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Decoding the Pattern of Photon Colors in Single-Molecule FRET
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Conformational dynamics of a single molecule can be studied using Forster resonance energy transfer (FRET)
by recording a sequence of photons emitted by a donor and an acceptor dye attached to the molecule. We
describe a simple and robust method to estimate the rates of transitions between different conformational
states and the FRET efficiencies associated with these states. For a photon trajectory with measured interphoton
times, the pattern of colors is decoded by maximizing the appropriate likelihood function. This approach can
be used to analyze bursts of photons from diffusing molecules as well as photon trajectories generated by
immobilized molecules. The procedure is illustrated using simulated photon trajectories corresponding to
two-state and three-state molecules. The method works even when the photon colors appear to be scrambled
because of high background noise, the photophysical properties of the conformers are similar, or the
conformational and photon count rates are comparable. The consistency of the model with the data can be
checked by recoloring the photon trajectories and comparing the predicted and observed FRET efficiency

histograms.

I. Introduction

Single-molecule Forster resonance energy transfer (FRET)
is a powerful technique to study biological molecules.'™ The
output of such measurements is a photon trajectory, that is, a
sequence of photons with different colors emitted by the donor
and acceptor dyes attached to a molecule. The probability that
a photon is emitted by the donor or by the acceptor depends on
the distance between them. Therefore, the pattern of photon
colors contains information about the interdye distance that is
modulated by the molecule’s conformational dynamics. The
molecule under study can be attached to a surface or diffuse
through a laser spot. The advantage of the diffusion experiments
is that the molecule cannot interact with a surface. A photon
trajectory in diffusion measurements is a set of short bursts
generated by different single molecules traversing the laser spot.
The statistics of photon counts in a burst depends on both the
location of the molecule in the laser spot and the interdye
distance.

Two-colored photon trajectories are often analyzed using
FRET efficiency histograms.* The trajectories are first divided
into time bins, or alternatively, bursts of photons are selected
using a search algorithm. The FRET efficiency in each bin or
burst is obtained as the ratio of the number of acceptor photons
to the total number of photons. This ratio fluctuates because of
various stochastic processes, of which, only fluctuations of
interdye distance due to conformational dynamics are usually
of interest.

Although significant progress in analyzing FRET efficiency
histograms has been made,”” it is still challenging to extract
quantitative information about conformational dynamics from
them. There are several reasons for this. First, an efficiency
histogram is a reduced representation of a whole photon
trajectory'® and thus might not be sufficiently sensitive to the
parameters of conformational dynamics. Second, in order to
quantitatively describe FRET efficiency histograms obtained
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from diffusing molecules, one needs additional information such
as the dependence of the photon count rate on the molecule’s
location in the laser spot. When the interdye distance does not
change during the observation time, this can be circumvented,
and the FRET efficiency distribution can be reconstructed using
the measured distribution of the sum of donor and acceptor
photons.>® However, when conformational transitions occur on
a time scale comparable to the bin or the burst duration, this
procedure can be generalized only approximately, assuming that
the sum of donor and acceptor count rates does not fluctuate as
a molecule traverses the laser spot.!! Finally, although there is
a rigorous theory for the FRET efficiency histograms,'"!? an
analytical solution is available only for two-state conformational
dynamics. For models with more than two states, the calculation
of the histograms is rather involved.'”

Recently, we introduced an alternate approach in which the
whole photon trajectory is analyzed by maximizing a likelihood
function.!! In this paper, we further develop this method for
extracting structural and kinetic parameters from a sequence of
photon colors and interphoton times. Using simulated photon
trajectories, we show that the conformational parameters can
be readily obtained even when the transition rates between the
conformational states are as fast as the photon count rate.

Maximum likelihood-based analyses of time sequences have
been performed in a variety of contexts, including ion
channels,'*”!> molecular motors,'® protein dynamics,'” and
single-molecule fluorescence spectroscopy.'® 2! Long trajectories
of donor and acceptor photons emitted by immobilized mol-
ecules can be binned and converted to FRET efficiency
trajectories, which can be then analyzed using hidden Markov
models.?>?} Extension of these methods to diffusing molecules
with conformational dynamics is challenging because the photon
count rate fluctuates when a molecule traverses the laser spot.?!
In addition, a short photon trajectory generated by a diffusing
molecule cannot be accurately converted into a FRET efficiency
trajectory. Our method does not require binning of photons and
does not involve photon count rates. It is based only on the
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Figure 1. (a) Cartoon of a protein with attached donor (green) and
acceptor (red) dyes that can exist in two conformations. After excitation
by blue light, the donor can emit a green photon, or the excitation energy
can be transferred to the acceptor, which then can emit a red photon.
(b) An example of a trajectory of acceptor (red) and donor (green)
photons. Note that for notational convenience, we have defined 7, as
the time between the kth and (k — 1)th photon; therefore, the first
interphoton time is 7.

probability of photon colors. In this way, we avoid the analysis
and modeling of translational diffusion. Although the method
is valid for both immobilized and diffusing molecules, our
primary focus here is on its application to diffusion measurements.

