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Several recent theories of the kinetics of diffusion influenced excited-state association–dissociation
reactions are tested against accurate Brownian dynamics simulation results for a wide range of
parameters. The theories include the relaxation time approximation �RTA�, multiparticle kernel
decoupling approximations and the so-called kinetic theory. In the irreversible limit, none of these
theories reduce to the Smoluchowski result. For the pseudo-first-order target problem, we show how
the RTA can be modified so that the resulting formalism does reduce correctly in the irreversible
limit. We call this the unified Smoluchowski approximation, because it unites modern theories of
reversible reactions with Smoluchowski’s theory of irreversible reactions. © 2004 American
Institute of Physics. �DOI: 10.1063/1.1649935�

I. INTRODUCTION

In this paper we consider the kinetics of pseudo-first-
order �large B-concentration�, excited-state diffusion influ-
enced reactions, where both excited A and C can decay to
their ground states with rate constants kA and kC ,

A�B
↓kA

←——
——→

�r

� f

C
↓kC

�1.1�

The classic example for this reaction is excited-state proton
transfer to solvent.1 In this context, Weller has solved the rate
equations of chemical kinetics nearly 50 years ago.2 His so-
lution is valid only in the reaction-controlled limit, when
diffusion of the reactants is fast compared with the intrinsic
reactivities �i.e., the forward and reverse rates � f and �r ,
respectively�. More general theories are desirable because
recent experiments3,4 on excited-state proton transfer reac-
tions show that the role of diffusion cannot be overlooked.

In the geminate limit �an isolated A – B pair or C mol-
ecule� the diffusion problem can be solved exactly for arbi-
trary lifetimes.5,6 For the bimolecular case, a number of ap-
proximate theories of increasing sophistication have been
developed for this reaction.7–11 Special attention has been
paid to the pseudo-first-order limit when the concentrations
of A’s and C’s are low compared to that of B’s so that cor-
relation between different A and C molecules can be ne-
glected. When both A and C are static �the so-called ‘‘target
problem’’�, accurate kinetic traces obtained from Brownian
dynamics �BD� simulations have been reported12,13 and com-
pared with selected theories for a rather limited range of

parameters. In the present work, these simulations are ex-
tended to cover a larger range of parameters, both farther
from and closer to the irreversible limit.

Recently a general theory, the relaxation time approxi-
mation �RTA�, that is applicable to arbitrary reaction
schemes, initial concentrations and diffusivities, has been
formulated.14 This theory can be implemented using either
the steady-state rate constants �SSRTA� or self-consistently,
when it is termed SCRTA. Thus far, this new theory has
been compared14 with simulated ground-state kinetics for
the A�B�C reaction,15 and more recently for the
A�B�C�D reaction.16,17 It is thus of interest to determine
how well it works in the special case of the excited-state
reaction in Eq. �1.1�.

In this paper we compare the predictions of SCRTA and
two multiparticle kernel theories8–11 �MPK2/KT and MPK3�
with BD simulations of the above excited state reaction, Eq.
�1.1�, in the ‘‘target’’ limit. We find that SCRTA works well
except near the irreversible limit when kC�kA . As in the
case of equal lifetimes,14,16,17 this is because in this limit the
SCRTA does not reduce to Smoluchowski’s result18 which
exactly describes the simulations in this limit. To remedy this
situation, we modify the SCRTA equations so that they re-
duce correctly also in the irreversible limit. We call the re-
sulting formalism the unified Smoluchowski approximation
�USA�, because it unites modern theories of reversible reac-
tions with Smoluchowski’s theory of irreversible reactions.
For equal lifetimes, it reduces to the MPK1 theory of Sung
and Lee,19 which in this case shows the best agreement with
simulations for all tested parameters.15

The outline of this paper is as follows: Section II de-
scribes a variety of theoretical approaches to excited-state
reversible reactions. We start with conventional chemical ki-
netics. Then we present SCRTA and compare it to MPK2 and

a�Permanent address: Technological Institute, Kemerovo 650060, Russia.
b�On leave from the Institute of Chemical Kinetics and Combustion SB

RAS, Novosibirsk 630090, Russia.

JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 13 1 APRIL 2004

61110021-9606/2004/120(13)/6111/6/$22.00 © 2004 American Institute of Physics



MPK3 for this reaction. We then modify SSRTA to obtain
our USA. Section III compares the various approximate
theories with simulations. Finally, in Sec. IV we present
some concluding remarks.

