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Fluorescence intensity correlation functions contain information about photophysical and
conformational dynamics. We propose and implement a simple procedure to analyze such functions
measured in the presence of resonance energy transfer. When there is a separation of time scales and
the conformational dynamics is modeled as diffusion in the potential of mean force along the
interdye distance, we obtain an analytic expression for the conformational correlation time. This can
be used to find the diffusion coefficient describing conformational fluctuations given the photon
count rate and equilibrium distribution. © 2009 American Institute of Physics.

[doi:10.1063/1.3212597]

I. INTRODUCTION

Fluorescence correlation methods allow the measure-
ment of translational, rotational, and conformational dynam-
ics of molecules over a wide range of time scales.! In com-
bination with Forster resonance energy transfer (FRET),’
inter- and intramolecular distances between about 1 and
10 nm can be probed. FRET is based on the highly distance-
dependent transfer of excitation energy between a pair of
appropriate donor and acceptor fluorophores via dipole-
dipole coupling.3 If such dyes are attached to a macromol-
ecule, changes in intramolecular distances can be monitored
via the resulting changes in photon emission rates from the
donor and the acceptor. If single molecule detection is used
to avoid ensemble averaging, spontaneous distance fluctua-
tions at equilibrium can be studied via intensity correlation
functions.' Recently, this approach has been extended to
probe conformational dynamics in polymers down to the
nanosecond range.‘"7

The measured intensity correlation functions are influ-
enced by both polymer dynamics and photophysical transi-
tions between the excited and ground states of the fluoro-
phores. By modeling polymer dynamics as diffusion in the
presence of a potential of mean force® and including the
stochastic kinetics of the electronic transitions, the correla-
tion functions can be calculated from combined Brownian
dynamics and Monte Carlo simulations.” A more efficient
numerical procedure for analyzing experimental data is
based on discretizing the diffusion operator and expressing
the correlation function as an exponential of a rate matrix
that describes both electronic and conformational
transitions.>"

In this paper we introduce a more direct and much sim-
pler procedure to analyze intensity correlation functions to
yield information about conformational dynamics. By ex-
ploiting the separation of time scales between fast photo-
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physical and slow conformational dynamics, we obtain an
analytic expression for the conformational correlation time
that can be measured by simply fitting the experimental cor-
relation functions. Our expression depends on the distribu-
tion of interdye distances, the photon count rate, and the
diffusion coefficient that describes conformational fluctua-
tions. The first two quantities can be determined from inde-
pendent measurements, so that the diffusion coefficient can
be obtained directly from the experimentally determined
decay rate.

Il. THEORY
A. General formalism

We start with the general theory for intensity correlation
functions when photon emission and conformational dynam-
ics are described by a kinetic scheme, which includes both
electronic and conformational states.'” Let K;; be the rate of
Jj—1 transition. Let K be the matrix of all such rates with
K;j=-X;.,K;;. Emitted photons are associated with transi-
tions from excited to ground states. Let V be the matrix with
off-diagonal elements equal to the rates of monitored transi-
tions. For example, if we are monitoring only photons corre-
sponding to the m—m' transition, V has only one nonzero
element V,,1,,= K:Z(,jm, where K::‘,jm is the radiative transition
rate and ¢ is the detection efficiency.

The intensity correlation function g(7) normalized so that
g(®)=1 can be expressed as'’

(< LO1O) _ 1'veXvp,
SO T AT,

(1)

where 1 is the unit vector, p,, is the vector of the normalized
steady-state probabilities, which are obtained by solving
Kp,,=0 with 1Tp,=1.

The rate matrix that combines protein dynamics and
distance-dependent photon emission from the donor-acceptor
pair can be formally represented as
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K=K, +1L,, (2)

where K (r) is the rate matrix that describes only electronic
transitions. It depends on a conformational coordinate r
through the rate of energy transfer. I is the identity matrix
and L, is the operator describing conformational dynamics.
For the diffusion on a free energy profile

P d »
L,=D arpc(r) arpc(r) , (3)

where D is the diffusion coefficient and p.(r) is the normal-
ized equilibrium distribution of the conformational coordi-
nate r.