The outline of the paper is as follows. In the next section,
we present the procedure of decoding the pattern of photon
colors. Section III gives illustrative examples which deal with
extracting the parameters of a two-state model, treating the
influence of background noise, and comparing different models
based on recoloring and on likelihoods. The theoretical basis
of the method is presented in section IV. Concluding remarks
are given in the last section.

II. The Decoding Procedure

In this section, we describe our method and present the
formulas required to implement it. The theoretical foundation
will be given in section IV.

A sequence of photons (a photon trajectory) emitted by a
molecule diffusing through a laser spot is characterized by
interphoton times and by photon colors (see Figure 1). Photon
statistics are affected by various stochastic processes. These can
be classified as fast or slow compared to the average time
between detected photons, which is usually on the us time scale.
Fast processes include photophysical processes (e.g., excitation,
decay, energy transfer) as well as dye reorientation and interdye
distance fluctuations (from linker motion or conformational
dynamics) that occur on the submicrosecond time scale. Slow
processes include translational diffusion through the laser spot
and conformational dynamics that occur on the time scale
comparable to, or slower than, the interphoton time.

In the absence of slow processes, the photons are assumed
to be uncorrelated and to obey Poisson statistics. The Poisson
distribution is completely characterized by the acceptor and
donor count rates, n, and np, which are the mean number of
acceptor and donor photons per unit time. In general, count rates
are determined by the steady-state populations of the donor and
acceptor excited states that are calculated assuming that the slow
dynamics are frozen.'? In the simplest example of a donor—
acceptor pair with fixed interdye distance and low laser
excitation, na = ¢A7]Akcxk[r/(kD + k[r) and np = ¢D77Dkeka/(kD
+ ki), where ¢ p and 774 p are the quantum yields and detection
efficiencies of acceptor and donor photons, k. and kp are the
donor excitation and decay rates, and k, is the rate of energy
transfer, which depends on the interdye distance r as k, =
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kp(Ro/r)%, where R is the Forster radius. The apparent energy
transfer efficiency is defined here as the ratio of the acceptor
count rate to the total count rate, € = na/(ny + np). For this
example, it is € = y/(y + (r/Ry)°®), where y = @analdpnp is the
gamma factor.* If there is cross talk (i.e., leakage of donor photons
into the acceptor channel), then the above expression for 7, must
be modified by adding a term cnp.>* The apparent efficiency now
becomes € = (y + c(Ry)®)/(y + (1 + ¢)(r/Ry)°). Note that both
cross talk and unequal detection efficiencies (y = 1) do not
alter the definition of the apparent transfer efficiency but rather
modify its functional dependence on the interdye distance. In
fact, this is the case for all photophysical and conformational
processes that are faster than the count rates and for other
complications such as direct excitation of the acceptor.

The count rates depend on the conformational state (through
the energy transfer rate) and on the location in the laser spot
(through the excitation rate and the detection efficiencies). When
both conformation and location in the laser spot are fixed, the
statistics of photons are Poissonian. When the conformational
state and/or the location in the laser spot changes, the count
rates fluctuate, and the photon statistics are no longer Poissonian.

The distribution of the times between photons regardless of
their color is determined by the sum of the donor and acceptor
count rates. If the total count rate is independent of the
conformation, then the times between photons depend only on
the location in the spot. These times contain information about
diffusion through the laser spot but not about conformational
dynamics.

Now consider the photon colors. The probability that a
particular photon has a certain color depends on the ratio of
the acceptor and donor count rates of the conformation that emits
this photon. When this ratio does not depend on the location in
the laser spot, the colors of photons depend solely on the
conformation. Thus, all information about conformations is
contained in the pattern of photon colors. This is the key idea
of the method. We can extract parameters of a proposed model
of conformational dynamics by maximizing the likelihood
function obtained from the probability of the observed photon
colors.

Now, we give the recipe for the likelihood function. It will
be justified in the Theory section. Suppose we are given a photon
trajectory from an immobilized molecule or a burst of photons
from a diffusing molecule with specified colors and interphoton
times. We assume that the molecule emitting these photons has
several conformational states. Each state is characterized by the
apparent FRET efficiency €, which is defined as the ratio of
the acceptor count rate to the total count rate. Some states may
have the same efficiencies. The efficiencies are related to the
interdye distances. The precise form of this relationship depends
on the dye’s photophysics, fast orientational dynamics, and the
detection efficiency. The transitions between the states are
described by the rate matrix K. Its element Kj; is the rate of the
J — i transition, and K; = —3,.; Kj;. The likelihood function of
the burst of five photons shown in Figure 1B is

L=1"0 - E)*Ee"E"( — E)e""Ep,, (1)

where E is the diagonal matrix with FRET efficiencies €; on
the diagonal, I is the unity matrix, 17 is the unit row vector (T
means transpose), and p. is the vector of equilibrium prob-
abilities of conformational states (which are obtained by solving
Kp., = 0 with the normalization 1"p,; = 1). The above
expression should be read from the right to the left. The first



Pattern of Photon Colors in Single-Molecule FRET

term on the right, p.q, arises because, initially, the system is in
equilibrium. The next term E corresponds to the first detected
photon, which is, in this case, red (acceptor). The evolution of
the conformational states until the next photon is detected at
time 7, is described by the matrix exponential (propagator),
exp(Kt,). The next term I — E corresponds to the green (donor)
photon, and so on. The final multiplication by 17 sums over all
conformational states.