II. THEORETICAL FORMALISMS

A. Chemical kinetics

We begin with the chemical kinetic approach where one
solves two coupled ordinary differential equations for the
time dependence of the concentrations of A and C, �A� and
�C�, respectively.2 In the pseudo-first-order limit when �B�0

is constant, these equations are

d�A�

dt
��� f�B�0�A���r�C��kA�A� ,

�2.1�
d�C�

dt
�� f�B�0�A���r�C��kC�C� .

The Laplace transform � f̂ (s)��0
� f (t)exp(�st)dt� of the

time-dependent concentration of A, denoted by � Â� , is

� Â��
�s�kC��r��A�0��r�C�0

�s�kA��s�kC���s�kA��r��s�kC�� f�B�0
,

�2.2�
where �A�0 and �C�0 are the initial concentrations. Taking
the inverse Laplace transform, we get

�A�� ���A�0�	k�
���r���C�0�r�e�
�t�kAt

���A�0�	k�
���r���C�0�r�e�
�t�kAt �

����0�	k �2�4�r	k �1/2 , �2.3�

where we have defined

�0�� f�B�0��r , �2.4a�

	k�kC�kA , �2.4b�

and 
��kA are the roots of the denominator in Eq. �2.2�,

2
���0�	k����0�	k �2�4�r	k . �2.5�

The decay of C may subsequently be found using the follow-
ing, generally valid, ‘‘conservation law,’’

�s�kA�� Â���s�kC��Ĉ���A�0��C�0 . �2.6�

We will show that the approximate theories considered
below have the same structure as Eq. �2.2�, namely,

� Â��
�s�kC�Kr�s ���A�0�Kr�s ��C�0

�s�kA��s�kC���s�kA�Kr�s ���s�kC�Kf�s ��B�0
�2.7�

with the key difference that the rate constants are replaced by
the s-dependent functions Kf(s) and Kr(s),

Kf�s ��� f /F�s �, Kr�s ���r /F�s �, �2.8�

where F(s) is the diffusion factor function.15,19 This function
factors out the diffusion effects in the sense that it contains
all the dependence on the diffusion coefficient. Below we
present explicit expressions for F(s) for various theories.

B. The relaxation time approximation „RTA…

The relaxation time approximation �RTA� is a general
formalism applicable to chemical reactions with arbitrary ki-
netic schemes, concentrations and diffusivities.14 The proce-
dure for modifying the rate equations of ordinary chemical
kinetics to incorporate the influence of diffusion is described
in Sec. VII of Ref. 14. Using these results one can readily
obtain the equations that describe the reaction we consider in
this paper for arbitrary concentrations. Here we shall con-
sider only the pseudo-first-order case when the concentration
of B is sufficiently large so as to be time independent.

Our starting point is the formally exact rate equations for
the concentrations in the framework of a microscopic model
in which a reaction occurs at a contact distance a,

d�A�

dt
��� f�B�0�A��� f pAB�a ,t ���r�C��kA�A� ,

�2.9�
d�C�

dt
�� f�B�0�A��� f pAB�a ,t ���r�C��kC�C� .

Here pAB(r ,t) is the deviation of the pair distribution func-
tion from the ordinary chemical kinetics value, �A��B�0 . In
the case of fast diffusion, pAB(r ,t)�0 and the concentrations
of A and C obey the rate equations of conventional chemical
kinetics, Eq. �2.1�.

The pair function pAB(r ,t) changes due to diffusion, the
bimolecular reaction, and the decay of the excited states. An
A particle from the A – B pair can react with some other B to
generate a C – B pair. The latter may disappear due to disso-
ciation of C, producing an A – B pair. Let us assume that this
can be described using rate equations with effective rate con-
stants k f and kr that give the correct equilibrium constant,
Keq�k f /kr�� f /�r . Note that we are using Latin letters for
the effective rate constants (k f and kr) and Greek ones for
the intrinsic ones (� f and �r). Thus pAB(r ,t) is coupled to
pCB(r ,t). The two functions are assumed to satisfy the fol-
lowing reaction-diffusion equations,


pAB�r ,t �/
t�DAB�2pAB�k f�B�0pAB�krpCB

�kApAB ,
�2.10�


pCB�r ,t �/
t�DCB�2pCB�k f�B�0pAB�krpCB

�kCpCB ,

where DAB�DA�DB and DCB�DC�DB are the relative
diffusion constants of the A – B and C – B pairs, respectively.
The boundary condition for pAB(r ,t) is found from the con-
dition that flux of pAB(r ,t) at contact must be equal to the
total rate of the bimolecular reaction,