To directly apply Eq. (1), the operator £, must be
discretized.” Then K becomes a MN X MN block matrix,
which is the direct product of Ky(r) (of size M X M) and the
discretized L, (of size NXN).

B. Separation of time scales

When conformational dynamics are slow compared to
photophysical transitions, the above formalism can be sim-
plified. For an arbitrary correlation function one can exploit
time scale separation as follows. Consider the correlation
function (A(r)A(0)) of quantity A(¢), which depends on two
coupled variables. A(f) changes in time due to both fast and
slow fluctuations of these variables, which we refer to as fast
and slow variables. At short times, the slow variable does not
change; therefore, the correlation function is equal to
((A(1)A(0)) ), where (A(#)A(0)), is the correlation function
resulting from fluctuations of the fast variable at a fixed
value of the slow one and (---); means averaging over the
equilibrium distribution of the slow variable. At intermediate
times that are short compared to the characteristic time of
slow fluctuations and long compared to that of fast fluctua-
tions, A(r) is completely averaged over the fast variable at a
fixed value of the slow variable; therefore, the correlation
function is a constant, ((A)J%)S, where (- - ), means averaging
over the fast variable at a fixed slow variable. At long times,
the average (A); still fluctuates because of slow dynamics
and the resulting correlation function is denoted by
((A)A1){A)[0)),. Combining these expressions, we can find
an approximation that reduces correctly at short, long, and
intermediate times:

(A(DA(0)) = ((LAMDA(0)) ) = ((AY7)s + LAV ATKA)(0) ).
(4)

Similarly one can construct an approximation in the
“product” form:

(AWA0) _ (AWDA(0))), (AN (1)(A) (0)),
(A)? (A, Ay

(5)

When the slow and fast relaxation times are sufficiently dif-
ferent, these two expressions are equivalent.
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C. Intensity correlation functions for slow
conformational dynamics

Let us apply this approximation to the intensity correla-
tion function when the photophysical transition rates are
modulated by slow conformational dynamics. In this case the
excited and ground state populations reach steady state be-
fore the conformational coordinate changes. The photon
count rate (i.e., the number of photons per unit time) at a
fixed conformational coordinate (the term (A)/) is

n(r) =17Vp,(r), (6)

where p’.(r) is the vector of local steady-state probabilities at
fixed r, p°(i,r), which are obtained by solving Ko(r)p?(r)
=0 and lTpgs(r)=1, for each r.

In the present context, Eq. (5) for the intensity correla-
tion function becomes

8(1) = gpn(0)g (1), (7)

where gph(t) is the correlation function that describes the
decay of fast photophysical fluctuations:

gonl(0) = (ATVEKVPL) ()., (8)

where (---). denotes an average over the equilibrium distri-
bution of the conformational coordinate (the slow variable):

()= f “p(r)dr. 9)

The second factor in Eq. (7) is the correlation function that
describes only slow fluctuations of the count rate due to con-
formational dynamics,

8(1) = (alr(D]n[r(0) De/(n)? (10)

Here (n(r)n(0)). is the correlation function of the photon
count rate n[r(z)], where the dynamics of r(z) is described by
the operator £,. The approximation in Eq. (7) reproduces the
correlation function at short (compared to slow conforma-
tional dynamics) and long (compared to fast photophysical
relaxation) times. At =0, g, is zero for almost all kinetic
schemes because of antibunching. This follows from Eq. (8)
because V2=0 for all kinetic schemes, except those where
the final state of one monitored transition is the initial state
of another.

The correlation functions g,,(#) and g.(#) are in general
multiexponential functions of time. We further approximate
these correlation functions as single exponentials that are
correct at t=0 and at r=00:

2 2
g(t) ~ (1 _ e_t/"ph)<] + we—ﬁrp)
(n);

The decay time of the photophysical correlation function 7,
can be determined by requiring the area under 1-gy, to be
exact [i.e., the same as what would be obtained using Eq.
(8)]. Alternately, the decay time 7,;, can be found by requir-
ing the slope at t=0 to be exact. The decay time of the
conformational correlation function 7, is determined by re-
quiring the area under g.—1 to be exact:

