘emission’’ probabil-
ity Bij(E). They are tested against exact histograms of the FRET effi-
ciency for the bins in which the molecule has a j ? i transition
during the bin. The exact histograms are calculated by summing
Bij(NA,ND), Eq. (21), over NA and ND under the constraint that NA/
(NA + ND) is within E ± h, where h is the histogram step. The Gauss-
ian (G) distribution, Eqs. (33)–(35), and the Beta distribution, Eq.
(36), with parameters in Eq. (37) (labeled as B1) are almost identi-
cal and are the best in describing the exact histogram. These distri-
butions depend on both initial and final conformational states and
result in the correct mean and variance. The Beta distribution with
the parameters in Eq. (39) that depend only on the initial confor-
mational state (labeled as B3) deviates significantly from the exact
distribution. Using this ‘‘emission’’ probability in the likelihood
function might lead to the loss of accuracy in determining the
model parameters. Finally, the Beta distribution with average
count rates in Eq. (38) (B2) has the correct mean but wrong vari-
ance of the distribution. This might be considered as the simplest
(but not the best) way of correcting the parameters of the Beta
distribution.
6. Concluding remarks

In this paper we considered how to construct the likelihood
functions required to analyze a time-binned photon trajectory.
The likelihood function can be presented in terms of the distribu-
tion of photon counts during the bin time. This distribution de-
pends on whether a transition between conformational states has
Please cite this article in press as: I.V. Gopich, Chem. Phys. (2011), doi:10.1016
occurred during the bin time. For a two-state model, we have ob-
tained the exact analytical expression for this distribution and,
therefore, for the likelihood function. This result is valid for both
long and short bin times that might be comparable to the time be-
tween state transitions. In general case, the likelihood function is
more complex, and we have presented approximations starting
from rigorous description of photon statistics.

In the case of slow conformational dynamics, the distribution of
photons during the bin time can be presented as a product of the
transition and ‘‘emission’’ probabilities. However, the ‘‘emission’’
probability depends on the molecule’s initial and final states, since
a transition between conformational states can occur at any time
during the bin time. When there are no transitions between the
states, the ‘‘emission’’ distribution is Poissonian. When the confor-
mational state changes during the bin time, the distribution is
more complex. When no more than one transition during the bin
time can occur, several approximations for the ‘‘emission’’ distribu-
tion have been suggested. The simplest and most evident (how-
ever, not necessarily most accurate) approximation is the Poisson
distribution with a count rate in between of the initial and final
count rates. More accurate approximations of the ‘‘emission’’ prob-
ability have been constructed using the exact mean and variance of
the ‘‘emission’’ distribution. The approximate likelihood functions
are valid for slow conformational dynamics compared to the bin
time, as in the case of the standard HMM, but the restriction is less
stringent. The approximations modify the ‘‘emission’’ probability
for the bins with transitions between the states. Despite the fact
that the number of such bins is small in the case of slow dynamics,
we hope that these corrections to the ‘‘emission’’ probability will
help to reduce bias in estimating model parameters.

Similar ideas have been employed to treat two-photon trajecto-
ries converted into sequences of FRET efficiencies. The ‘‘emission’’
distributions for the bins with and without transitions during the
bin have been determined. It should be noted that apparent FRET
efficiencies depend only on the conformational state, whereas pho-
ton count rates depend on both conformational state and location
in the laser spot. This opens the possibility of using the likelihood
function for the binned trajectories of FRET efficiencies presented
above to analyze molecules diffusing through a laser spot. When
a molecule diffuses through the laser spot, the only parameter that
depends on the location in the spot is the reciprocal of the sum of
acceptor and donor photons in the variance, Eq. (34).

The likelihood function can be either directly optimized with
respect to the model parameters or used as the starting point of
more sophisticated Bayesian procedures. Since likelihood-based
methods depend on using the correct likelihood function, we hope
that our work provides a sound foundation to build upon. One way
to check the consistency of the observed photon trajectories with
the model is to generate photon sequences according to the model,
construct a FRET efficiency histogram (or the distribution of pho-
ton counts in the case of photons of one color) and compare this
with the observed one [15]. The FRET efficiency distribution ob-
tained from the simulated data constructed using HMM contains
only peaks corresponding to the conformational states. However,
real data may contain additional peaks due to exchange between
the states [32–34,20], which can be misinterpreted as an additional
conformational state. The improved likelihood function presented
in this paper should help to avoid such problems when analyzing
photon trajectories, i.e., detection of false states that arise due to
incorrect treatment of bins with transitions between states.
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