4�a2DAB





r
pAB�r ,t ��r�a

�� f��A��B�0�pAB�a ,t ����r�C� . �2.11�

In contrast, pCB(r ,t) describes the unreactive pair and there-
fore obeys a reflecting boundary condition at r�a . For uni-
form �equilibrium� initial conditions, both pAB(r ,0) and
pCB(r ,0) are equal to zero. Thus the structure of this formal-
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ism is very simple. It is based on two formally exact rela-
tions, Eqs. �2.9� and �2.11�, and a physically transparent ap-
proximation, Eq. �2.10�.

Using the technique described in Ref. 14, these equa-
tions can be solved analytically. The Laplace transform of
the concentration of A is given by Eqs. �2.7� and �2.8� with

FRTA�s ��� f�
i�1

2
T1i�T�1� i1

� ik̂ irr�� i�
, �2.12�

where k̂ irr(s) is the Laplace transform of the Smoluchowki–
Collins–Kimball irreversible rate coefficient,

1

sk̂ irr�s �
�

1

� f
�

1

kD�1��s�D�
. �2.13�

Here kD�4�DABa is the diffusion-controlled rate constant
and �D�a2/DAB is the diffusion time. The matrix T and the
diagonal matrix � �with elements �1 and �2) in Eq. �2.12�
are defined by the eigenvalue problem,

DABD�1�sI�K�T�T�, �2.14�

where D is the diagonal matrix of relative diffusion constants
(DAB ,DCB) and K is

K�� k f�B�0�kA �kr

�k f�B�0 kr�kC
� . �2.15�

We give here explicit expressions for the case DAB

�DCB�D . In this case �1,2�s�kA�
� and the diffusion
factor function is

� f
�1FRTA�s ��

�

�s�kA�
��k̂ irr�s�kA�
��

�
1��

�s�kA�
��k̂ irr�s�kA�
��
, �2.16�

where

��

��k f�B�0


��
�
. �2.17�

The 
� are the same as those in chemical kinetics �see Eq.
�2.5��,

2
��k0�	k���k0�	k �2�4kr	k , �2.18a�

k0�k f�B�0�kr , �2.18b�

but with the effective rate constants, k f and kr , replacing � f

and �r , respectively.
The effective rate constants, k f and kr , should be chosen

so as to give the best approximation for the interconversion
of the AB and CB pair functions �see Eq. �2.10�� in the
framework of simple chemical kinetics. The simplest choice
would be the steady state �SS� rate constants for the bimo-
lecular reaction A�B�C without unimolecular decay,

k f
ss�

� f kD

� f�kD
, kr

ss�
�rkD

� f�kD
, �2.19�

resulting in the SS relaxation time approximation �SSRTA�.
A better choice is to define the self-consistent �SC� rate con-
stants from the same condition used for 	k�0 in Ref. 14,

k f
sc�� f /FSCRTA�0 �, kr

sc��r /FSCRTA�0 �. �2.20�

Combining Eq. �2.20� and Eq. �2.16� when 	k�0 gives

�0

k0
sc �1�

� f

kD

1��r�k0
sc�D/�0

1��k0
sc�D

. �2.21�

From this equation one gets k0
sc and, therefore,

k f
sc�k0

scKeq /(1�Keq�B�0) and kr
sc�k0

sc/(1�Keq�B�0). This
defines the self-consistent relaxation time approximation
�SCRTA�. SCRTA reduces to ordinary chemical kinetics in
the reaction controlled limit, when D→� . In the small con-
centration limit, it reduces correctly to the geminate limit.5

C. Multiparticle kernel theories „MPK2ÕKT and MPK3…

Multiparticle kernel theories, MPK2 and MPK3, were
derived by decoupling the hierarchy of equations for the re-
duced distribution functions in various ways.9,10 The results
of MPK2 are the same as those of kinetic theory �KT�,8,11

which is based on a perturbation expansion.
Although the structure of these formalisms appears to be

more complex than the RTA, for the reaction considered in
this paper there is a close formal similarity among the final
results. The diffusion factor function F(s) of MPK3 can be
obtained from Eqs. �2.16�–�2.18� by setting

k f →�s�kA�k̂ irr�s�kA�, kr→
�r

� f
�s�kA�k̂ irr�s�kA�.