(11)
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FIG. 1. Donor-donor intensity correlation functions for various diffusion
coefficients. Exact results (dots) are compared with the approximate ones
(dashed lines) obtained from Egs. (11)—(16). Full lines show a two-
exponential least-squares fit, Eq. (11) with three adjustable parameters.
The excitation rate is k,,=0.02 ns~', the decay rates are k,=k,=0.27 ns~!,
the direct excitation factor is f=0.05, the energy transfer rate is kgp(r)
=kp(Ry/7)°, Forster radius is Ry=5.4 nm, rms interdye distance is
\s’%:6 nm, D=0.1,0.2,0.5, and 1 nm? ns!. Inset: kinetic scheme for
FRET with donor re-excitation and direct excitation of the acceptor.

[ (8n()5n(0)),

= dt, 12
Tc . <5n2>c t (12)

where dn=n—(n).. When the conformational dynamics is de-
scribed as diffusion on a free energy profile, 7. can be found
analytically using the generalization of the theory of first
passage times."" This formalism was first applied to rota-
tional correlation functions that determine fluorescence de-
polarization of probes in uniaxial liquid crystals.12 For a sys-
tem in which the conformational coordinate is restricted to
the interval r.=r=I_. it can be shown through a simple
modification of the results in Ref. 13 that

L)) '[J7 nlp)pcp)dp ] dr
B Dfl;L on(r)p (r)dr

; (13)

Te

where fl;pc(r)dr=1. This is one of the key results of this
paper. It aramatically simplifies the analysis of experimental
intensity correlation functions to yield dynamical informa-
tion about conformational fluctuations.

lll. RANGE OF VALIDITY AND APPLICATION
TO EXPERIMENT

In order to demonstrate the utility of the above results,
consider FRET between donor and acceptor fluorophores at-
tached to a flexible polymer. Depending on the donor-
acceptor distance r, the donor dye emits a photon or transfers
the excitation to the acceptor resulting in emission of accep-
tor photons. This process can be described by the kinetic
scheme shown in the inset of Fig. 1, which also includes
donor re-excitation (DA* — D*A*) and direct excitation of the
acceptor (DA— DA* and D*A— D*A*).>*’ We use the gen-
eral formalism presented in Sec. I A to generate “exact”
donor-donor intensity correlation functions.” These are then
compared with the approximation in Eq. (11). Finally, a
simple procedure to obtain information about conformational
dynamics from the intensity correlation function is intro-
duced and applied to experimental data.
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The rate matrix that describes electronic transitions,

Ky(r), for the above model is [in the basis
(DA,D*A,D*A*,DA")],
_kcx(l +f) kD 0 kA
Kex — kp = fex = kez(r) ka 0
K(r) =
fkex - kA - kD kex
fkex kET(r) kD - kA - kex

The matrix of transitions resulting in the detected donor pho-
tons, V, has nonzero off-diagonal elements corresponding to
the transitions D*A — DA and D*A*— DA”,

0 K4 0 0

Voo, 00 0 0 , (14)
0 0 0 0
0 0 KMo

where ¢p is the detection efficiency of the donor photons.
Conformational dynamics is described by diffusion in a po-
tential of mean force that corresponds to the end-to-end dis-
tribution of a Gaussian chain:

r* exp(=3r7/2(r*))
fl;‘rz exp(— 37212(M)dr’

pr)= (15)

where r,. and [, are the contact radius and the contour length
and (r?) is the mean square end-to-end distance when r,=0
and [.=.

The “exact” donor-donor intensity correlation function,
Eq. (1), will now be compared with the approximation in Eq.
(I1). To find the required parameters, we first obtain the
local steady state populations by solving Ko(r)p’(r)=0
and requiring that p?S(DA,r) + p?S(D*A,r) + pSY(D*A*,r)
+ p?S(DA*,r)=1. The photophysical correlation time 7, is
determined by requiring that the initial slope of the correla-
tion function be the same as that in Eq. (8). For the donor-
donor autocorrelation function, this leads to

DA + (DA,
*PAUDA ) + (DA ),

Toh (16)
where k., is the excitation rate (see Fig. 1). This time does
not depend on the conformational dynamics. On the other
hand, the conformational correlation time 7. in Eq. (13) is
inversely proportional to the diffusion coefficient. It also de-
pends on the normalized end-to-end equilibrium distribution
and the mean donor photon count rate at fixed distance be-

tween donor and acceptor, which is found using Egs. (6) and
(14):

n(r) = ppkp(p(D*A,r) + p(D*A%,1)). (17)

Here ¢p and kg‘d are the detection efficiency and the radia-
tive rate. Note that 7. does not depend on these parameters.