The above expression, generalized to an arbitrary number of
photons (V) in a burst, can be written as

Nph

L =1"[] Fcpek™Fc)p,, )

k=2

where F(c;) is a matrix which depends on the color of the kth
photon ¢, F(red) = E and F(green) = I — E, and 7, is the
time between the (k — 1)th and kth photon. The product is taken
over all photons in the burst. Equation 2 reduces the calculation
of L to successive matrix—vector multiplication.

When there are several bursts of photons (or several different
photon trajectories in the case of immobilized molecules), the
likelihoods are multiplied. The bursts can have various durations
and numbers of photons. The resulting likelihood function
depends on the conformational parameters, that is, the elements
of the efficiency and the rate matrices, E and K. The matrix
elements can be found by maximizing the log likelihood.

When conformational dynamics are slow compared to inter-
photon times, the matrix exponentials in eq 2 can be ap-
proximated as e ~ I + Kr. In general, to speed up the
computation, the rate matrix can be diagonalized, KU = UA,
where A is the matrix with the eigenvalues 4; on the diagonal.
The likelihood function can then be written as

Nph

L =p; [ [ (@(cpe*™@(c,)p, 3)
k=2

where ®(red) = U'EU and ®(green) = I — U 'EU, the
elements of the diagonal matrix exp(A7) are exp (4;7), and p,
is a vector with one nonzero element (equal to 1). The index of
this nonzero element corresponds to the index of the zero
eigenvalue of A. The vector py is proportional to U~ 'p., and p§
to 1TU. All of these quantities are calculated only once for a
given set of parameters.

When conformational dynamics are on a time scale much
longer than the burst duration (static limit), the likelihood
function of a burst simplifies to'"?

L= &1 = )"p (D) 4)

where N (Np) is the number of acceptor (donor) photons in a
burst. The summation is performed over all conformational states
i. This likelihood function can be used only to analyze many
photon trajectories, each generated by a different single
molecule. The likelihood function for many bursts is a product
of the likelihood functions in eq 4.

In the presence of background noise, the procedure is
operationally the same. The efficiencies and the rates are found
by maximizing the same likelihood function as above. The
resulting efficiencies, et are then transformed into corrected
efficiencies €{*" by using
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=
! (n) — by — by

)

where b, and b, are the acceptor and donor background count
rates and (n) is the total (acceptor, donor, and background) count
rate averaged over the laser spot.

The above procedure is completely rigorous when the sum
of the donor and acceptor count rates is independent of the
conformational state and the ratio of the donor and acceptor
count rates is independent of the location in the laser spot. The
second condition is usually met when the ratio of the donor
and acceptor detection efficiencies p/ya does not depend on
the location in the laser spot. The first condition is more
restrictive. For the donor—acceptor pair considered at the
beginning of this section, this condition is met when the gamma
factor, which is the ratio of the quantum yields and detection
efficiencies of the acceptor and donor photons, is equal to one
in all conformational states. In the case of diffusing molecules,
the method is valid for sufficiently low concentrations of the
molecules, so that only one molecule is in the laser spot at a
given time.? It is assumed here that the translational diffusion
coefficient does not depend on the conformations.

The likelihood function in eq 2 is obtained from the
probability of observing photon colors in a trajectory with given
interphoton times. When the above requirements are not
satisfied, the likelihood function can be generalized by consider-
ing the probability of observing both colors and interphoton
times. For a diffusing molecule, it is rather complex (see section
IV). However for a single immobilized molecule, the likelihood
function is quite simple. Instead of FRET efficiencies ¢, it now
involves the donor, np;, and acceptor, n,;, count rates, and can
be written as:

Noh

L=1"T]#cpe* VF(c p 1"Npy  (©6)

k=2

where F(red) = N4 and F(green) = Np. Here, Ns and Np are
diagonal matrices with the acceptor, n,;, and donor, np;, count
rates on the diagonal, and N = N, + Np has diagonal elements
n; = nux; + np;. This likelihood function can also be used to
analyze colorless photon trajectories®! by setting F = N. In the
presence of background noise, one can still use eq 6 to extract
nfli and nll and the rates. The corrected count rates are obtained
by shifting the extracted count rates n$y = nf; — b, and nff =
nfy, — bp. When the total count rate does not depend on states
(N = nl, where n is a number), then Ny = nE and Np = n(I —
E), and thus, eq 6 reduces to eq 2 within a factor that does not
depend on the conformational parameters. The likelihood
function in eq 6 is exact when the photon statistics in each
conformational state is Poissonian.

The matrix exponential in the above expression can be
calculated via matrix diagonalization, as mentioned earlier.
When conformational dynamics are slow compared to the
photon count rates, it can be shown that the matrix exponential
simplifies to

—ng __ T
[e(KfN)r]' _ e*n,»réij + Kije € (7)

v n, —n;

where 0; is the Kronecker delta, which is 1 if i = j and 0
otherwise. The term multiplying Kj; has a simple physical
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Figure 2. FRET efficiency histograms obtained from 1000 1 ms bursts
of photons emitted by a molecule with two conformational states.
Examples of bursts are above or below the corresponding histograms.
In all panels, the photon count rates used to generate the bursts are 14,
= np, =30 ms~! and ny, = np; = 70 ms™!, so that the efficiencies in
the two states are €; = 0.3 and €, = 0.7. The transition rates k; = k»
are shown in the upper right corner of each histogram.

interpretation. It is proportional to the distribution of the times
between two consecutive photons when a single conformational
transition occurs during the time between them.