�2.22�

The diffusion factor function of MPK2/KT can be obtained
from Eqs. �2.16� and �2.18� by setting

k f →� f /F�s �, kr→�r /F�s � �2.23�

and solving the resulting equations for F(s) for each value of
s. This more elaborate self-consistent procedure has the dis-
advantage that, unlike the SCRTA, MPK2/KT does not give
the correct asymptotics when the lifetimes are equal. Be-
cause of these similarities, it is expected that their predic-
tions are similar except at long times.

D. The unified Smoluchowski approximation „USA…

While SCRTA reduces correctly in the reaction-
controlled and geminate limits, it does not reduce in the ir-
reversible limit to Smoluchowski’s result,18 which is exact
for the target problem considered here. The same is true for
the MPK2/KT and MPK3. Hence one should expect signifi-
cant deviations of the SCRTA kinetics from the simulation
results near the irreversible limit. We now modify the RTA
equations so that they reduce correctly in this limit. We call
the resulting formalism the unified Smoluchowski approxi-
mation �USA�.

The procedure we use is based on a generalization of the
transformation suggested in Ref. 14 for several special cases
of A�B�C and A�B�C�D with equal lifetimes. For
A�B�C with equal lifetimes in the target limit, this trans-
formation gave Sung and Lee’s MPK1 result,19 which is an
excellent agreement with simulation over the whole time and
parameter range investigated in Ref. 15.
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Consider the relaxation function of the Smoluchowski
form,

R�� t ��exp� �

�

ss

k f
ss �0

t

k irr� t��dt��
�exp� �
�

ss t�

�

ss

k f
ss �0

t

	k irr� t��dt�� , �2.24�

with the effective concentrations 
�
ss /k f

ss , and defining
	k irr(t)�k irr(t)�k irr(�)�k irr(t)�k f

ss . The superscript ‘‘ss’’
means that the steady state values are used for the forward
and reverse effective rate constants in Eqs. �2.18�. Taking the
Laplace transform, expanding it to linear order in 	k irr , and
assuming that the first two terms form a geometric series, we
find

R̂��s ��� s�

�

ss

k f
ss �s�
�

ss �k̂ irr�s�
�
ss �� �1

. �2.25�

This result is actually an identity to linear order in
�0

t 	k irr(t�)dt�. This suggests that one can obtain a formal-

ism that correctly reduces in the irreversible limit, by elimi-
nating k̂ irr(s�
�

ss ) in favor of R̂�(s) in FSSRTA(s) using the
transformation,

�s�
�
ss �k̂ irr�s�
�

ss �⇔� R̂�
�1�s ��s �k f

ss/
�
ss . �2.26�

In this way we find that

FUSA�s �

� f�B�0
�

�

R̂��s�kA��1��s�kA�

�
1��

R̂��s�kA��1��s�kA�
�2.27�

and

��

�

ss�k0
ss


�
ss�
�

ss
. �2.28�

This approximation describes the kinetics of the pseudo-
first order reaction with DAB�DCB . It reduces correctly in
the reaction controlled, irreversible and geminate limits.
Moreover, it reduces to MPK1 �Ref. 19� in the equal lifetime
limit.

FIG. 1. �Color� The kinetics of the excited-state association-dissociation
reaction �1.1� for static A and C. Brownian dynamics simulations �gray
circles� were conducted using the algorithm of Ref. 13, and compared with
the four approximate theories �color lines, see key�. In all of the simulations,
DB�1 and � f�125. Here kA�0, whereas the other rate parameters vary as
indicated �see also Table I�. The 	k�1 case in panel A is from Fig. 3 of
Ref. 13, whereas the remaining data are new. Note the log–log scale.