Figure 1 compares the exact and approximate donor-
donor intensity correlation functions for the scheme shown
in the inset when the energy transfer rate is modulated by
diffusive chain dynamics. The correlation functions exhibit
nonmonotonic behavior. There is a dip at short times due to
antibunching. After reaching a maximum, the correlation
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TABLE 1. Photophysical and conformational correlation times for various
diffusion coefficients. The times 7{)‘}1) and 7' are obtained by fitting the cor-
relation functions to two exponentials. 7{" should be compared to 7. pre-
dicted by Eq. (13). 7,,=2.52 ns for all D, as predicted by Eq. (16). The ratio
ol 7';‘}‘1 is a measure of the separation of time scales.

D 7451‘1 7t .

(nm? ns™") (ns) (ns) (ns) 7 7{)"
0.1 2.62 53.8 51.7 20
0.2 2.55 28.3 25.9 11
0.5 2.42 12.0 10.4 5
1 2.30 6.21 5.17 2.7
2 2.14 3.42 2.59 1.6

functions decay with a rate that depends on the diffusion
coefficient dependent. This bunching of photons is due to
conformational dynamics. When D=0.1 and 0.2 nm? ns~!,
the time scales of the photophysical and conformational dy-
namics are well separated and the exact and approximate
correlation functions agree over the whole time range. As D
increases, the two processes become coupled and our ap-
proximation deteriorates.

Full lines in Fig. 1 show the two-exponential fit based on
Eq. (11). The parameters 7y, 7., and the amplitude of the
conformational correlation function were adjusted, not calcu-
lated as for the dashed lines. Although both g,,(#) and g.(¢)
are multiexponential, the two-exponential fit works very
well, even when electronic transitions and conformational
dynamics are coupled.

In Table I, we compare the fitted correlation times with
those predicted by Eqgs. (13) and (16). As expected, when fast
and slow dynamics are well separated (7"/ on > 10), the fit-
ted and calculated relaxation times agree with each other.
Remarkably, even when 7&‘1 and 7" differ by only a factor of
2 and Eq. (11) is a poor approximation, Eq. (13) predicts the
conformational correlation time within 25%.

The above comparison suggests the following procedure
for obtaining the effective diffusion coefficient of chain dy-
namics from the measured intensity correlation function.
First, the fast and slow correlation times are determined by
fitting the correlation function. Given the equilibrium distri-
bution of the conformational coordinate and the dependence
of the photon count rate on this coordinate, D can be found
using Eq. (13). The accuracy of this procedure increases with
increasing 7'/ 75y

We now apply our procedure to experimental donor-
donor intensity correlation functions measured for the un-
folded subpopulation of the cold shock protein5 [see Fig.
2(a)]. We suppose that bunching of photons and decay of the
correlation function is due to polymer dynamics that results
in interdye distance fluctuations. Dye orientation, which af-
fects the photon count rate through the «” factor in the en-
ergy transfer rate, is assumed to be averaged out by rapid
rotational diffusion of the dyes. This assumption is supported
by the observation that the decay time of the fluorescence
anisotropy of the unfolded cold shock protein labeled only
with a donor dye is less than 1 ns.® In addition, no bunching
effect has been observed for rigid polyproline, which was
labeled with the same dyes and with the protein labeled only
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FIG. 2. (a) Intensity autocorrelation function of donor emission from un-
folded cold shock protein at 4M GdmCl. (b) Denaturant dependence of the
slow decay time of the correlation function. (c) Viscosity-corrected
end-to-end diffusion coefficient calculated from the correlation times using
Eq. (13).

with a donor dye.5 Therefore, although dye reorientation
might affect the fast antibunching part of the correlation
function, it is unlikely that it will influence the slow decay
time of the correlation function, ..