III. Ilustrative Applications

A. Two-State Dynamics. Let us use the above procedure
to analyze photon trajectories emitted by a molecule with two
conformational states. When the molecule is in state i (i = 1,
2), the photon statistics are Poissonian with the count rates n;
and np; for the acceptor and donor photons. The transition rates
are K3 = k; (1 — 2) and K, = k; (2 — 1). We generate bursts
of photons by simulating this kinetic scheme and then apply
the procedure described above to extract the conformational
parameters, that is, the FRET efficiencies, €, and €, (¢; = na/
(na; + np;)), and the rates k; and k.

The bursts of photons are generated using an algorithm similar
to Gillespie’s,” in which the times between successive events
are generated from the appropriate distribution. There are three
types of events, namely, detection of an acceptor or a donor
photon or a conformational transition. The times between these
events are drawn from the exponential distribution, (ns; + np;
+ k)exp(—(na; + np; + k;)7) when the molecule is in state i =
1, 2. The type of the event (i.e., a conformational transition or
the detection of an acceptor or a donor photon) is chosen
according to the probabilities {k/(na; + np; + ki), nad(na; +
np; + k), npi/(na; + np; + k;)}. The initial state is chosen
according to the equilibrium distribution, {k./(k; + k), ki/(k,
+ k)}.

FRET efficiency histograms obtained from 1000 simulated
bursts, each containing 100 photons on average, are shown in
Figure 2, along with examples of the bursts. Conformational
dynamics vary from very slow (1 transition per 10 bursts) to
very fast (the time between transitions is comparable to the
interphoton time). To extract the conformational parameters,
the likelihood function is calculated using eq 2. For the two-
state molecule
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where p; = 1 — pr = ko/(ky + k;). The eigenvalues of K are 0
and —(k; + k), and the transformed matrices (see eq 3) are

®)

U'EU = (61171 tep, (6 — El)pZ)

(€, — €)p; €py t €p,

1 0 1
exp(A7) = (0 e(k1+k2)t) Py = (0) )

The parameters of the model were extracted by maximizing
the sum of the log likelihood functions for each burst, eq 3,
using Mathematica (Wolfram Research, Inc.) built-in functions.
Standard deviations were obtained from the curvature of the
log likelihood function at the maximum (i.e., the square roots
of the diagonal elements of the inverse Hessian matrix). All
four parameters of the model were determined by this maxi-
mization procedure.

The extracted parameters are shown in Table 1. It would be
difficult to obtain this information from the efficiency histograms
in Figure 2 in all cases. For example, only the peak position
(mean FRET efficiency) and the width (mainly due to shot noise)
can be obtained from the last histogram. However, our method
allows one to obtain the model parameters both in the case of
fast (i.e., comparable to the time between photons) and slow
(slower than the burst duration) transition rates. The uncertainty
in the parameters increases when the dynamics become very
fast. When dynamics are slow, the efficiencies are determined
very accurately, but the uncertainty in rates increases. When
the transition rates are in the optimal range (1 and 10 ms™'),
standard deviations are around 1% for the efficiencies and 5%
for the rates. It should be noted that in this example, the only
source of error in the extracted parameters is the lack of data
(i.e., only 1000 bursts were used). The accuracy increases when
the total number of photons increases.

B. Background Noise. We now show that the above
procedure gives reliable rates and efficiencies even in the
presence of background noise. Poissonian background photon
counts were added to the photon trajectories generated with the
same parameters as those in the previous example and k; = k,
= 1 ms~L. High background noise can substantially transform
the shape of the FRET efficiency histogram (see Figure 3). We
applied the same procedure as before to the trajectories with
background noise. It is remarkable that although the extracted
efficiencies €, are shifted compared to the exact ones, the rates
are still correct, even when there are as many background
photons as photons emitted by the molecule (see Table 2). When
the fitted efficiencies were corrected using eq 5, they were in a
good agreement with the “true” efficiencies (¢; = 0.3 and €, =

TABLE 1: Parameters Extracted from the Photon Bursts in
Figure 2¢

ki, ky
(ms™) ki (ms™")

0.1 0.115 (0.014)

ky (ms™") € €

0.113 (0.014) 0301 (0.002)  0.702 (0.002)

1 0.994 (0.054)  0.985 (0.054) 0.303 (0.002)  0.701 (0.002)
10 9.44(042)  10.0 (0.44) 0.308 (0.0045)  0.707 (0.0047)
50 56.8(4.5) 48.7 (4.1) 0.278 (0.013)  0.689 (0.011)

@ Standard deviations are given in parentheses. Photon bursts
were generated using €; = 0.3 and €, = 0.7, and the transition rates
k, = k, are shown in the left column.
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TABLE 2: Extracted Conformational Parameters from Photon Trajectories with Background Noise”

ba (ms™") bp (ms™") ki (ms™") ky (ms™") et Sk €5 €5
20 30 1.05 (0.065) 1.03 (0.064) 0.333 (0.002) 0.598 (0.002) 0.299 0.697
50 50 0.99 (0.066) 0.92 (0.063) 0.398 (0.002) 0.602 (0.002) 0.296 0.704

“ Standard deviations are given in parentheses. Parameters used to generate “true” photon trajectories are the same as those in Figure 2, with
ki = k, = 1 ms™!. Background count rates b and bp are given in the left column. Transition rates k; and k, and efficiencies €f' and €f' are
obtained by applying the procedure in section II. The efficiencies are then corrected using eq 5.