FIG. 2. �Color� Same as Fig. 1 for other parameters �here kC�0 and kA

varies�. keff for the curves from top to bottom is 0.23, 0.46, 0.72, 1.054
�panel A� and 0.015, 0.065 �panel B�, respectively. Data in panel A are from
Figs. 4 and 8 of Ref. 13, whereas the data in panel B are new.
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III. COMPARISON WITH SIMULATIONS

In Figs. 1–4 we compare the predictions of SCRTA
�red�, MPK2/KT �blue�, MPK3 �green�, and USA �black�
with BD simulations �gray circles, using the algorithm of
Ref. 13� in the pseudo-first-order case, when both A and C
are static (DA�DC�0). Specifically, we examine the time
dependence of �A� for the initial condition �A�0�1 and
�C�0�0. We have performed this comparison for over 20
parameters sets and present results only for the most edifying
ones.

The parameters were selected as follows. Two of them
were fixed, DB�1 and � f�125 �these values determine our
dimensionless units�. The remaining parameters were varied
as outlined in Table I: Figs. 1 and 2 consider the case of
small B-concentration, whereas in Figs. 3 and 4 �B�0 is
larger. The odd-numbered figures have 	k�0, whereas in
the even ones 	k�0. �r is varied between the two panels �A
and B� as indicated. Thus in Figs. 1 and 2 panels B are closer
to the irreversible limit, whereas in Figs. 3 and 4 panels B are
more remote from it.

For 	k�0 �Figs. 2 and 4� we noticed that at long
times �A� decays exponentially over a significant time
interval.13 To highlight the preasymptotic behavior, we plot
�A�exp(�kefft) vs time, where �keff is the largest root of the
real part of the denominator in Eq. �2.7� with the SCRTA rate
parameters for Kf(s) and Kr(s). In Figs. 1 and 3 the
A-concentration is not scaled, but we limit the presentation to

the first five decades. We also use a double-logarithmic scale
in order to cover more evenly the many orders of magnitude
probed by our simulations.

It can be seen from Figs. 1 and 3 that MPK3 performs
poorly when 	k�0. The other three theories are typically
much closer to the BD data. However, as the irreversible
limit is approached, SCRTA and MPK2 deteriorate in com-
parison with the USA as can be seen from Fig. 1�A�, where
	k increases. When the irreversible limit is approached by
decreasing �r �panel B�, the discrepancy occurs at interme-
diate times. Further away from the irreversible limit �smaller
	k or/and larger �r) the various theories become almost
indistinguishable �e.g., Figs. 2�A� and 4�B��.

FIG. 3. �Color� Same as Fig. 1 for other parameters. The 	k�5 case in
panel A is from Fig. 5 of Ref. 13, whereas the remaining data are new.

FIG. 4. �Color� Same as Fig. 1 for other parameters �here kC�0 and kA

varies�. keff for the curves from top to bottom is 0.18, 0.38 �panel A� and
2.45, 9.60 �panel B�, respectively. The 	k�10 case in panel A is from Fig.
6 of Ref. 13, whereas the remaining data are new.

TABLE I. Overview of parameters used in the four figures in their panels
A/B.

Figure �B�0 kC�kA �r

1 0.1/0.5 �0 5/1
2 0.1/0.5 �0 5/1
3 1 �0 5/50
4 1 �0 5/50
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IV. CONCLUDING REMARKS

In this paper, we have compared the predictions of sev-
eral modern theories for the kinetics of the excited-state
diffusion-influenced association-dissociation reaction in Eq.
�1.1� with simulations. While none of the theories agrees
perfectly with the simulations for all times and all param-
eters, it appears that overall the USA is the most satisfactory.
The reason is that it is only the USA that reduces in the
irreversible limit to the Smoluchowski result, which is exact
in this limit for the microscopic model that was simulated
�i.e., the ‘‘target’’ problem�.

To get the USA, we modify the RTA results so as to
reduce to Smoluchowski’s kinetics in the irreversible limit.
This procedure is a generalization of a simpler transforma-
tion suggested previously,14 for certain special cases of both
the A�B�C and the A�B�C�D reactions for equal life-
times. The present procedure is applicable to any reaction
scheme for which the RTA eigenvalues in Laplace space are
of the form s�const. For example, this includes excited state
A�B�C�D in the pseudo-first-order target limit. When
this is not the case �e.g., when all the reactants diffuse�, the
Smoluchowski result is no longer exact in the irreversible
limit, though it may still provide a good approximation.20

Under such conditions, it is not clear how or even whether
one should modify the RTA formalism.
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