The conformational correlation times obtained by fitting
the experimental correlation functions are plotted in Fig. 2(b)
as a function of the denaturant [guanidinium hydrochloride
(GdmCIl)] concentration. To obtain D using Eq. (13), we
need to know n(r) and p.(r). The end-to-end distribution was
assumed to be that of a Gaussian chain with a denaturant
dependent (r?) determined by fitting the peak position of the
energy transfer efficiency histogram obtained from single-
molecule measurements.'* The distance-dependent count rate
was calculated for the kinetic scheme shown in the inset of
Fig. 1 using the independently determined parameters given
in the caption. The resulting Viscosity-corrected5 diffusion
coefficients (D#n/1 cp) are plotted as a function of the rms
end-to-end distance in Fig. 2(c). They are in excellent agree-
ment with those obtained using a much more elaborate pro-
cedure involving numerical solution of a reaction-diffusion
equation using finite differences.” The diffusion coefficient
increases with the end-to-end distance. Thus the more com-
pact the protein, the slower its internal dynamics.

It is interesting to compare the decay times determined
from the donor-donor intensity correlation function with the
relaxation time of the end-to-end distance correlation func-
tion 7,=[(5r(t)6r(0))./(Sr*).dt. This time can be referred
to as the chain reconfiguration time. For a Gaussian chain
with r.=0 and [,=, 7,~(r?)/6.22D, as can be verified by
replacing n(r) by r in Eq. (13). To show how the decay time
of the conformational correlation function 7, is related to the
chain reconfiguration time, we plot 7./7,. as a function of
\/@ /R in Fig. 3. When the rms end-to-end distance is near
the Forster radius, the correlation decay time is close to the
chain reconfiguration time, as was observed experimentally.5
If {(r?) is known, this figure can be used to determine D from
the measured 7.

IV. CONCLUDING REMARKS

In this paper we introduced a simple procedure for ana-
lyzing fluorescence intensity correlation functions. When
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FIG. 3. The ratio of the donor-donor fluorescence intensity correlation de-
cay time, 7,, and the chain reconfiguration time, 7,, as a function of the ratio
of rms end-to-end distance of a Gaussian chain to the Forster radius.

there is a separation of time scales, the correlation function
can be factored as a product of the correlation functions de-
scribing only fast photophysical and only slow conforma-
tional fluctuations. When the conformational dynamics are
described by diffusion in the presence of a potential of mean
force, the corresponding correlation time can be calculated
analytically [Eq. (13)]. Given the experimentally determined
7., this expression can be used to obtain the effective diffu-
sion coefficient that describes conformational dynamics.

We specifically considered only donor-donor intensity
autocorrelation functions. The acceptor-acceptor and cross-
correlation functions can be found analogously. The photo-
physical relaxation time [and the amplitude of the exponent
exp(—t/ Tph) in the crosscorrelation function] will be differ-
ent. However, using Eq. (13) and the work of Camley er
al.,” it can be shown that the decay time 7, obtained from all
auto- and crosscorrelation functions is the same. This is true
for any kinetic scheme describing photophysical transitions
as long as it contains only one rate that depends on the con-
formational coordinate.

Finally, we note that there is an interesting mathematical
correspondence between the procedure proposed here to ana-
lyze intensity correlation functions and that used to analyze
triplet quenching.16 In these experiments, chain dynamics are
probed by measuring the quenching rate k,, of the triplet
state of a tryptophan located at one end of the polypeptide
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chain by a cysteine on the other. The observed rate depends
both on how the quenching rate depends on the end-to-end
distance, ¢(r), and on how this distance r fluctuates because
of conformational dynamics. The end-to-end diffusion coef-
ficient can be extracted from k,,, measured as a function of
viscosity using the approximate expression:16

Fepen) [ 17 da(p)pc(p)dp]dr
— =+
kobs <61>c D(q)?

where 8g=q(r)—{g).. Note that the second term is virtually
identical to Eq. (13) with the photon count rate n(r) being
replaced by the quenching rate ¢(r), even though the physics
of the two experiments is quite different.
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