(@)

T 1 1

“true”
noise LIl [ [l [l |
“observed’] [[[ [[I| [0 (W Il WIl1
0.0 0.1 0.2 time (ms)
(b)
100+
@l [ "true”
% Il 'observed"

50+

02 04 06 08 1.0

efficiency
Figure 3. (a) Example of a photon trajectory with added background
photons (“true” + noise = “observed”). (b) FRET efficiency histograms
obtained from 1000 1 ms bursts with true photons (cyan) and with
added background noise (black). Parameters used to generate the photon
trajectories are k; = k, = 1 ms™!, ¢, = 0.3, and €, = 0.7. The sum of
the donor and acceptor count rates is 100 ms™! in both states, and the
background count rates are by = 20 ms™! (acceptor) and bp = 30 ms™!
(donor).

0.7) used to generate bursts. This correction procedure is exact
for the simulated bursts of photons, so that we get very accurate
rates and corrected efficiencies despite the big difference in the
histograms in the presence and absence of noise.

C. Recoloring. How can we check that the model used can
adequately describe the data? In particular, one would like to
see how the observed FRET efficiency histograms agree with
those predicted by the model. Since we do not extract all of the
parameters that define the photon trajectory, we cannot generate
a new set of photon trajectories and construct a FRET efficiency
histogram from them. However, we can recolor the experimental
photon trajectories using only the conformational parameters.
In this method, we first wipe out the colors of the observed
photon trajectory without changing the times between photons.
Then, the trajectory is recolored in accordance with the
likelihood function in eq 2.

The algorithm for recoloring is as follows. The initial state
is drawn from the equilibrium probability. If this state is i, the
color of the first photon is chosen to be the acceptor or donor
with probabilities (¢;, 1 — ¢;). The state j at the moment the
second photon is detected is chosen with probability [exp(KT)];i,
where 7 is the time between the first and the second photons.
This procedure is then repeated. In this way, we get a new
photon trajectory with the same times between photons as the
measured one but with different colors. The recolored trajectory
is then used to obtain a new FRET efficiency histogram, which
is then compared with the observed one.

404

events

02 04 06 08 10 O 02 04 06 08 10

efficiency efficiency

Figure 4. Comparison of the FRET efficiency histogram obtained from
the “observed” (cyan) and “recolored” (black) bursts of photons (500
and 5000 bursts on the left and right panels, respectively). The
parameters are the same as those in Figure 2, with k; = k, = 1 ms L

Figure 4 shows examples of the efficiency histograms
obtained from recolored trajectories. The cyan histograms are
obtained from the “observed” bursts of photons, and the black
ones are obtained from the recolored bursts. The deviation
between the histograms in the left panel is due to lack of
statistics. When the number of bursts is increased from 500 (left)
to 5000 (right), the deviation between the “observed” and
“recolored” histograms becomes very small. By recoloring the
same trajectory several times with the same model parameters,
one can determine whether the deviation between the histograms
is due to a bad model or insufficient data.

To illustrate how recoloring can help to select the right model,
consider a three-state system

kl k}
€= 66 (10)
ke ks

The photon bursts corresponding to this scheme are generated
by adapting the algorithm described previously. The simulated
data are then analyzed to extract FRET efficiencies and rates
using the likelihoods corresponding to the two-state and the
three-state models. The generated bursts are then recolored using
these extracted parameters.

In the first example, the equilibrium populations of the three
states with the efficiencies 0.3, 0.5, and 0.8 are in the ratio
1:2:4. Figure 5 shows the histograms obtained from the
simulated bursts of photons (left) and from the recolored bursts
(right) using the parameters of the two-state model that are
obtained by maximizing the likelihood. For these parameters,
the histograms clearly show that the two-state model is not
consistent with the data. As expected, recoloring the trajectory
with the parameters of the three-state model results in the correct
histogram (not shown). Thus, in this case, the three-state model
can be selected by comparing the “observed” and “recolored”
histograms.

However, FRET efficiency histograms, being a reduced
representation of the data, do not always show the difference
between the models so clearly. Consider the histograms shown
in Figure 6. Here, there are three states with efficiencies 0.3,
0.5, and 0.7, which are equally populated. As in the previous
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Figure 5. Comparison of models using recoloring. (a) The histogram
obtained from the “observed” bursts of photons emitted by a molecule
with three conformational states. Parameters used to generate the
trajectories are (see eq 10) k; = ks = 1 ms™!, ky = ky = 0.5 ms™!, ¢
= 0.3, ¢, = 0.5, and €3 = 0.8. There are 3000 bursts of 1 ms duration
with the count rate n;, + np; = 100 ms™' in each state. (b) The
histogram from bursts recolored using the two-state model with
parameters €; = 0.41, e, = 0.79, k; = 0.74, and k, = 0.48 that were
obtained by maximizing the log likelihood.
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Figure 6. Recoloring as in Figure 5 but with different parameter values.
(a) The histogram obtained from the 3000 “observed” bursts of photons
emitted by a molecule with three conformational states, k; = k, = k3
=k =2ms", ¢ =036 =05, and €; = 0.7. (b) The histogram
from bursts recolored using the two-state model with parameters €; =
0.34, ¢, = 0.66, k; = 1.24, and k, = 1.17 that were obtained by
maximizing the log likelihood.

example, the “observed” histogram (left) is compared with the
“recolored” one (right), which is based on the two-state model.
The histograms look similar, and it may appear that the two-
state model is sufficient to describe the data. To show that the
three-state model is actually preferable in this case, we can use
the Bayesian information criterion?® (BIC), defined as

BIC = —=2InL, + M,InN, (11)

where L, is the maximum value of the likelihood function, M,
is the number of free parameters to be estimated, and Ny is the
number of data points (photons in this case). The model with
the lower value of BIC is the better one. For data of good
quality, the dominant contribution to BIC comes from the first
term. For the example in Figure 6, the log likelihood of the
three-state model is greater than that of the two-state model by
250. The second term penalizes for additional fitting parameters
(three extra parameters for the three-state system) but does not
come close to beating the difference in log likelihoods.
Therefore, the three-state model is preferable in this case, as it
should be. More details about model selection can be found in
refs 29—31.

D. Total Count Rate Depends on Conformational State.
Now, let us consider the case when the total count rate depends
on the conformational state. This occurs, for instance, when the
gamma factor (which is the ratio of the quantum yields and
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TABLE 3: Examples of Conformational Parameters
Extracted from Only the Photon Colors When the Total
Donor and Acceptor Count Rate Depends on the
Conformation®

kika

(ms™")  k (ms™h kr (ms™1) € &
0.1 0.12 (0.014) 0.11 (0.013)  0.304 (0.002) 0.701 (0.0014)
1.0 1.09 (0.06) 0.95 (0.05) 0.297 (0.002) 0.697 (0.002)
10.0 12.32 (0.44) 7.03 (0.26) 0.275 (0.0046)  0.686 (0.002)
500  74.1(43) 26.8 (2.1) 0251 (0.01)  0.668 (0.005)

“The parameters (and standard deviations in parentheses) are
obtained from 1000 1 ms bursts. The bursts were generated using
nar =30 ms™, np; = 70 ms™!, nap = 140 ms™!, np, = 60 ms~! (so
that ¢, = 0.3 and ¢, = 0.7), and transition rates (k; = k,) that are
shown in the left column.

detection efficiencies of the acceptor and donor photons) is not
equal to 1. When only the rate of energy transfer depends on
conformation, the gamma factor can be made equal to 1 by
randomly discarding photons following the procedure of ref 6.
However, this does not help when there is another state-
dependent process that influences photon count rates, such as
differential quenching of the states.’ If the total count rate
depends on the conformational state, both the photon colors and
the interphoton times depend on conformational parameters. As
a consequence, the likelihood of photon colors in eq 2 is not
rigorously correct.

Nevertheless, consider what happens when we use this
formula to analyze data generated when the total count rates
are conformation-dependent. Consider a two-state system with
the parameters given in Figure 2, except that the total count
rates of the two conformations differ by a factor two. Specif-
ically, the total count rates are n,; + np; = 100 ms™! and ny,
+ np; = 200 ms™! in the two states. The apparent FRET
efficiencies are €; = na/(na; + np;) = 0.3 and €, = npr/(na +
nm) =0.7.

The examples of the parameters extracted by maximizing the
likelihood in eq 2 are shown in Table 3. It is interesting that
although the likelihood function is not rigorous in this case, it
works surprisingly well for slow dynamics (transition rates of
0.1 and 1 per ms). However, it breaks down when the dynamics
are comparable to the photon count rate. Of course, if we analyze
this data by using the likelihood function in eq 6, we extract
essentially exact parameters.

Thus, maximizing the likelihood function in eq 2 may result
in reasonable conformational parameters, even when the total
count rate depends on conformational states. This occurs when
interconversion rates are slow and the FRET efficiencies of the
states are well separated. In this case, the main contribution to
the likelihood function comes from one state trajectory, for
which conformational parameters can be found by considering
only the probability of photon colors.

IV. Theory

In this section, we give a detailed explanation of the formulas
presented in section II. We begin by considering the simplest
case of one conformational state and gradually increase the
complexity by treating the effects of conformational dynamics,
translational diffusion, and background noise.

Consider the simple photon trajectory consisting of two
acceptor and one donor photon shown in Figure 7. If the photons
are emitted by a molecule that has only one conformational state,
the probability density function (pdf) of observing this trajectory
is
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f=npe "ne "nyin (12)

where na (np) is the acceptor (donor) count rate and n = ns +
np is the total count rate. Reading this expression from right to
left, the first term, na/n, is the probability that the first photon
was emitted by the acceptor dye. The exponential exp(—nt,) is
the probability that no photons were detected during the time
interval 7,, and so on.

When there are several interconverting conformational states,
the acceptor and donor count rates, n,; and np;, depend on the
state i. The pdf of observing this photon trajectory, since it may
result from any state trajectory, is

f= 2y Gk, Ty GG Tl pe(Diny — (13)

ijk

where G(j,tli) is the probability that the molecule is in state j at
time 7 given it was in state i initially and that no photons were
detected during this time interval, pe(i) is the equilibrium
probability of state i, and (n) = 3; (na; + np)peq(j) is the average
count rate. The summation is performed over all conformational
states. The above expression (read right to left) has the following
interpretation. The photon trajectory starts with an acceptor
photon emitted by the molecule in state i, napeq(i)/{n); the
molecule goes to state j without photons being detected during
time 7,, G(j,7,li); an acceptor photon emitted from this state is
detected at time 75, 115;; the molecule switches from j to k without
photons being detected during time 73, G(k,73lj); and the final
donor photon is detected at time 73, npy.

To find G(j,7li), one must eliminate the possibility that a
photon is detected during time 7. This can be done by adding
an irreversible sink term to the conventional rate equation that
describes conformational dynamics. Then, the matrix of the
transition probabilities G with the elements G(jtli) satisfies®

d — —
6 =KG — NG (14)

where K is the rate matrix describing conformational dynamics
and N is a diagonal matrix with the total count rates n; = na; +
np; on the diagonal. The solution of this equation is a matrix
exponential, G(7) = exp((K — N)7), which appears in eq 6.

Introducing the diagonal matrices N, and Np with the
elements n,; and np; on the diagonal, the pdf in eq 13 can be
rewritten in matrix notation as follows

f=1Npe® VN, 8NN p ) (15)

where (n) = 1"Np., I is the identity matrix, and p., is the vector
of equilibrium probabilities. An analogous expression was
obtained for colorless trajectories by Kou et al.?! Generalizing
the above expression to an arbitrary number of photons in a
burst and considering it as a function of the model parameters,
we get the likelihood function in eq 6. In this function, the total
count rates may depend on conformational states.

1 2 3

Figure 7. A photon trajectory consisting of two acceptor photons
followed by a donor photon.
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The above pdf and the likelihood function in eq 6 are based
on the assumption that the statistics of detected photons that
were emitted by the molecule in a given conformational state
is Poissonian. This is true when the times between photons are
much longer than the lifetime of the excited state that emits
these photons. This is an excellent approximation when the
detection efficiency is low and therefore the times between
detected photons are much longer than the photophysical
relaxation time. When this is not the case, the likelihood can
be generalized. The resulting expression has the same structure
as eqs 15 and 6 (see eq 43 in ref 34). However, the rate matrix
K now corresponds to a more general kinetic scheme that
includes both photophysical and conformational states. In
addition, the diagonal matrices N, Np, and N = N, + Np are
replaced by the off-diagonal ones, Vi, Vp, and V = V, + Vp.
The only nonzero elements of these matrices are the rates of
transitions between excited and ground electronic states that
result in acceptor or donor photons.**** In this more general
formalism, the likelihood function for a two-color photon
trajectory has the same mathematical structure as the one for a
non-Markovian two-state trajectory.

When the total count rate does not depend on the conforma-
tional state, then N = nl (n = na; + np; independent of i), Na
= nE, and N, = n(I — E). In this case, exp(K — N)7) =
exp(Kr)exp(—nt), so that eq 15 becomes

F= nzefn(fzﬂ,g)lT(I _ E)eKrgEeKrzEpeq (16)

The first factor n? exp(—n(t, + 73)) is the pdf of the photon
trajectory when the colors are ignored, and the second is the
probability of observing the color pattern, given the interphoton
times. The first factor does not depend on the conformational
parameters. Therefore, it can be ignored, and only the second
factor must be optimized with respect to the conformational
parameters. Generalizing this to an arbitrary number of photons,
we arrive at eq 2 for the likelihood function. An analogous
factorization will be used below to separate translational
diffusion and conformational dynamics.

Let us now consider both conformational dynamics and
translational diffusion. When a molecule diffuses through the
laser spot, the count rates n,,(R) and np(R) depend not only on
the conformational state i but also on the translational coordinate
R, which is the vector specifying the location of the molecule
in the laser spot. The pdf of the photon trajectory in Figure 7
now becomes

f= [ 1Ny R)G(R;, T3IR)N A(R,) X
G(Ry, To|R N \(R )P, dR AR, AR /(n)  (17)

This is the appropriate generalization of eq 15. Here, Na(R)
and Np(R) are diagonal matrices with n,,(R) and np;(R) on the
diagonal, (n) < [1"N(R)p.dR. G(RR,) is the matrix with
elements [G(R,fIRy)];, which are the probability densities of
finding the molecule at (i, R) at time ¢ given it was at (j, Ry)
initially and that no photons were detected during this time. It
satisfies an equation which differs from eq 14 by a term that
describes translational diffusion'!

8%6 = DV’G + KG — N(R)G (18)
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where N(R) = Na(R) + Np(R) and D is the translational
diffusion coefficient of the molecule, which is assumed to be
conformation-independent.

Next, we consider the conditions under which the pdf in eq
17 can be factored. Let us assume that the total count rate does
not depend on the conformational coordinate

ny(R) + np(R) = n(R) (19)

and the ratio of the acceptor count rate to the sum of donor and
acceptor count rates does not depend on the translational
coordinate

15(R) _
noR) + np(R) (20)

With these assumptions, two different quantities can be factored.
First, the count rates factor as

n (R) = n(R)g;

np(R) = n(R)(1 — €) @D

This is equivalent to Na(R) = n(R)E and Np(R) = n(R)I — E)
in matrix notation. Second, the probability of detecting no
photons during a time interval also factors, as can be verified
by substitution into eq 18 with N(R) = n(R)I

G(R,1IR)) = g(R, tIR,)e" (22)

Here, g(R,1IRy) is the propagator of translational diffusion given
that no photons were detected during time ¢. It satisfies

a% = DV’g — n(R)g (23)

with initial condition g(R,01Ry) = 6(R — Ry).

Using eqs 21 and 22 in eq 17, we find that the pdf of
observing the sequence of photons shown in Figure 7 can be
factored as

f= f n(Ry)g(R;, T4IR,)N(R,)g(Ry, T,IR (R, )R dR,dR/{n) x
1 — E)e*"Ec""Ep,, (24)

This is the generalization of eq 16. The first factor, which is
conformation-independent, is the pdf of observing the photon
trajectory in Figure 7 irrespective of color. The second term,
which depends only on conformational parameters, is the
probability of observing the photon colors. To find the confor-
mational parameters by optimization, one needs only to consider
the probability of photon colors, that is, the second term. Thus,
we can extract all information about conformational parameters
from a photon trajectory without the modeling interphoton time
distribution, which is difficult for diffusing molecules. The
extension of the above analysis to any number of photons in a
burst leads to eq 2.

Finally, we consider background noise. Suppose that the
background photons are uncorrelated with the photons emitted
by a molecule and have Poisson statistics with the count rates
b for the acceptor and bp for the donor background photons.
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Equation 17 for the probability of the photon trajectory in Figure
7 must be generalized to take into account that (1) a detected
photon may come from the molecule or from the background
and that (2) there are no photons of any kind between two
successively detected photons. Therefore, ns(R) in eq 17 must
be replaced by na(R) + ba and analogously for the donor count
rate, and G(R,#IRy,) must be multiplied by exp(—bf), where b =
ba + bp is the total background count rate. As a result, eq 17
becomes

f= [T WNyR) + bpDGRy, IRy ™(NA(R,) + b,I)
G(R,, TZ|Rl)e_bZZ(NA(R1) + bAI)peqdedRZdR3/<n> (25)

Under conditions where the pdf in eq 17 factors (see eq 24),
the above pdf cannot be exactly factored because the count rates
do not factor. The effective efficiency in the presence of
background noise depends on both translational and conforma-
tional coordinates, €,(R) = (na{R) + ba)/(n(R) + b) = ¢; +(ba
— be)l(n(R) + b). However, if we approximate the total count
rate n(R) + b by its average over the laser spot, (n), then the
efficiency becomes independent of the location of the molecule
in the laser spot

€(R) = €' = €1 — (by + bp)Kn)) + b/(n) (26)

We can now factor eq 25, analogously to eq 24, by using an
apparent efficiency €, which is related to the efficiency
corrected for background noise by eq 26.

The above correction procedure is exact for Poissonian
background photons and immobilized molecules. In the case
of diffusing molecules, it is based on the approximation that
the total count rate can be replaced by its average over the laser
spot. This is valid when the fluctuations of the total count rate
in the laser spot are small or the noise is small, (bs + bp)/(n)
< 1.

V. Concluding Remarks

In this paper, we have presented an approach to extract
information about interdye distances and conformational dy-
namics from the observed sequence of photons with specified
colors and photon arrival times. The conformation-dependent
energy transfer efficiencies and the rates of interconversion are
obtained by maximizing the appropriate likelihood function. In
contrast to using FRET efficiency histograms, this approach does
not involve binning, and therefore, all of the information
contained in the observed photon trajectory is used. The
procedure is applicable to data collected for both diffusing and
immobilized molecules. Both shot noise and background noise
can be accounted for.

When the sum of acceptor and donor photons does not depend
on conformation, one can analyze only the sequence of photon
colors. This is particularly advantageous for diffusing molecules
because the difficult problem of modeling the interphoton times
is bypassed. Another advantage of this method is that it is
insensitive to how bursts of photons are defined, as long as the
burst selection is unbiased.

Once the apparent efficiencies of the states are extracted, they
can be related to more microscopic conformational parameters
such as interdye distances. It is at this stage that fast photo-
physical and conformational processes as well as experimental
complications such as direct excitation of the acceptor are
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handled. All of these effects simply alter the dependence of the
apparent FRET efficiency on the interdye distance.

The likelihood function that is maximized depends on the
underlying kinetic scheme which describes the number of
conformational states, their connectivity, and the rates of
interconversion. By including different states with the same
efficiency, we can describe conformations that have multiex-
ponential residence (waiting) time distributions. Finally, we wish
to point out that our formalism can also handle models where
conformational space is continuous (e.g., diffusion on a potential
of mean force) by discretizing space and constructing the rate
matrix from the finite difference approximation of the appropri-
ate operator.
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